

Instabilities in Deep Learning

Undesired outputs of trained neural networks, even for inputs within the training distribution.

EEE transactions on medical imaging, 2021

A Inaccurate function approximations 0.800.72-0.3 $0.110 \quad 0.112$ 0.114 0.116 0.3 0.068

Learning Theory

Generalization results only provide guarantees in an average sense (w.r.t. the L^2 -norm).

Approximation: Neural networks \mathcal{N} can optimally approximate many function classes U (w.r.t. the L^{∞} -norm) in terms of the number of parameters required to guarantee

$$\sup_{u \in U} \inf_{f \in \mathcal{N}} \|f - u\|_{L^{\infty}} \le \varepsilon.$$

Generalization: Bounds on the number of samples *m* required for the empirical risk minimizer $\hat{f} \in \arg \min_{f \in \mathcal{N}} \sum_{i=1}^{m} (f(x_i) - y_i)^2$ to approximate the optimal neural network f^* (w.r.t. the L^2 -norm), i.e.,

$$\|\hat{f} - f^*\|_{L^2} \le \varepsilon,$$

often scale only polynomially in the underlying dimension d.

LEARNING RELU NETWORKS TO HIGH UNIFORM ACCURACY IS INTRACTABLE

Julius Berner¹, Philipp Grohs^{1,2}, Felix Voigtlaender³

¹University of Vienna, ²RICAM, ³Catholic University of Eichstätt-Ingolstadt

Our Lower Bound

Learning ReLU networks to high **uniform accuracy** (w.r.t. the L^{∞} -norm) requires an intractable number of samples.

We consider all algorithms \mathcal{A} that operate on samples $(x_i, u(x_i))_{i=1}^m$.

This includes:

- \checkmark all variants of (S)GD,
- \checkmark adaptive algorithms (e.g., active learning),
- randomized algorithms (e.g., MC algorithms),
- ✓ intractable algorithms (e.g., empirical risk minimization).

Assume that $\mathcal{N} \subset U$ consists of ReLU networks with input dimension d, $L \ge 3$ layers, width 3d, and parameters bounded by c. Any algorithm \mathcal{A} satisfying

 $\sup_{u \in U} \mathbb{E}\left[\|\mathcal{A}(u) - u\|_{L^{\infty}} \right] \le \varepsilon$

requires

$$m \ge c^{dL} (3d)^{d(L-2)} \left(\right)$$

samples on average.

 \blacksquare Number of samples *m* required to achieve high uniform accuracy ε scales exponentially with the underlying dimension d and the depth L of the ReLU networks \mathcal{N} . Different from other hypothesis classes (e.g., polynomials or certain RKHS), m can significantly exceed the number of

parameters defining the class \mathcal{N} .

Proof idea: $\mathcal{N} \subset U$ contains localized bump functions f with $f(x_i) = 0$ for all $i \in \{1, \ldots, m\}$, such that $\mathcal{A}(\pm f) = \mathcal{A}(0)$.

Our Upper Bound

tion) that satisfies $\sup_{u \in \mathcal{N}} \mathbb{E} \left[\| \mathcal{A}(u) - u \|_{L^{\infty}} \right] \leq \varepsilon$ using

samples.

Numerical Experiments

References and Further Results

arxiv.org/abs/2205.13531 github.com/juliusberner/theory2practice

- ter regularizations.
- \checkmark theory, and neural network identification.

 $\sqrt{2^9\varepsilon}$

- Our bounds are **asymptotically sharp**.
- There exists an algorithm \mathcal{A} (based on piecewise constant interpola $m \le c^{dL} (3d)^{d(L-2)} \left(\frac{3d^2}{\varepsilon}\right)^d$

Theoretical results are validated in student-teacher settings.

 \checkmark Fully explicit lower bounds for all L^p -norms and different parame-

Connections to statistical query algorithms, statistical learning