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Instabilities in Deep Learning

Undesired outputs of trained neural networks,
even for inputs within the training distribution.

o Adversarial examples

Machine Learning��
Human Voice�� Human Voice��
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‘How are you?’ �� hh 0.01�� ‘Open the door’  
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Y. Gong and C. Poellabauer. Protecting voice controlled systems using sound
source identification based on acoustic cues. In ICCCN, 2018

o Hallucinations

S. Bhadra et al. On hallucinations in tomographic image reconstruction.
IEEE transactions on medical imaging, 2021

o Inaccurate function approximations
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Learning Theory

Generalization results only provide guarantees
in an average sense (w.r.t. the L2-norm).

� Approximation: Neural networks N can optimally approximate
many function classes U (w.r.t. the L∞-norm) in terms of the num-
ber of parameters required to guarantee

sup
u∈U

inf
f∈N
‖f − u‖L∞ ≤ ε.

� Generalization: Bounds on the number of samples m required
for the empirical risk minimizer f̂ ∈ argminf∈N

∑m
i=1(f (xi)− yi)

2 to
approximate the optimal neural network f ∗ (w.r.t. the L2-norm), i.e.,

‖f̂ − f ∗‖L2 ≤ ε,

often scale only polynomially in the underlying dimension d.

Our Lower Bound

Learning ReLU networks to high uniform accuracy (w.r.t. the
L∞-norm) requires an intractable number of samples.

We consider all algorithms A that operate on samples

(xi, u(xi))
m
i=1.

This includes:
Ë all variants of (S)GD,
Ë adaptive algorithms (e.g., active learning),
Ë randomized algorithms (e.g., MC algorithms),
Ë intractable algorithms (e.g., empirical risk minimization).

Assume that N ⊂ U consists of ReLU networks with input
dimension d, L ≥ 3 layers, width 3d, and parameters bounded
by c. Any algorithm A satisfying

sup
u∈U

E [‖A(u)− u‖L∞] ≤ ε

requires

m ≥ cdL(3d)d(L−2)
(

1

29ε

)d

samples on average.

� Number of samples m required to achieve high uniform
accuracy ε scales exponentially with the underlying dimension
d and the depth L of the ReLU networks N .
� Different from other hypothesis classes (e.g., polynomials
or certain RKHS), m can significantly exceed the number of
parameters defining the class N .

Proof idea: N ⊂ U contains localized bump functions f with
f (xi) = 0 for all i ∈ {1, . . . ,m}, such that A(±f ) = A(0).
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Our Upper Bound

Our bounds are asymptotically sharp.

There exists an algorithm A (based on piecewise constant interpola-
tion) that satisfies supu∈N E [‖A(u)− u‖L∞] ≤ ε using

m ≤ cdL(3d)d(L−2)
(
3d2

ε

)d

samples.

Numerical Experiments

Theoretical results are validated in student-teacher settings.

Ë Gap between uniform and average errors:
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Ë Similar bumps prevent high uniform accuracies:
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References and Further Results
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Ë Fully explicit lower bounds for all Lp-norms and different parame-
ter regularizations.

Ë Connections to statistical query algorithms, statistical learning
theory, and neural network identification.
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