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General Setting Definitions

Suitable Learning Problems for d ∈ N

• input data: Xd ∼ U([u, v ]d)

• label: random variable Yd with ‖Yd‖L∞ ≤ D

Definition (learning problem ⇒ regression function)

f̂d = argmin
f : Rd→R

E

[(
f (Xd)− Yd

)2
]

• training data:
(
(X

(i)
d ,Y

(i)
d )
)
i∈N i.i.d. with (X

(1)
d ,Y

(1)
d ) ∼ (Xd ,Yd)

• hypothesis class: Hd ⊆ C ([u, v ]d) compact

Definition (ERM ⇒ empirical target function)

f̂m,Hd
∈ argmin

f ∈Hd

1

m

m∑
i=1

(
f (X

(i)
d )− Y

(i)
d

)2
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General Setting Definitions

Neural Networks as Hypothesis Class

• affine linear mapping: AW ,B(x) ..= Wx + B

• ReLU activation: %(x) ..= max{x , 0}
• clipping function: CD(x) ..= min{|x |,D} sgn(x)

• network architecture: a ∈ Nl+2

Definition (hypothesis class of clipped ReLU networks)

Na,R
..=

{
f

∣∣∣∣∣ f = CD ◦ AWl ,Bl
◦ % ◦AWl−1,Bl−1

◦ % ◦ · · · ◦ AW0,B0 ,

Wi ∈ [−R,R]ai+1×ai , Bi ∈ [−R,R]ai+1 , i = 0, . . . , l

}

Definition (size of the hypothesis class)

size(Na,R) := max

{
R,

l∑
i=0

ai+1ai + ai+1

}
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General Setting Main Result

Generalization without Curse

Assumption (approximation without Curse)

Assume there are Nad,ε,Rd,ε
with size(Nad,ε,Rd,ε

) ∈ O(poly(d , ε−1)) and

min
f ∈Nad,ε,Rd,ε

1
(v−u)d

∥∥∥f − f̂d

∥∥∥2

L2[u,v ]d
≤ ε.

Theorem (generalization without curse)

Then there exists m ∈ O(poly(d , ε−1) ln(%−1)) with

P

[
1

(v−u)d

∥∥∥f̂m,Nad,ε,Rd,ε
− f̂d

∥∥∥2

L2[u,v ]d
≤ ε
]
≥ 1− %.

Proof: covering number of Na,R and Hoeffding’s inequality
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General Setting Main Result

Partial Summary

Assume

• Xd uniformly distributed

• Yd uniformly bounded

• i.i.d. training data

• f̂d can be approximated by ReLU networks without curse

Then f̂m,Na,R
(solution of to the ERM problem)

• approximates f̂d within accuracy ε with high probability

• with size(Na,R) and m scaling polynomially in d and ε−1

Can the assumptions be satisfied?
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Black-Scholes Partial Differential Equations Definitions

Kolmogorov PDE

• initial condition: ϕd ∈ C (Rd , [−D,D])

• coefficient functions: σd : Rd → Rd×d , µd : Rd → Rd affine linear

Definition (Kolmogorov equation)

{
∂Fd
∂t (t, x) = 1

2Trace
(
σd(x)σTd (x)HessxFd(t, x)

)
+
〈
µd(x),∇xFd(t, x)

〉
Fd(0, x) = ϕd(x)

for every t ∈ [0,T ], x ∈ Rd

⇒ goal: approximately compute the function (end value)

[u, v ]d 3 x 7→ Fd(T , x)
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Black-Scholes Partial Differential Equations Definitions

Learning Problem

• let Yd := ϕd(SXd
T ) where SXd is the solution processes to the

stochastic differential equation (SDE){
dSXd

t = σd(SXd
t )dBd

t + µd(SXd
t )dt

SXd
0 = Xd

Theorem (regression function is solution to PDE - Beck et al. ’18)

For a.e. x ∈ [u, v ]d it holds that

Fd(T , x) = f̂d(x).

Proof: Feynman-Kac formula Fd(T , x) = E[ϕd(Sx
T )] and representation of

regression function f̂d(x) = E[Yd |Xd = x ]
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Black-Scholes Partial Differential Equations Definitions

Approximation without Curse

• assume ϕd can be approximated by ReLU networks without curse of
dimensionality

⇒ satisfied for applications in financial engineering

Theorem (approximation without curse - Grohs et al. ’18)

Then there are Na,R with size(Na,R) ∈ O(poly(d , ε−1)) and

min
f ∈Na,R

1
(v−u)d

‖f − Fd(T , ·)‖2
L2[u,v ]d ≤ ε.

Proof: Monte-Carlo mean squared error and representation of SDE solution
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Black-Scholes Partial Differential Equations Generalization Result

ERM without Curse

Our assumptions are satisfied!

Corollary (ERM solves the Kolmogorov PDE without curse)

There exists Na,R and m with

• size(Na,R) ∈ O(poly(d , ε−1))

• m ∈ O(poly(d , ε−1) ln(%−1))

• P
[

1
(v−u)d

∥∥∥f̂m,Na,R
− F̂d(T , ·)

∥∥∥2

L2[u,v ]d
≤ ε
]
≥ 1− %.

Proof: approximation without curse implies generalization without curse
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Black-Scholes Partial Differential Equations Example

Pricing of European Options without Curse

• capped European put option:

ϕd(x) = min
{

max
{
D −

∑d
i=1 cd ,ixi , 0

}
,D
}

⇒ exactly representable by a neural network with size scaling linearly in d

⇒ quantitative version: there exist a = (d , a1, a2, 1), R and m with

size(Na,R) ∈ O(d2ε−2)

m ∈ O(d2ε−4 ln(dε−1%−1)
)

P

[
1

(v−u)d

∥∥∥f̂m,Na,R − Fd(T , ·)
∥∥∥2

L2[u,v ]d
≤ ε
]
≥ 1− %.
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Black-Scholes Partial Differential Equations Example

Numerical Experiments (Beck et al. ’18)

Number of
descent steps

Relative
L1-error

Relative
L2-error

Relative
L∞-error

Runtime
in seconds

0 1.004285 1.004286 1.009524 1

100000 0.371515 0.371551 0.387978 437.9

250000 0.001220 0.001538 0.010039 1092.6

500000 0.000949 0.001187 0.005105 2183.8

Table: ERM with a = (100, 200, 200, 1) for a Black-Scholes PDE on [90, 110]100
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