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e
Suitable Learning Problems for d € N

e input data: X4 ~ U([u, v]9)
e label: random variable Yy with ||Yy|[~ < D
Definition (learning problem = regression function)

?d = argmin E{(f(Xd) — Yd)2}
f: RISR
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e
Suitable Learning Problems for d € N

e input data: X4 ~ U([u, v]9)
e label: random variable Yy with ||Yy|[~ < D
Definition (learning problem = regression function)

Fd = argmin E{(f(Xd) — Yd)2}
f: RISR

o training data: ((X§”, ¥{)),_y i.id. with (X{V, YY) ~ (X4, Ya)
e hypothesis class: Hy C C([u, v]¢) compact

Definition (ERM = empirical target function)

fm € argmin — E f(X -Y
7Hd f%Hd m — ( ( d ) d )

Berner, Grohs, Jentzen Analysis of the Generalization Error 2/12



General Setting Definitions

Neural Networks as Hypothesis Class

affine linear mapping: Aw g(x) := Wx + B
ReLU activation: p(x) := max{x, 0}

clipping function: Cp(x) := min{|x|, D} sgn(x)
e network architecture: a € N/*2

Definition (hypothesis class of clipped ReLU networks)

Nar = {f

f=CpoAw, o00Aw, ;B , 0000 Ap, By
W € [=R, Rj##+1%%, B € [=R,R]%+, i =0,...,1
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Neural Networks as Hypothesis Class

affine linear mapping: Aw g(x) := Wx + B
ReLU activation: p(x) := max{x, 0}

clipping function: Cp(x) := min{|x|, D} sgn(x)
e network architecture: a € N/*2

Definition (hypothesis class of clipped ReLU networks)

Nar = {f

Definition (size of the hypothesis class)

f=CpoAw, o00Aw, ;B , 0000 Ap, By
W € [=R, Rj##+1%%, B € [=R,R]%+, i =0,...,1

v

/
size(/\/’a,R) ‘= max {R, Z ajt1a; + a,-+1}

i=0
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General Setting Main Result

Generalization without Curse

Assumption (approximation without Curse)

Assume there are Ny, _ g, . with size(N;, _r,.) € O(poly(d,e~1)) and

min —fy <
L2[u,v]d

1
Y
fe'/\/ad,e’Rd,e (V U)
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Generalization without Curse

Assumption (approximation without Curse)
Assume there are Ny, _ g, . with size(N;, _r,.) € O(poly(d,e~1)) and

~ 112
~

min o <
L2[u,v]d

fe'/\/ad,e’Rd,e

1
(v—u)?

Theorem (generalization without curse)

Then there exists m € O(poly(d,e71)In(p~1)) with

2
1
E)[<vuw

-~ ~

fm,./\/'a - fd

d,E’Rd,E

§€:| >1-—op.

L2[u,v]d
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Assume there are Ny, _ g, . with size(N;, _r,.) € O(poly(d,e~1)) and

~ 112
~

min o <
L2[u,v]d

fe'/\/ad,e’Rd,e

1
v—a)

Theorem (generalization without curse)

Then there exists m € O(poly(d,e71)In(p~1)) with

1
P [(vu)d

Proof: covering number of N, g and Hoeffding's inequality

2

-~ ~

fm,./\/'a - fd

d,E’Rd,E

§8:| >1-—op.

L2[u,v]d
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General Setting Main Result

Partial Summary

Assume

Xy uniformly distributed

Y4 uniformly bounded

i.i.d. training data

@ can be approximated by ReLU networks without curse

Berner, Grohs, Jentzen Analysis of the Generalization Error 5/12



General Setting Main Result

Partial Summary

Assume
e X, uniformly distributed
e Y, uniformly bounded
e i.i.d. training data

° @ can be approximated by ReLU networks without curse
Then ’?m,Na,R (solution of to the ERM problem)

e approximates ?(\j within accuracy € with high probability

e with size(N, g) and m scaling polynomially in d and £~1
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General Setting Main Result

Partial Summary

Assume
e X, uniformly distributed
e Y, uniformly bounded
e i.i.d. training data
° @ can be approximated by ReLU networks without curse

Then ?m,Na,R (solution of to the ERM problem)

e approximates ?(\j within accuracy € with high probability

e with size(N, g) and m scaling polynomially in d and ™!

Can the assumptions be satisfied?
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e
Kolmogorov PDE

e initial condition: 4 € C(RY,[-D, D])
e coefficient functions: oq: R — R¥*9 ;14 R? — R affine linear

Definition (Kolmogorov equation)

{%’?(t,x) = %Trace(Ud(x)adT(x)HessXFd(t,x)) + (pd(x), VxFa(t, x))
Fd(O,X) = QDd(X)

for every t € [0, T], x € RY
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e
Kolmogorov PDE

e initial condition: 4 € C(RY,[-D, D])
e coefficient functions: oq: R — R¥*9 ;14 R? — R affine linear

Definition (Kolmogorov equation)

{%’?(t,x) = %Trace(Ud(x)adT(x)HessXFd(t,x)) + (pd(x), VxFa(t, x))
Fd(O,X) = QDd(X)

for every t € [0, T], x € RY

= goal: approximately compute the function (end value)

[u,v]9 3 x — Fy(T,x)
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Black-Scholes Partial Differential Equations Definitions

Learning Problem

o let Yy := cpd(S)T(d) where SX¢ is the solution processes to the
stochastic differential equation (SDE)

dS; = 04(S;)dBf + pa(S7)dt
S = Xy
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Black-Scholes Partial Differential Equations Definitions

Learning Problem

o let Yy := god(S)T(d) where SX¢ is the solution processes to the
stochastic differential equation (SDE)

dS; = 04(S;)dBf + pa(S7)dt
S = Xy

Theorem (regression function is solution to PDE - Beck et al. '18)

For a.e. x € [u, v]? it holds that

Fa(T,x) = fg(x).
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Black-Scholes Partial Differential Equations Definitions

Learning Problem

o let Yy := god(S)T(d) where SX¢ is the solution processes to the
stochastic differential equation (SDE)

dS; = 04(S;)dBf + pa(S7)dt
S = Xy

Theorem (regression function is solution to PDE - Beck et al. '18)

For a.e. x € [u, v]? it holds that
Fa(T,x) = fy(x).

Proof: Feynman-Kac formula F4(T,x) = E[p4(S5)] and representation of
regression function fy(x) = E[Yy| X4 = x]

.
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Black-Scholes Partial Differential Equations Definitions

Approximation without Curse

e assume @4 can be approximated by RelLU networks without curse of
dimensionality

= satisfied for applications in financial engineering
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Black-Scholes Partial Differential Equations Definitions

Approximation without Curse

e assume @4 can be approximated by RelLU networks without curse of
dimensionality

= satisfied for applications in financial engineering

Theorem (approximation without curse - Grohs et al. '18)

Then there are N, g with size(N, gr) € O(poly(d,e~1)) and

. 2
i kg 1F = Fol T g < =
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Black-Scholes Partial Differential Equations Definitions

Approximation without Curse

e assume @4 can be approximated by RelLU networks without curse of
dimensionality

= satisfied for applications in financial engineering

Theorem (approximation without curse - Grohs et al. '18)

Then there are N, g with size(N, gr) € O(poly(d,e~1)) and

. 2
i kg 1F = Fol T g < =

Proof: Monte-Carlo mean squared error and representation of SDE solution

v
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Generalization Result
ERM without Curse

Our assumptions are satisfied!
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Generalization Result
ERM without Curse

Our assumptions are satisfied!

Corollary (ERM solves the Kolmogorov PDE without curse)
There exists N, g and m with

o size(NaR) € O(poly(d,e™t))
e mc O(poly(d,e1)In(o71))

o P [(v—lu)d

Proof: approximation without curse implies generalization without curse

2

~ ~ ‘

fmNor = Fa(T)

L2[u,v]d

SE] >1—op.

v
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Black-Scholes Partial Differential Equations Example

Pricing of European Options without Curse

e capped European put option:
©4(x) = min {max {D — 27:1 Cd,iXis 0} , D}
= exactly representable by a neural network with size scaling linearly in d
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Black-Scholes Partial Differential Equations Example

Pricing of European Options without Curse

e capped European put option:
©4(x) = min {max {D — 9 caixiy 0} , D}
= exactly representable by a neural network with size scaling linearly in d
= quantitative version: there exist a = (d, a1, a2, 1), R and m with

o size(N, ) € O(d?c72)
o me O(d**In(de o))

2
b IP|:(V_1u)d a,R_Fd(Ta')

L2[u,v]?

~
fm,

<€:| >1—op.
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Black-Scholes Partial Differential Equations Example

Numerical Experiments (Beck et al. '18)
Number of Relative | Relative | Relative Runtime
descent steps | Ll-error | L%-error | L*-error | in seconds
0 1.004285 | 1.004286 | 1.009524 1
100000 0.371515 | 0.371551 | 0.387978 437.9
250000 0.001220 | 0.001538 | 0.010039 1092.6
500000 0.000949 | 0.001187 | 0.005105 2183.8

Table: ERM with a = (100,200, 200, 1) for a Black-Scholes PDE on [90, 110]1%°
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