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Motivating Question

d d
d . ..
fa(x1, ..., X = max E H iik(xk) with sufficiently regular fj: R — R
J:]_ =1

Is there a ReLU network approximating f47?

Julius Berner Regularity theory for ReLU networks 2 /14



Motivating Question

d d
d . ..
fa(x1, ..., X ma E H iik(xk) with sufficiently regular fj: R — R
J:]_ =1

Is there a ReLU network approximating fy and its derivative approximating
Dfy?

Julius Berner Regularity theory for ReLU networks 2 /14



Motivating Question

d

d . .

fa(x1, ...y X = max g H iik(xk)  with sufficiently regular fj: R — R
J:]_ =1

Is there a ReLU network approximating fy and its derivative approximating
Df, efficiently /without curse of dimensionality?

Julius Berner Regularity theory for ReLU networks 2 /14



Motivating Question

d

d . .

fa(x1, ...y X ma g H iik(xk)  with sufficiently regular fj: R — R
J:]_ =1

Is there a ReLU network approximating fy and its derivative approximating
Df, globally efficiently /without curse of dimensionality?

Julius Berner Regularity theory for ReLU networks 2 /14



Motivating Question

d

d . .

fa(x1, ...y X ma g H iik(xk) with sufficiently regular fj: R - R
J:]_ =1

Is there a ReLU network approximating fy and its derivative approximating
Df, globally efficiently /without curse of dimensionality?

Julius Berner Regularity theory for ReLU networks 2 /14



Applications - Partial Differential Equations

e emulation of classical approximation methods based on sparse
expansions

e efficient approximation of PDE solutions with general low-rank
structures
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Example - Kolmogorov equation

Definition (Kolmogorov equation)

{8tu(t, x) = 3Trace(o(x)o T (x)Hessxu(t, x)) + p(x) - Veu(t, x)
u(0,x) = ¢(x)
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Definition (Kolmogorov equation)
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u(0,x) = ¢(x)

(efficient approximation of ¢, o, ,MJ [Iow—rank structure)

Feynman-Kac formula,
simulation of MC sampling [Elbrachter et al. '18]
[Grohs et al. "18; Jentzen et al. '18]

[efﬁcient approximation of PDE solution uJ

Feynman-Kac formula,

L . [B., Grohs, Jentzen '18]
statistical learning theory

(efficient learning of PDE solution u via ERMJ
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Feed-Forward Neural Network

e parametrization of neural network with architecture (N, ...

® = ((As, br))j—s
where A, € RNexNe-1 gnd p, € RMe
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Feed-Forward Neural Network

e parametrization of neural network with architecture (Np, ..., N.):
& = ((As, b))t
where A, € RNexNe-1 gnd p, € RMe
o F#neurons(P) := Zé:o N,
e activation function o: piecewise linear with at least one breakpoint
e ReLU(x) = max{x,0}
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Feed-Forward Neural Network

e parametrization of neural network with architecture (Np, ..., N.):
& = ((As, b))t
where A, € RNexNe-1 gnd p, € RMe
o F#neurons(P) := Zé:o N,
e activation function o: piecewise linear with at least one breakpoint
e ReLU(x) = max{x,0}
o LeakyReLU(x) = max{ax,x}, a€(0,1)
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Artifical Feed-Forward Neural Network

O O O
[: o0(Arx + bl)] [: 0(Arzy + bz)]
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Artifical Feed-Forward Neural Network

O O O
BTN

Definition (realization of a parametrization)

Realization R® of parametrization ® = ((Ay, by))5_;:

RO =W, o0p0o Wi_10...000 W

where Wi (x) := Axx + bk and o is applied component-wise.
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Local £ Approximation [varotsky '16]

e K C R compact
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Local £% Approximation [Yarotsky '16]

e sawtooth function  #neurons < log(#teeth)

1 T T T T 1 T T T 1 T T T T
—h —h, = hioh —hy=fyoh

Julius Berner Regularity theory for ReLU networks 8 /14



Local £% Approximation [Yarotsky '16]

e sawtooth function

#neurons < log(#teeth)

—h=hoh

—h3=hyoh

o8l B os | 1 08 1
o6l i os | 1 os 1
ol B ol 1 04 1
0zl i 0ol 1 02
. , . . , . . , . , . . . , .

o o2 o n o8 i o o2 o4 o5 os 1 o2 o os os 1
. . -1
= squaring function? T4 neurons < log(c™1)
1 T T T T 1 T T T T 1 T T T T
—_ i —_ 1 1 ho
X = x — zhi(x) ‘ X x—ih(x) - Ehg(X) [ —xx—Y0 zg:)
P 1 N 1wt 1 e 1
o6l i ool 1 os 1
ol B ol 1 0s 1
02l B 02l 1 02 1
. . . , , . : . . , . ” , . ,
b 02 o os o5 1 v 02 o4 o5 o8 1 o2 o o6 os 1
Julius Berner Regularity theory for ReLU networks

8 /14



Local £% Approximation [Yarotsky '16]

e sawtooth function

#neurons < log(#teeth)

—hy=hoh —hs=hyoh

o 02 04 06 08 1

= squaring functionf

= multiplication’

Julius Berner

T4 neurons < log(s™1)

= = - 2
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Local £% Approximation [Yarotsky '16]

e sawtooth function

#neurons < Iog(#teeth)

1 T T T T

1
T T T T T

= hioh —hy=fyoh

= squaring functionf
= multiplication’
= polynomials’

=

C"-functions

Julius Berner

T4 neurons < log(s~1)

dimension

#neurons < e~ log?(=71)
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Local £% Approximation [Yarotsky '16]

e sawtooth function  #neurons < log(#teeth)

1 T 1

—h —h=hoh T
= squaring function® T4 neurons < log(c1)
= multiplication'
= polynomials’
. __dimension _
= C"-functions #neurons S € log?(c71)

Goal: simultaneous approximation of  and Df (=t — || - [l )
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Neural Network Derivative D

e Problem: chain rule fails!
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Neural Network Derivative D

1, x>0
e Problem: chain rule fails! = define DReLU(x):=<¢c, x=0
0, x<0

e deep learning libraries (TensorFlow, PyTorch): ¢ =0 = sparsity
e Do not necessarily in the subdifferential (regardless of choice of ¢)

Lemma (properties of D [B., Elbrichter, Grohs, Jentzen '19])
o well-defined: Db = D[R®] a.e.
e chain-rule: D(V o ®) = DY(RP) - DO
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Local W' Approximation

= Use Yarotsky's construction and chain rule
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Local W' Approximation

= Use Yarotsky's construction and chain rule

Theorem (upper bounds [Giihring, Kutyniok, Petersen '19])
For every

fe WH’OO(K) with Hf”y\)n,oo <C
there exists ® with |[f — R®|)y1.00 () < € and

dimension

#neurons < e~ -1 log?(e7 )
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Local W' Approximation

= Use Yarotsky's construction and chain rule

Theorem (upper bounds [Giihring, Kutyniok, Petersen '19])
For every

f S W/77OO(K) with ||f”WH,oo S C
there exists ® with ||[f — R®||)y:0 (k) < & and

__dimension

#neurons < e i~ log?(e7Y) s €[0,1]

Goal: approximation without curse of dimensionality

(general So ar function — low-rank structure)
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Local Curseless W Approximation

Definition (approximation without curse of dimensionality)

f;: RY - R, d € N, can be approximated by networks {®. ,} without
curse of dimensionality if

[fs — RO. yllwree(k)y <& and  #neurons < poly(s~*, d)

Informal Theorem (sufficient conditions)
Under mild conditions functions 7y given by

e linear combinations, multivariate products, multivariate
maxima/minima
of
e Sobolev-regular functions depending only on k variables
can be approximated without curse.
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Global Approximation

e given local approximations [|f — R®. gllyy1.00((—p,g)7) < € for f with

at most polynomially (with degree ) growing derivative

A Ly /e1/004 (%)

~ L_1/e,1/e¢F ()

= R¢E,1/E(X)
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Global Approximation

e given local approximations [|f — R®. gllyy1.00((—p,g)7) < € for f with

at most polynomially (with degree ) growing derivative

Theorem (global estimates [B., Elbrichter, Grohs, Jentzen '19])

There exists W with

o |f(x)—RV(x)| <e(l+ HXH’HZ) Vx € RY
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Global Approximation
e given local approximations [|f — R®. gllyy1.00((—p,g)7) < € for f with
at most polynomially (with degree ) growing derivative

Theorem (global estimates [B., Elbrichter, Grohs, Jentzen '19])
There exists W with

o #neurons(V) < #neurons(®. q/.) + log(d +=71)
and

o |f(x)—RV(x)| <e(l+ HXH’”Z) Vx € RY

o |Df(x) = DVU(x)|| < e(1 + ||x||"*?) ae xeR

A Ly /e1/04 (%)
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Motivating Question

d

d
d .
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Motivating Question

d d
d .
fa(x1, ..., x4) = max E H fiw(xk)  with ||fii|lywmee < C

= there exists a ReLU network W with
o #neurons < poly(s71, d)
o [fy(x) = RU(x)| < e(1+ |Ix]|"™) VxeR?
o ||Dfy(x) — DU(x)|| < e(1+|Ix]|"™?) ae xcR?
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v’ constructive proof, quantitative rates
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Thank you for your Attention!
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