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Introduction Motivation

The Power of Deep Learning po 14

e automatic generation of photo-realistic images (deep generative
adversarial networks)

destination

Figure: render human faces into different styles - Karras et al. '18
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Introduction Motivation

The Power of Deep Learning po. 14

e automatic generation of photo-realistic images (deep generative
adversarial networks)

Monet _ Photos Zebras T Horses Summer T Winter

photo —>Monet horse —» zebra

Photograph Monet Van Gogh Cezanne

Figure: render natural photographs into different styles - Zhu et al. '17
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Introduction Motivation

The Power of Deep Learning

e automatic game playing with super-human performance (deep
Q-learning)

Video: Learning to play 'ATARI outbreak’ - Mnih et al. '15 (attps://youtu.be/VieyniJornk)
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https://youtu.be/V1eYniJ0Rnk

Motivation
The Power of Deep Learning p

e numerical solution of very high-dimensional partial differential
equations (PDEs)
e Black-Scholes equation from financial engineering

Oru = %TI'ELCG((TO’THGSSXU> + - Vyu

Relative Runtime
error in seconds
1.009524 1
0.387978 437.9
0.010039 1092.6
0.005105 2183.8

(https://en.wikipedia.org/wiki/Stock_market)

Figure: Solving a 100-dimensional option pricing problem - Beck et al. '18
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Motivation
The Power of Deep Learning

'Machine learning works spectacularly well, but mathematicians
aren’t quite sure why.’ - Daubechies '15
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Introduction Neural Networks

Artificial Neuron 3

e mapping (xi,...,

b € R, and activation function o: R — R.

Inputs

Julius Berner

X1 O—— -

X2 O——— -

X3 O

Heaviside Activation

Xn) > 0 (Zj’:l ajxj + b) with weights a; € R, bias

X4 O—— -

X5 O———

Weights

{

1, Zjanj-l-b>0
0, Zjajxj+b§0

Output
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Introduction Neural Networks

Artificial Neuron p3

e mapping (x1,...,%,) — 0 (Z‘Ll ajxj + b) with weights a; € R, bias

J
b € R, and activation function o: R — R.
e "...neural network theory is a collection of models of computation

very, very loosely based on biological motivations”

Cell body

Axon Telodendria

Synaptic terminals

/ Golgi apparatus
Endoplasmic
reticulum N

Mitochondrion | Dendrite

A\
[ - A. Géron. Hands-On Machine
/ N Dendritic branches Learning. O'Reilly Media, 2017.
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Introduction Neural Networks

Artificial Feed-Forward Neural Network

e stacking together artificial neurons

2)_(1 2
o (S A2 +52)
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Introduction Neural Networks

Artificial Feed-Forward Neural Network

e stacking together artificial neurons

e network architecture N = (No, N1, ..., N.) specifying the number of
artifical neurons N, in each of the L layers

& setting: input dimension Ny = d, output dimension Ny = n
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Introduction Neural Networks

Artificial Feed-Forward Neural Network

e stacking together artificial neurons

e network architecture N = (No, N1, ..., N.) specifying the number of
artifical neurons N, in each of the L layers

& setting: input dimension Ny = d, output dimension Ny = n

& o is Lipschitz continuous and not a polynomial, e.g.
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Introduction Neural Networks

Artificial Feed-Forward Neural Network

e stacking together artificial neurons

e network architecture N = (Ng, N, ..

artifical neurons N, in each of the L layers

& setting: input dimension Ny = d, output dimension Ny = n

& o is Lipschitz continuous and not a polynomial, e.g.

o rectified linear unit p(x) = ReLU(x) = max{x, 0}
e sigmoid (logistic) o(x) =

1
1+e—x

o

=

0.5 |- —

Julius Berner
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Introduction Neural Networks

Artificial Feed-Forward Neural Network

e stacking together artificial neurons

e network architecture N = (Ng, N, ..

artifical neurons N, in each of the L layers

& setting: input dimension Ny = d, output dimension Ny = n
& o is Lipschitz continuous and not a polynomial, e.g.

o rectified linear unit p(x) = ReLU(x) = max{x, 0}
e sigmoid (logistic) o(x) =

1

1+e—x
\ T
— =1
softplus
2 -

0.5 |- -
o F |

0 I \ ! ! ! !

-2 0 2 —2 0 2
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Introduction Neural Networks

Artificial Feed-Forward Neural Network

e example: N =(3,4,6,1), d =3, n=1, L =3 ('deep’)

2)_(1 2
o (S A + )

Julius Berner Analysis of Deep Learning Based Methods 8 /34



Introduction Neural Networks

Artificial Feed-Forward Neural Network

x 2 @
O @ @ =)

[: 0 (AP 4 b(2))] — ABG)Z() 4 p0)
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Introduction Neural Networks

Artificial Feed-Forward Neural Network

e set of parametrizations with architecture N and parameter bound R
01— Nex Np—1
Pl = {0 = (.6 | SRR

b € [-R, RN

[: 0 (A(z)z(l) + b(z))] — A®) () 4 pB3)
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Introduction Neural Networks

Artificial Feed-Forward Neural Network

e set of parametrizations with architecture N and parameter bound R

AW ¢ [—R, R]NexNe1,
P = 7)/,\7 = {Q) = ((A(E)7 b(g)))éle b ¢ [[—R R]]Ne }

O @ @ )

[: 0 (A(z)z(l) + b(z))] — A®) () 4 pB3)
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Introduction Neural Networks

Artificial Feed-Forward Neural Network

e set of parametrizations with architecture N and parameter bound R
01— Nex Np—1
PP = {0 = (.6 | o S p R }

b e [—R, R]Ne
X &,

e realization map with activation function o
R,: P — C(RY,R™)
¢ — wh opo wt-1) 0---0p0 W(l),
where W) (z) := Az 4 p(®) and o is applied component-wise
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Introduction Neural Networks

Artificial Feed-Forward Neural Network

e set of parametrizations with architecture N and parameter bound R
01— Nex Np—1
PP = {0 = (.6 | o S p R }

b e [—R, R]Ne
) &)

e realization map with activation function o
R =R, P — C[RYR"
¢ — wh opo wt-1) 0---0p0 W(l),
where W) (z) := Az 4 p(®) and o is applied component-wise
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Realization Map
(Undesirable) Properties of the Realization Map .41

e not injective
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Realization Map
(Undesirable) Properties of the Realization Map .41

e not injective

Example

R(®P) = R(V) = 0 with
¢ = ((Al, b1),...,(Ar—1,b1-1), (0, O))
V= ((Bl, Cl), ceey (B[_,l, CL,1)7 (0, 0))

P C(RY, R™)

qn\zwg
wo/
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Realzation Map
(Undesirable) Properties of the Realization Map .4 1

& K C RY compact
e not inverse stable w.r.t. || - [| oo (k) norm

(P7 H : ||oo) (C(Rdan)v H ' ||£°°(K))
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Realzation Map
(Undesirable) Properties of the Realization Map .4 1

& K C RY compact

e not inverse stable w.r.t. || - [| oo (k) norm
Theorem (failure of inverse stability - Petersen et al. '18)
There exist ® € P and (gx) € R(P) with

RO — oo(ky — 0 d inf b — V|, > c.
[ gl z (K) an KeN, “}ngl(gk) | oo > €

(P7 H : ||oo) (C(Rdan)v H ' ||£°°(K))
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Realization Map
(Undesirable) Properties of the Realization Map .« 1

& K CRA compact
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Introduction Realization Map

Properties of the Realization Map .4 1

e Lipschitz continuous w.r.t. || - || oo () norm

(P7 H : ||oo) (C(Rdan)7 H : ||£°°(K))

¢9\
® RO

v c\
o RV
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Introduction Realization Map

Properties of the Realization Map 141
e Lipschitz continuous w.r.t. || - || oo () norm

Lemma (quantitative version for ReLU activation)
For every &, W € P it holds that
| RReLu® — RReLUwHﬁoo(K) < c(K)(6R[N[lo) 1P = Voo

(P7 H ' ||oo) (C(Rdan)7 H : ||£°°(K))

¢9\
® RO

v c\
o RV
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Introduction Realization Map

Properties of the Realization of a Parametrization p 7 1

e before: Lipschitz continuity of R: P — C(R9, R")
e Lipschitz continuity of R®: RY — R” for fixed ¢ € P

(RY, 11+ floo) (R 11 lloo)

ve
x .s » RO(x)
¢ RO(y)
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T
Properties of the Realization of a Parametrization 1.7 1
e before: Lipschitz continuity of R: P — C(R9, R")
e Lipschitz continuity of R®: RY — R” for fixed ¢ € P

Lemma (Lipschitz continuity of R®)

For every x,y € RY it holds that
IR®(x) = RA(y)lloo < (Lin(2)[[Nlocl|Plloc) X = ¥lloo-

(RY, 11+ lloo) (R 11 lloo)

ve
.s, Rcb(x
¢ RO(y
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Introduction Realization Map

Properties of the Realization of a Parametrization 1.7 1

e before: Lipschitz continuity of R: P — C(R9, R")
e Lipschitz continuity of R®: RY — R” for fixed ® € P

Lemma (Lipschitz continuity of R®)

For every x,y € R? it holds that
IR®(x) = RO(y)lloo < (Lip(0) [ N]|oc[[®]]0) X — ¥lloo-

+ 0.007 -

adversarial
noise € [—1,1]

R®(x) <> 'panda’ R®(y) < 'gibbon’
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Introduction Realization Map

Derivative of a Neural Network (Parametrization)

e Lipschitz continuity of R® implies
o derivative D[R®] exists a.e.
o R: P — WLe(K, R")
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Introduction Realization Map

Derivative of a Neural Network (Parametrization)

e Lipschitz continuity of R® implies
o derivative D[R®] exists a.e.
o R: P — WLe(K, R")

Definition (derivative map with activation p)
D,: P — L®(RY,R™)
¢ AD AL A=Y A A

with A() = diag(o’ o R((AL, bﬁ))éle) where ¢’ is applied component-wise
and set to zero at the points of non-differentiability.

v
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Introduction Realization Map

Derivative of a Neural Network (Parametrization)

e Lipschitz continuity of R® implies
o derivative D[R®] exists a.e.
o R: P — WLe(K, R")

Definition (derivative map with activation p)
D="D,: P — LR R™)
¢ AD AL A=Y A A

with A() = diag(o’ o R((AL, bﬁ))éle) where ¢’ is applied component-wise
and set to zero at the points of non-differentiability.

v

Lemma (well-defined - B., Elbrachter, Grohs, Jentzen '19)
For every ® € P it holds that
D[R®]| =Dd a.e.
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Introduction Realization Map

Derivative of a Neural Network (Parametrization)

e Lipschitz continuity of R® implies
o derivative D[R] exists a.e.
o R: P Whe(K,R")

IizReLUc|> 150 DReLuq) -

00 02 04 06 08 10 -02 0o 02 04 06 08 10 12

Figure: not all values of DreLy® lie in the subdifferential
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Error Decompositon
(Deep) Learning

e training data z/ = (x,y') e R xR, i =1,...,m

3 —x % 4 =(0,0,0,0,0,1,0,0,0,0)
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Error Decompositon
(Deep) Learning

e training data z/ = (x,y') e R xR, i =1,...,m
e general loss function &,: LO(RY,R") — R
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Error Decompositon
(Deep) Learning

e training data z/ = (x,y') e R xR, i =1,...,m
e general loss function &,: LO(RY,R") — R, , e.g.

e mean squared error £;(g) = ||g(x) — yH;

3 —x % y=(0,0,0,0,0,1,0,0,0,0)
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Error Decompositon
(Deep) Learning

e training data z/ = (x,y') e R xR, i =1,...,m
e general loss function &,: LO(RY,R") — R, , e.g.

e mean squared error £;(g) = ||g(x) — yH;

e softmax + cross-entropy &,(g) = Z —y;jlog (engJ(X))

3 —x % 4 =(0,0,0,0,0,1,0,0,0,0)
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Error Decompositon
(Deep) Learning

e training data z/ = (x,y') e R xR, i =1,...,m
e general loss function &, : £°(Rd R") — R, , eg.

e mean squared error £,(g) = Hg sz

4 exp gj(x)
e softmax + cross-entropy &,(g) = —vy;log (n)
JZ:; ’ k=1 &xP 8k(x)

Definition (empirical risk minimization (ERM) = empirical target network)

®°™P € argmin L ZE I(R®)

decP i—1
: ; RoemP ;
: :;' =x  ——— y=(0,0,0,0,0,1,0,0,0,0)
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Error Decompositon
(Deep) Learning

e training data z/ = (x,y') e R xR, i =1,...,m
e general loss function &, : £°(Rd R") — R, , eg.

e mean squared error £,(g) = Hg sz

4 exp gj(x)
e softmax + cross-entropy &,(g) = —vy;log (n)
JZ:; ’ k=1 &xP 8k(x)

Definition (empirical risk minimization (ERM) = empirical target network)

®°™P € argmin L ZE I(R®)

deP i—1
‘ Rpemp
7 =x ———— + y =(0,0.3,0.1,0,0,0,0,0.6,0,0)

Julius Berner Analysis of Deep Learning Based Methods 15 / 34



Error Decompositon
Statistical Learning Theory

® ((z)) 7;1 are realizations of i.i.d. samples drawn from the distribution
of underlying (unknown) data

Z=(X,Y):Q— Kx[-D,D]" CR? xR"
on a suitable probability space (2, F, P)
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e
Statistical Learning Theory

® ((z)) 7;1 are realizations of i.i.d. samples drawn from the distribution
of underlying (unknown) data

Z=(X,Y):Q— Kx[-D,D]" CR? xR"
on a suitable probability space (2, F, P)

Definition (learning problem = regression function)

g€ argmin E[Ez(g)]
gELO(RY,R")
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e
Statistical Learning Theory

® ((z)) 7;1 are realizations of i.i.d. samples drawn from the distribution
of underlying (unknown) data

Z=(X,Y):Q— Kx[-D,D]" CR? xR"
on a suitable probability space (2, F, P)

Definition (learning problem = regression function)

g€ argmin E[Ez(g)]
gELO(RY,R")

Definition (deep learning = best approximation)

®Pest ¢ argmin | [€2(RP)]
deP
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Error Decompositon
(Colloquial) Error Analysis

underlying data Z = (X,Y) H g € argmingc orarn) E[E2(g)]
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underlying data Z = (X, Y) g € argmingc orarn) E[E2(g)]
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neural networks given by
P = PR, activation o

dbest ¢ argmingep E [E2(RP)]




Error Decompositon
(Colloquial) Error Analysis

underlying data Z = (X, Y) g € argmingc orarn) E[E2(g)]

hypothesis class

neural networks given by
P = PR, activation o

dbest ¢ argmingep E [E2(RP)]

samplin eneralization error
pling g

Zi~ Ziid. (i=1,...,m) || ¢ € argmingep = > 7 E7(RP)




Error Decompositon
(Colloquial) Error Analysis

underlying data Z = (X, Y) g € argmingc opdprn) E[E2(8)]

=
hypothesis class
'

neural networks given by
P = PR, activation o

N\
samplin eneralization error
pling g lizat

Zi~ Ziid. (i=1,...,m) { PP € argmingep = S E7i(RP) }

stoch. gradient descent

‘ m fiertions, Eaiches () ’{ Sy =0, — ﬁ Yiet, Vo [Szi(Rq))] }

Pbest ¢ argmingep E [E2(RO)]

learning rate A
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Error Decompositon
(Colloquial) Error Analysis

a=-5 -a -2 0 2 4 b=5

Figure: underfitting - too few parameters - high approximation error (bias)
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Error Decompositon
(Colloquial) Error Analysis

a=-5 -a -2 0 2 4 b=5

Figure: overfitting - too many parameters - high generalization error (variance)
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Error Decompositon
(Colloquial) Error Analysis

- -4 2 0 2 a 6

Figure: optimal complexity of the hypothesis class - optimal number of parameters
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Learning Problem Error Decomposition

Towards a Mathematical Error Analysis ¢

& mean squared error loss, n =1

e [Px denotes image measure of X

Theorem (Bias-Variance-Decomposition)

R — §Hi2(1px) = Gmp +Ap
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Learning Problem Error Decomposition

Towards a Mathematical Error Analysis ¢

& mean squared error loss, n =1

e [Px denotes image measure of X

Theorem (Bias-Variance-Decomposition)
12
[RO™ — & o2(pyy = Cmp + Ap
with
e approximation error (bias)

Ap = ||Robest — = min |R® — g2,

AH£2 (Px) —
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Learning Problem Error Decomposition

Towards a Mathematical Error Analysis ¢

& mean squared error loss, n =1

e [Px denotes image measure of X

Theorem (Bias-Variance-Decomposition)
12
[RO™ — & o2(pyy = Cmp + Ap
with
e approximation error (bias)

Ap = ||Robest — = min |R® — g2,

AH£2 (Px) —
e generalization error (variance, sample error)
Gmp = E [E2(RO*™)] — E[£7(RO )]
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Learning Problem Generalization Error

Generalization Result 1 4

Gmp = E [E7(RO™)]| — E[E7(RO"H)]
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Learning Problem Generalization Error

Generalization Result 1 4

Gmp <E[E7(RO™)] — Z E£71(RO™P)
i=1
+L 3" E5(ROPS) — B[£7(ROOY)]
i=1
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Learning Problem Generalization Error

Generalization Result 1 4

Gmp <E[E7(RO™)] — Z E£71(RO™P)
i=1
+L 3" E5(ROPS) — B[£7(ROOY)]
i=1

e goal: bound SUPgeR(P) E[Ez(g)] - % 27;1 Ezi(g)
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Learning Problem Generalization Error

Generalization Result 1 4

Gmp <E[E7(RO™)] — Z E£71(RO™P)
i=1
+L 3" E5(ROPS) — B[£7(ROOY)]
i=1

e goal: bound sup,cr(p) E[E2(g)] — LS M E7i(g)
e E[¢7i(g)] = E[€2(8)]
e regularity of £,i(g) = Concentration inequality
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Learning Problem Generalization Error

Generalization Result 1 4
Gmp <E[E7(RO™)] — Zez ROP)

+L 3 " E(ROPY) — BE7 (ROY)]

i=1

goal: bound supgcr(py E[E2(8)] — % ST E7i(g)
E[7i(g)]l = E[€2(g)]
regularity of £5i(g) = Concentration inequality

reduction to finite case = complexity measure of R(P)
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Learning Problem Generalization Error

Generalization Result 1 4
Gmp <E [£7(R®™P)] Z“fz R®EMP)

+ Z E71(ROP*Y) — B[ (ROPY)]
i=1
goal: bound supgcr(py E[E2(8)] — % ST E7i(g)
E[€zi(g)] = E[Ez(g)]
boundedness of £,i(g) = Hoeffdings inequality

reduction to finite case = complexity measure of R(P)

Assumption (uniformly bounded realization functions)

Replace R by clipped realization map R given by
RO := (min{| - |, D} sgn(-)) o R®
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Learning Problem Generalization Error

Generalization Result 1 4

Gmp <E [E7(RO™P)] — Z E7i(RO™P)
i=1

% Z (Dbest [52 (Rq)best) ]

goal: bound supgcr(py E[E2(8)] — % ST E7i(g)
E[€zi(g)] = E[Ez(g)]
boundedness of £,i(g) = Hoeffdings inequality

reduction to finite case = covering number of R(P)

Assumption (uniformly bounded realization functions)

Replace R by clipped realization map R given by
RO := (min{| - |, D} sgn(-)) o R®
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Learning Problem Generalization Error

Generalization Result 1 4

Figure: cov (R(P),¢) denotes the minimal number
of balls of radius ¢ covering R(P).

A. Rinaldo. Lecture Notes.
CMU, 2016.
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Learning Problem Generalization Error

Generalization Result 1 4

Figure: cov (R(P),¢) denotes the minimal number
of balls of radius ¢ covering R(P).

A. Rinaldo. Lecture Notes.
CMU, 2016.

Theorem (Haussler '92, Vapnik '98, Cucker and Smale '02 )
With
m < D*2In [0 cov (R(P), 555 )]

covering number

samples it holds that P [Gp,p <] > 1 —6.

Julius Berner Analysis of Deep Learning Based Methods 21/ 34



Learning Problem Generalization Error

Generalization Result 1 4

Figure: cov (R(P),¢) denotes the minimal number
of balls of radius ¢ covering R(P).

Lemma
cov (R(P),e) < cov (P, LIP?R)) < (* Lip(R))dim(P)J

€

A. Rinaldo. Lecture Notes.
CMU, 2016.

Theorem (Haussler '92, Vapnik '98, Cucker and Smale '02 )
With
m < D*2In [0 cov (R(P), 555 )]

covering number

samples it holds that P [Gp,p <] > 1 —6.
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Learning Problem Learning without Curse

Deep Learning without Curse

e learning problems for every dimension d € N
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Learning Problem Learning without Curse

Deep Learning without Curse g

e learning problems for every dimension d € N

L
& size(P) = max{ In(R), " NNy + N, } 0 = RelU
=1

-~

dim(P)
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Learning Problem Learning without Curse

Deep Learning without Curse

e learning problems for every dimension d € N

L
& size(P) = max{ In(R), S_ NgNe_y + N, } 0 = RelU
=1

dim(P)

Assumption (Approximation without curse)

Assume there are P with size(P) < poly(d,e~!) and Ap < e.

Theorem (Deep Learning without curse - B., Grohs, Jentzen '18)
Then with m < poly(d,e~1)In(6~1) samples it holds that

P [Hﬁq)emp _ EH??(IPX) < 5} >1-4.
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Learning Problem Learning without Curse

Partial Summary

Assume
e underlying data (X, Y): Q — K x [-D, D]
e i.i.d. training data (X', Y)) ~ (X,Y), i=1,...,m
e g can be approximated by ReLU networks in £2(IPx) without curse
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Learning Problem Learning without Curse

Partial Summary

Assume

e underlying data (X, Y): Q — K x [-D, D]

e i.i.d. training data (X', Y)) ~ (X,Y), i=1,...,m
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Learning Problem Learning without Curse

Partial Summary

Assume

e underlying data (X, Y): Q — K x [-D, D]

e i.i.d. training data (X', Y)) ~ (X,Y), i=1,...,m

e g can be approximated by ReLU networks in £2(IPx) without curse
Then R($emP)

e approximates g in £2(Px) within accuracy € with high probability

e with size(P) and m scaling polynomially in d and £~}

Can the assumptions be satisfied?
How to interpret approximation in £2(IPx)?
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Learning Problem Approximation Error

Approximation Results p 13

e Ball B in Sobolev space W*P(K)
e goal: sup,cp mingep [[Ry® — gl <¢
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Approximation Results p 13

e Ball B in Sobolev space W*P(K)
e goal: sup,cp mingep [[Ry® — gl <¢

Theorem (upper bounds - Mhaskar '96, Giihring et al. '19)

activation p number of layers L and neurons | N||1

d
k

P € C® L=2 |NJi<e

WP | RelU | L<log(e™1), [N|1< e #=log?(e 1)
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Learning Problem Approximation Error

Approximation Results p 13

e Ball B in Sobolev space W*P(K)
e goal: sup,cp mingep [[Ry® — gl <¢

Theorem (upper bounds - Mhaskar '96, Giihring et al. '19)

activation p number of layers L and neurons | N||1

d
k

P € C® L=2 |INp<e

__d
INfly S e 7= log?(e™")

WP RelLU L <log(e71),

...curse of dimensionality!
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AT IR
Application to Kolmogorov PDEs . 4

e initial condition: ¢ € C(RY, [-D, D))
e coefficient functions: o: RY — RI*9 1 RY — R affine linear

Definition (Kolmogorov equation)

{atu(t, X) = %Trace(a(x)aT(x)HessXu(t, x)) + pu(x) - Vxu(t, x)
u(0,x) = ¢(x)
for t € [0, T], x € R
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Application to Kolmogorov PDEs . 4

e initial condition: ¢ € C(RY, [-D, D))
e coefficient functions: o: RY — RI*9 1 RY — R affine linear

Definition (Kolmogorov equation)

{atu(t, x) = 3Trace(o(x)o T (x)Hessxu(t, x)) + p(x) - Veu(t, x)
u(0,x) = ¢(x)
for t € [0, T], x € R

= goal: approximately compute the function (end value)
K> x— u(T,x)
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Learning Problem Application to PDEs

Learning Problem g

. XNZ/I(K):HPX:‘—}(')\K
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Learning Problem Application to PDEs

Learning Problem g

o X ~UK) = Px = Ak
o Y = g@(S)T<) where SX is the solution processes to the stochastic
differential equation (SDE)
dSX = o(SX)dB: + p(SX)dt
S =X
= [[Yl= <D
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o X ~UK) = Px = Ak
o Y = go(S)T() where SX is the solution processes to the stochastic
differential equation (SDE)
dSX = o(SX)dB: + p(SX)dt
S =X
= [[Yl= <D

Theorem (learning problem - Beck, Becker, Grohs, Jaafari, Jentzen '18)
For a.e. x € K it holds that
u(T,x) =g(x).
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Learning Problem Application to PDEs

Learning Problem g

o X ~UK) = Px = Ak
o Y = go(S)T() where SX is the solution processes to the stochastic
differential equation (SDE)
dSX = o(SX)dB: + p(SX)dt
S =X
= [[Yl= <D

Theorem (learning problem - Beck, Becker, Grohs, Jaafari, Jentzen '18)
For a.e. x € K it holds that

u(T,x) = &(x).
Proof: Feynman-Kac formula u(T,x) = E[¢(S7)] and representation of
regression function g(x) = E[Y|X = x]
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Learning Problem Application to PDEs

Approximation without Curse g

& assume ¢ can be approximated by ReLU networks without curse of
dimensionality

= satisfied for applications in financial engineering
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Approximation without Curse ¢

& assume ¢ can be approximated by ReLU networks without curse of
dimensionality

= satisfied for applications in financial engineering

Theorem (approximation without curse - Grohs et al. '18)
Then there are P with size(P) < poly(d,e~1) and
o . 1 = 2
Ap = min i HRCD —u(T, -)HZ:Q(K) <e.
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Learning Problem Application to PDEs

Approximation without Curse g

& assume ¢ can be approximated by ReLU networks without curse of
dimensionality

= satisfied for applications in financial engineering

Theorem (approximation without curse - Grohs et al. '18)
Then there are P with size(P) < poly(d,e~1) and
o . 1 = 2
Ap = min i HRCD —u(T, -)HZ:Q(K) <e.

Proof: representation of SDE solution and simulation of Monte-Carlo
sampling by neural networks
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el el
Solving the Kolmogorov PDE without Curse g

Our assumptions are satisfied!
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el el
Solving the Kolmogorov PDE without Curse g

Our assumptions are satisfied!

Corollary (ERM solves the Kolmogorov PDE without curse)
There exists P and m with

e size(P) < poly(d,e 1)

o m S poly(d,e™)In(571)

o Pk RO — u(T, )|[agy < 2| 210
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Learning Problem Application to PDEs

Pricing of European Options without Curse 1

e capped European put option:
©(x) = min {max {D - Z;j:l c,-x,-,O} , D}
= exactly representable by a ReLU network with size scaling linearly in d
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Learning Problem Application to PDEs

Pricing of European Options without Curse 1

e capped European put option:
©(x) = min {max {D — Z;j:l c,-x,-,O} ) D}
= exactly representable by a ReLU network with size scaling linearly in d
= quantitative version: there exist P and m with

o size(P) < d%e72
o m< d?e*In(de" oY)

o P |k [[RO™ — u(T, )Gy < 2| 21— .

Julius Berner Analysis of Deep Learning Based Methods 29 / 34



Application to PDEs
Numerical Experiments (Beck et al. '18) g

e Black-Scholes equation from financial engineering (option pricing)
e N = (100,200,200, 1)

Number of Relative | Relative Runtime
descent steps n | L' error | £ error | in seconds
0 1.004285 | 1.009524 1
100000 0.371515 | 0.387978 437.9
250000 0.001220 | 0.010039 1092.6
500000 0.000949 | 0.005105 2183.8

Table: Error between RreLy®, and u(T,-) on [90, 110]1%°
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Learning Problem Application to PDEs

Possible Extensions

learn solution map (¢, o, p, t,x) — u(t, x)

fully non-linear parabolic PDEs
deu(t, x) = T(t,x,u(t,x), (Vxu)(t,x), (Hessxu)(t, x))
u(T,x) = ¢(x)
boundary-value problems (combined Dirichlet-Poisson problems)
3Trace(o(x)o T (x)Hesscu(x)) + Viu(x) - p(x) = 9(x), x€D
u(x) = ¢(x), x € 0D
e high dimensional functions that admit a probabilistic representation
and that can be approximated by an iterative scheme
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(CETOIN SN Optimization Error

Towards an Analysis of the Optimization Error

Theorem (inverse stability on a subset - B., Elbrachter, Grohs)

There exists Q C Pg p;,1) such that for every & € Q and g € R() there
exists a parametrization V € Q with

1
RV =g and |V -, <4g— R -

Corollary (parameter minimum = realization minimum)

Let d, € Q be a local minimum of

de
i=1
Then RO, is a local minimum (w.r.t. | - |p1.0) of
1
=% &,
min 5> Eale)
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Thank you for your Attention!
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