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Introduction Motivation

The Power of Deep Learning [10, 14]

• automatic generation of photo-realistic images (deep generative
adversarial networks)

Figure: render human faces into different styles - Karras et al. ’18
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The Power of Deep Learning [10, 14]

• automatic generation of photo-realistic images (deep generative
adversarial networks)

Figure: render natural photographs into different styles - Zhu et al. ’17
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Introduction Motivation

The Power of Deep Learning [11]

• automatic game playing with super-human performance (deep
Q-learning)

Video: Learning to play ’ATARI outbreak’ - Mnih et al. ’15 (https://youtu.be/V1eYniJ0Rnk)
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Introduction Motivation

The Power of Deep Learning [2]

• numerical solution of very high-dimensional partial differential
equations (PDEs)

• Black-Scholes equation from financial engineering

∂tu = 1
2Trace

(
σσTHessxu

)
+ µ · ∇xu

Relative
error

Runtime
in seconds

1.009524 1

0.387978 437.9

0.010039 1092.6

0.005105 2183.8

(https://en.wikipedia.org/wiki/Stock_market)

Figure: Solving a 100-dimensional option pricing problem - Beck et al. ’18

Julius Berner Analysis of Deep Learning Based Methods 4 / 34

https://en.wikipedia.org/wiki/Stock_market


Introduction Motivation

The Power of Deep Learning

’Machine learning works spectacularly well, but mathematicians
aren’t quite sure why.’ - Daubechies ’15
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Introduction Neural Networks

Artificial Neuron [13]

• mapping (x1, . . . , xn) 7→ %
(∑d

j=1 ajxj + b
)

with weights aj ∈ R, bias

b ∈ R, and activation function % : R→ R.

• ”...neural network theory is a collection of models of computation
very, very loosely based on biological motivations”

x3 ·a3

∑ {
1,

∑
j ajxj + b > 0

0,
∑

j ajxj + b ≤ 0

Heaviside Activation

y

Output
x2 ·a2

x1 ·a1

x4 ·a4

x5 ·a5

Weights

Bias b

Inputs
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(∑d

j=1 ajxj + b
)

with weights aj ∈ R, bias

b ∈ R, and activation function % : R→ R.
• ”...neural network theory is a collection of models of computation

very, very loosely based on biological motivations”

A. Géron. Hands-On Machine
Learning. O’Reilly Media, 2017.
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Introduction Neural Networks

Artificial Feed-Forward Neural Network

• stacking together artificial neurons

x1

x2

x3

z
(1)
1

z
(1)
2

z
(1)
3

z
(1)
4

z
(2)
1

z
(2)
2

z
(2)
3

z
(2)
4

z
(2)
5

z
(2)
6

R%Φ(x)

= %
(∑4

j=1 A
(2)
6,j z

(1)
j + b

(2)
6

)
Julius Berner Analysis of Deep Learning Based Methods 7 / 34



Introduction Neural Networks

Artificial Feed-Forward Neural Network

• stacking together artificial neurons

• network architecture N = (N0,N1, . . . ,NL) specifying the number of
artifical neurons Nl in each of the L layers

♣ setting: input dimension N0 = d , output dimension NL = n
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Introduction Neural Networks

Artificial Feed-Forward Neural Network

• stacking together artificial neurons

• network architecture N = (N0,N1, . . . ,NL) specifying the number of
artifical neurons Nl in each of the L layers

♣ setting: input dimension N0 = d , output dimension NL = n

♣ % is Lipschitz continuous and not a polynomial, e.g.

rectified linear unit %(x) = ReLU(x) = max{x , 0}
sigmoid (logistic) %(x) = 1
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Introduction Neural Networks

Artificial Feed-Forward Neural Network

• example: N = (3, 4, 6, 1), d = 3, n = 1, L = 3 (’deep’)

x1

x2

x3

z
(1)
1

z
(1)
2

z
(1)
3

z
(1)
4

z
(2)
1

z
(2)
2

z
(2)
3

z
(2)
4

z
(2)
5

z
(2)
6

R%Φ(x)

= %
(∑4

j=1 A
(2)
6,j z

(1)
j + b

(2)
6

)
Julius Berner Analysis of Deep Learning Based Methods 8 / 34



Introduction Neural Networks

Artificial Feed-Forward Neural Network

• set of parametrizations with architecture N and parameter bound R

x z (1) z (2) R%Φ(x)

= %
(
A(2)z (1) + b(2)

)
= A(3)z (2) + b(3)

• realization map with activation function %

R =

R% : P → C(Rd ,Rn)

Φ 7→W (L) ◦ % ◦W (L−1) ◦ · · · ◦ % ◦W (1),

where W (`)(z) := A(`)z + b(`) and % is applied component-wise
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Introduction Realization Map

(Undesirable) Properties of the Realization Map [3, 4, 12]

• not injective

Example

R(Φ) = R(Ψ) ≡ 0 with

Φ =
(
(A1, b1), . . . , (AL−1, bL−1), (0, 0)

)
Ψ =

(
(B1, c1), . . . , (BL−1, cL−1), (0, 0)

)

Φ

Ψ

P

g

C(Rd ,Rn)

R

R
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Introduction Realization Map

(Undesirable) Properties of the Realization Map [3, 4, 12]

♣ K ⊆ Rd compact

• not inverse stable w.r.t. ‖ · ‖L∞(K) norm

Theorem (failure of inverse stability - Petersen et al. ’18)

There exist Φ ∈ P and (gk) ⊆ R(P) with

‖RΦ− gk‖L∞(K) → 0 and inf
k∈N, Ψ∈R−1(gk )

‖Φ−Ψ‖∞ ≥ c .

Φ

Ψ

(P, ‖ · ‖∞)

RΦ
gk

(C(Rd ,Rn), ‖ · ‖L∞(K))

R−1
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Introduction Realization Map

Properties of the Realization Map [1, 4, 12]

• Lipschitz continuous w.r.t. ‖ · ‖L∞(K) norm

Lemma (quantitative version for ReLU activation)

For every Φ,Ψ ∈ P it holds that∥∥RReLUΦ−RReLUΨ
∥∥
L∞(K)

≤ c(K )
(
6R‖N‖∞)L‖Φ−Ψ‖∞.

Φ

Ψ

(P, ‖ · ‖∞)

RΦ

RΨ

(C(Rd ,Rn), ‖ · ‖L∞(K))
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Introduction Realization Map

Properties of the Realization of a Parametrization [1, 7, 12]

• before: Lipschitz continuity of R : P → C(Rd ,Rn)

• Lipschitz continuity of RΦ: Rd → Rn for fixed Φ ∈ P

Lemma (Lipschitz continuity of RΦ)

For every x , y ∈ Rd it holds that

‖RΦ(x)−RΦ(y)‖∞ ≤ (Lip(%)‖N‖∞‖Φ‖∞)L‖x − y‖∞.

y

x

(Rd , ‖ · ‖∞)

RΦ(x)

RΦ(y)

(Rn, ‖ · ‖∞)
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Introduction Realization Map

Properties of the Realization of a Parametrization [1, 7, 12]

• before: Lipschitz continuity of R : P → C(Rd ,Rn)
• Lipschitz continuity of RΦ: Rd → Rn for fixed Φ ∈ P

Lemma (Lipschitz continuity of RΦ)

For every x , y ∈ Rd it holds that

‖RΦ(x)−RΦ(y)‖∞ ≤ (Lip(%)‖N‖∞‖Φ‖∞)L‖x − y‖∞.

+ 0.007 · =

x adversarial y
noise ∈ [−1, 1]

RΦ(x)↔ ’panda’ RΦ(y)↔ ’gibbon’
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Introduction Realization Map

Derivative of a Neural Network (Parametrization) [5]

• Lipschitz continuity of RΦ implies

derivative D[RΦ] exists a.e.
R : P 7→ W1,∞(K ,Rn)

Definition (derivative map with activation %)

D =

D% : P → L∞(Rd ,Rn×d)

Φ 7→ A(L) ·∆(L−1) · A(L−1) · . . . ·∆(1) · A(1),

with ∆(k) := diag(%′ ◦ R((A`, b`))k`=1) where %′ is applied component-wise
and set to zero at the points of non-differentiability.

Lemma (well-defined - B., Elbrächter, Grohs, Jentzen ’19)

For every Φ ∈ P it holds that

D[RΦ] = DΦ a.e.
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Introduction Realization Map

Derivative of a Neural Network (Parametrization) [5]

• Lipschitz continuity of RΦ implies
derivative D[RΦ] exists a.e.
R : P 7→ W1,∞(K ,Rn)

Figure: not all values of DReLUΦ lie in the subdifferential

RReLUΦ DReLUΦ
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Learning Problem Error Decomposition

(Deep) Learning

• training data z i = (x i , y i ) ∈ Rd × Rn, i = 1, . . . ,m

• general loss function Ez : L0(Rd ,Rn)→ R+

mean squared error Ez(g) =
∥∥g(x)− y

∥∥2

2

softmax + cross-entropy Ez(g) =
n∑

j=1

−yj log

(
exp gj(x)∑n
k=1 exp gk(x)

)

Definition (empirical risk minimization (ERM) ⇒ empirical target network)

Φemp ∈ argmin
Φ∈P

1
m

m∑
i=1

Ez i (RΦ)

= x i

RΦemp

7−−−−−−−−−→ y i = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0)

Julius Berner Analysis of Deep Learning Based Methods 15 / 34



Learning Problem Error Decomposition

(Deep) Learning

• training data z i = (x i , y i ) ∈ Rd × Rn, i = 1, . . . ,m

• general loss function Ez : L0(Rd ,Rn)→ R+

mean squared error Ez(g) =
∥∥g(x)− y

∥∥2

2

softmax + cross-entropy Ez(g) =
n∑

j=1

−yj log

(
exp gj(x)∑n
k=1 exp gk(x)

)

Definition (empirical risk minimization (ERM) ⇒ empirical target network)

Φemp ∈ argmin
Φ∈P

1
m

m∑
i=1

Ez i (RΦ)

= x i

RΦemp

7−−−−−−−−−→ y i = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0)

Julius Berner Analysis of Deep Learning Based Methods 15 / 34



Learning Problem Error Decomposition

(Deep) Learning

• training data z i = (x i , y i ) ∈ Rd × Rn, i = 1, . . . ,m

• general loss function Ez : L0(Rd ,Rn)→ R+ , e.g.

mean squared error Ez(g) =
∥∥g(x)− y

∥∥2

2

softmax + cross-entropy Ez(g) =
n∑

j=1

−yj log

(
exp gj(x)∑n
k=1 exp gk(x)

)

Definition (empirical risk minimization (ERM) ⇒ empirical target network)

Φemp ∈ argmin
Φ∈P

1
m

m∑
i=1

Ez i (RΦ)

= x i

RΦemp

7−−−−−−−−−→ y i = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0)

Julius Berner Analysis of Deep Learning Based Methods 15 / 34



Learning Problem Error Decomposition

(Deep) Learning

• training data z i = (x i , y i ) ∈ Rd × Rn, i = 1, . . . ,m

• general loss function Ez : L0(Rd ,Rn)→ R+ , e.g.

mean squared error Ez(g) =
∥∥g(x)− y

∥∥2

2

softmax + cross-entropy Ez(g) =
n∑

j=1

−yj log

(
exp gj(x)∑n
k=1 exp gk(x)

)

Definition (empirical risk minimization (ERM) ⇒ empirical target network)

Φemp ∈ argmin
Φ∈P

1
m

m∑
i=1

Ez i (RΦ)

= x i

RΦemp

7−−−−−−−−−→ y i = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0)

Julius Berner Analysis of Deep Learning Based Methods 15 / 34



Learning Problem Error Decomposition

(Deep) Learning

• training data z i = (x i , y i ) ∈ Rd × Rn, i = 1, . . . ,m

• general loss function Ez : L0(Rd ,Rn)→ R+ , e.g.

mean squared error Ez(g) =
∥∥g(x)− y

∥∥2

2

softmax + cross-entropy Ez(g) =
n∑

j=1

−yj log

(
exp gj(x)∑n
k=1 exp gk(x)

)

Definition (empirical risk minimization (ERM) ⇒ empirical target network)

Φemp ∈ argmin
Φ∈P

1
m

m∑
i=1

Ez i (RΦ)

= x i
RΦemp

7−−−−−−−−−→ y i = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0)

Julius Berner Analysis of Deep Learning Based Methods 15 / 34



Learning Problem Error Decomposition

(Deep) Learning

• training data z i = (x i , y i ) ∈ Rd × Rn, i = 1, . . . ,m

• general loss function Ez : L0(Rd ,Rn)→ R+ , e.g.

mean squared error Ez(g) =
∥∥g(x)− y

∥∥2

2

softmax + cross-entropy Ez(g) =
n∑

j=1

−yj log

(
exp gj(x)∑n
k=1 exp gk(x)

)

Definition (empirical risk minimization (ERM) ⇒ empirical target network)

Φemp ∈ argmin
Φ∈P

1
m

m∑
i=1

Ez i (RΦ)

= x
RΦemp

7−−−−−−−−−→ y = (0, 0.3, 0.1, 0, 0, 0, 0, 0.6, 0, 0)

Julius Berner Analysis of Deep Learning Based Methods 15 / 34



Learning Problem Error Decomposition

Statistical Learning Theory

♣
(
(z i )

)m
i=1

are realizations of i.i.d. samples drawn from the distribution
of underlying (unknown) data

Z = (X ,Y ) : Ω→ K × [−D,D]n ⊆ Rd × Rn

on a suitable probability space (Ω,F ,P)

Definition (learning problem ⇒ regression function)

ĝ ∈ argmin
g∈L0(Rd ,Rn)

E [EZ (g)]

Definition (deep learning ⇒ best approximation)

Φbest ∈ argmin
Φ∈P

E [EZ (RΦ)]
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Learning Problem Error Decomposition

(Colloquial) Error Analysis

underlying data Z = (X ,Y ) ĝ ∈ argming∈L0(Rd ,Rn)E [EZ (g)]

hypothesis class approximation error

neural networks given by
P = PR

N , activation %
Φbest ∈ argminΦ∈P E [EZ (RΦ)]

sampling generalization error

Z i ∼ Z i.i.d. (i = 1, . . . ,m) Φemp ∈ argminΦ∈P
1
m

∑m
i=1 EZ i (RΦ)

stoch. gradient descent optimization error

n iterations, batches (In),
learning rate λ

Φn+1 = Φn − λ
|In|
∑

i∈In ∇Φ

[
EZ i (RΦ)

]
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Learning Problem Error Decomposition

(Colloquial) Error Analysis

Figure: underfitting - too few parameters - high approximation error (bias)
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Learning Problem Error Decomposition

(Colloquial) Error Analysis

Figure: overfitting - too many parameters - high generalization error (variance)
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Learning Problem Error Decomposition

(Colloquial) Error Analysis

Figure: optimal complexity of the hypothesis class - optimal number of parameters
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Learning Problem Error Decomposition

Towards a Mathematical Error Analysis [4, 6]

♣ mean squared error loss, n = 1

• PX denotes image measure of X

Theorem (Bias-Variance-Decomposition)∥∥RΦemp − ĝ
∥∥2

L2(PX )
= Gm,P + AP

• approximation error (bias)

AP =
∥∥RΦbest − ĝ

∥∥2

L2(PX )
= min

Φ∈P

∥∥RΦ− ĝ
∥∥2

L2(PX )

• generalization error (variance, sample error)

Gm,P = E
[
EZ
(
RΦemp

)]
−E

[
EZ
(
RΦbest

)]
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Learning Problem Generalization Error

Generalization Result [1, 4, 6]

Gm,P = E
[
EZ
(
RΦemp

)]
−E

[
EZ
(
RΦbest

)]

• goal: bound supg∈R(P)E [EZ (g)]− 1
m

∑m
i=1 EZ i (g)

• E [EZ i (g)] = E [EZ (g)]

• of EZ i (g) ⇒ inequality

• reduction to finite case ⇒

Assumption (uniformly bounded realization functions)

Replace R by clipped realization map R̄ given by

R̄Φ :=
(

min{| · |,D} sgn(·)
)
◦ RΦ
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Learning Problem Generalization Error

Generalization Result [1, 4, 6]

Figure: cov
(
R̄(P), ε

)
denotes the minimal number

of balls of radius ε covering R̄(P).

Lemma

cov
(
R̄(P), ε

)
≤ cov

(
P, ε

Lip(R)

)
≤
( 4R Lip(R)

ε

)dim(P)

Theorem (Haussler ’92, Vapnik ’98, Cucker and Smale ’02 )

With
m . D4ε−2 ln

[
δ−1cov

(
R̄(P), ε

32D

)︸ ︷︷ ︸
covering number

]
samples it holds that P [Gm,P ≤ ε] ≥ 1− δ.

A. Rinaldo. Lecture Notes.
CMU, 2016.
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Learning Problem Learning without Curse

Deep Learning without Curse [4]

• learning problems for every dimension d ∈ N

♣ size(P) := max
{

ln(R),
L∑
`=1

N`N`−1 + N`︸ ︷︷ ︸
dim(P)

}
, % = ReLU

Assumption (Approximation without curse)

Assume there are P with size(P) . poly(d , ε−1) and AP ≤ ε.

Theorem (Deep Learning without curse - B., Grohs, Jentzen ’18)

Then with m . poly(d , ε−1) ln(δ−1) samples it holds that

P

[∥∥R̄Φemp − ĝ
∥∥2

L2(PX )
≤ ε
]
≥ 1− δ.
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Learning Problem Learning without Curse

Partial Summary

Assume

• underlying data (X ,Y ) : Ω→ K × [−D,D]

• i.i.d. training data (X i ,Y i ) ∼ (X ,Y ), i = 1, . . . ,m

• ĝ can be approximated by ReLU networks in L2(PX ) without curse

Then R̄(Φemp)

• approximates ĝ in L2(PX ) within accuracy ε with high probability

• with size(P) and m scaling polynomially in d and ε−1

Can the assumptions be satisfied?
How to interpret approximation in L2(PX )?
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Learning Problem Approximation Error

Approximation Results [9, 13]

• Ball B in Sobolev space Wk,p(K )

• goal: supg∈B minΦ∈P ‖R%Φ− g‖ ≤ ε

Theorem (upper bounds - Mhaskar ’96, Gühring et al. ’19)

‖ · ‖ activation % number of layers L and neurons ‖N‖1

Lp ∈ C∞ L = 2, ‖N‖1 . ε−
d
k

Ws,p ReLU L . log(ε−1), ‖N‖1 . ε−
d

k−s log2(ε−1)

...curse of dimensionality!
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Learning Problem Application to PDEs

Application to Kolmogorov PDEs [2, 4]

• initial condition: ϕ ∈ C(Rd , [−D,D])

• coefficient functions: σ : Rd → Rd×d , µ : Rd → Rd affine linear

Definition (Kolmogorov equation){
∂tu(t, x) = 1

2Trace
(
σ(x)σT (x)Hessxu(t, x)

)
+ µ(x) · ∇xu(t, x)

u(0, x) = ϕ(x)

for t ∈ [0,T ], x ∈ Rd

⇒ goal: approximately compute the function (end value)

K 3 x 7→ u(T , x)
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Learning Problem Application to PDEs

Learning Problem [2]

• X ∼ U(K ) ⇒ PX = 1
|K |λK

• Y := ϕ(SX
T ) where SX is the solution processes to the stochastic

differential equation (SDE){
dSX

t = σ(SX
t )dBt + µ(SX

t )dt

SX
0 = X

⇒ ‖Y ‖L∞ ≤ D

Theorem (learning problem - Beck, Becker, Grohs, Jaafari, Jentzen ’18)

For a.e. x ∈ K it holds that

u(T , x) = ĝ(x).

Proof: Feynman-Kac formula u(T , x) = E[ϕ(Sx
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Learning Problem Application to PDEs

Approximation without Curse [8]

♣ assume ϕ can be approximated by ReLU networks without curse of
dimensionality

⇒ satisfied for applications in financial engineering

Theorem (approximation without curse - Grohs et al. ’18)

Then there are P with size(P) . poly(d , ε−1) and

AP = min
Φ∈P

1
|K |
∥∥R̄Φ− u(T , ·)

∥∥2

L2(K)
≤ ε.

Proof: representation of SDE solution and simulation of Monte-Carlo
sampling by neural networks
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Learning Problem Application to PDEs

Solving the Kolmogorov PDE without Curse [4]

Our assumptions are satisfied!

Corollary (ERM solves the Kolmogorov PDE without curse)

There exists P and m with

• size(P) . poly(d , ε−1)

• m . poly(d , ε−1) ln(δ−1)

• P
[

1
|K |
∥∥R̄Φemp − u(T , ·)

∥∥2

L2(K)
≤ ε
]
≥ 1− δ.
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Learning Problem Application to PDEs

Pricing of European Options without Curse [4]

• capped European put option:

ϕ(x) = min
{

max
{
D −

∑d
i=1 cixi , 0

}
,D
}

⇒ exactly representable by a ReLU network with size scaling linearly in d

⇒ quantitative version: there exist P and m with

size(P) . d2ε−2

m . d2ε−4 ln(dε−1%−1)

P

[
1
|K |
∥∥R̄Φemp − u(T , ·)

∥∥2

L2(K)
≤ ε
]
≥ 1− %.
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Learning Problem Application to PDEs

Numerical Experiments (Beck et al. ’18) [2]

• Black-Scholes equation from financial engineering (option pricing)

• N = (100, 200, 200, 1)

Number of
descent steps n

Relative
L1 error

Relative
L∞ error

Runtime
in seconds

0 1.004285 1.009524 1

100000 0.371515 0.387978 437.9

250000 0.001220 0.010039 1092.6

500000 0.000949 0.005105 2183.8

Table: Error between RReLUΦn and u(T , ·) on [90, 110]100
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Learning Problem Application to PDEs

Possible Extensions

• learn solution map (ϕ, σ, µ, t, x) 7→ u(t, x)

• fully non-linear parabolic PDEs{
∂tu(t, x) = Υ

(
t, x , u(t, x), (∇xu)(t, x), (Hessxu)(t, x)

)
u(T , x) = ϕ(x)

• boundary-value problems (combined Dirichlet-Poisson problems){
1
2Trace

(
σ(x)σT (x)Hessxu(x)

)
+∇xu(x) · µ(x) = ϑ(x), x ∈ D

u(x) = ϕ(x), x ∈ ∂D
• high dimensional functions that admit a probabilistic representation

and that can be approximated by an iterative scheme
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Learning Problem Optimization Error

Towards an Analysis of the Optimization Error [3]

Theorem (inverse stability on a subset - B., Elbrächter, Grohs)

There exists Ω ⊆ P(d ,N1,1) such that for every Φ ∈ Ω and g ∈ R(Ω) there
exists a parametrization Ψ ∈ Ω with

RΨ = g and ‖Ψ− Φ‖∞ ≤ 4|g −RΦ|
1
2

W1,∞ .

Corollary (parameter minimum ⇒ realization minimum)

Let Φ∗ ∈ Ω be a local minimum of

min
Φ∈Ω

1
m

m∑
i=1

Ez i (RΦ).

Then RΦ∗ is a local minimum (w.r.t. | · |W 1,∞) of

min
g∈R(Ω)

1
m

m∑
i=1

Ez i (g)
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Thank you for your Attention!
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