ZIB ZUSE INSTITUTE BERLIN

Sampling as time-reversal problem

Recent methods in **generative modeling and sampling** can be viewed as time-reversals of controlled diffusion processes.

 $X_0^u \sim Y_T^v \sim p_{\text{prior}}$

$\boldsymbol{\times}$	~~~~			
ft of		1 × 1 × 1 × + = = =		* * * * *
	$\rightarrow \rightarrow \rightarrow \rightarrow , \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow$	$\rightarrow \rightarrow \rightarrow \rightarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow$	$\rightarrow \rightarrow \leftarrow \leftarrow \rightarrow , \leftarrow \rightarrow \rightarrow \leftarrow \leftarrow$	→ → ← ←
				* * * * *
Ľ	/////////	te t atere		
d	///////////			
•	//////////////////////////////////////	<i>x x x t t t t t t t t t t t t t t t t t</i>		
				* * * *
				* * * * *
drift of Y ^v		Y	0	
			× × × + + + + + + + + + + + + + + + + +	* * * *
	~~~~~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ + + + + + + + + + + + + + + +	* * * *
	~~~~	~ ~ ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	* * * *
				* * * *
				* * * *
	$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$, $\leftarrow \leftarrow \leftarrow \leftarrow$	$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$, $\leftarrow \leftarrow \leftarrow \leftarrow$	$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$, $\leftarrow \leftarrow \leftarrow \leftarrow$	* * * *
	/	/		<i>-</i>
	////\\\\\	////\\\\\		1
	///////////	//////\\\\	///////////	* * * *
	//////////		//////////	* * * *
	////////////	///////////	/////////	1 1 1 1

Setting: Generative and inference SDEs

シ ノノノノナナナキャレー ノノノナキャナナキャー

$\mathrm{d}X_s^u = (f + \sigma u)(X_s^u, s) \mathrm{d}s + \sigma(s) \mathrm{d}W_s,$	$X_0^u \sim p_{\mathrm{F}}$
$\mathrm{d} Y^v_s = (-\overleftarrow{f} + \overleftarrow{\sigma} \overleftarrow{v})(Y^v_s, s) \mathrm{d} s + \overleftarrow{\sigma}(s) \mathrm{d} W_s,$	$Y_0^v \sim p$

OGoal: Identify controls u^*, v^* such that (notation: $\overline{\sigma}(t) =$

$$p_{\text{prior}} \xleftarrow{X^{u^*}}_{Y^{v^*}} p_{\text{targe}}$$

in order to achieve $X_T^{u^*} \sim p_{\text{target}}$ and $Y_T^{v^*} \sim p_{\text{prior}}$.

Path space measure perspective

The **path space measure** perspective provides a **unifying framework**.

Setting: Let D be a divergence, \mathbb{P}_{X^u} be the path space measure of X^u and $\mathbb{P}_{\overline{Y}^v}$ be the path measure of the time reversal of Y^v .

O Goal: Identify controls u^*, v^* such that

IMPROVED SAMPLING VIA LEARNED DIFFUSIONS

Lorenz Richter^{\star ,1,2}, Julius Berner^{\star ,3}

* Equal contribution, ¹ dida Datenschmiede GmbH, ² Zuse Institute Berlin, ³ Caltech

Connections and equivalences

We show that SB, DIS, DDS, PIS are special cases of our framework when using the (reverse) **KL divergence**.

Our proposed tool: Likelihood for path measures is given by

$$\log \frac{\mathrm{d}\mathbb{P}_{X^u}}{\mathrm{d}\mathbb{P}_{\bar{Y}^v}}(X^w) = \int_0^T \left((u+v) \cdot \left(w + \frac{v-u}{2} \right) + \nabla \cdot (\sigma v - f) \right) (X^w_s, s) \,\mathrm{d}s$$
$$\int_0^T (u+v) (X^w_s, s) \,\mathrm{d}s = \int_0^T \left((u+v) \cdot \left(w + \frac{v-u}{2} \right) + \nabla \cdot (\sigma v - f) \right) (X^w_s, s) \,\mathrm{d}s$$

Generalization of recent methods: With $D = D_{KL}$ we recover:

- Likelihood training of general Schrödinger bridges (Chen et al. 2021).
- Diffusion models and corresponding Time-Reversed Diffusion Sampler (Berner et al. 2024) and Denoising Diffusion Sampler (Vargas, Grathwohl, et al. 2023) with $p_{\text{prior}} = \mathcal{N}(0, I)$ and v = 0.
- Path Integral Samplers (Richter 2021; Zhang and Chen 2022; Vargas, Ovsianas, et al. 2023) based on Schrödinger half-bridges with $p_{\text{prior}} =$ δ_{x_0} and $v = \sigma^\top \nabla \log p_{X^0}$.

The log-variance divergence

The log-variance divergence has provably better **properties** than the (reverse) KL divergence.

- **A Problem:** Reverse KL divergence is prone to mode collapse. **Idea:** Our perspective allows for different divergences.
- **Our proposed divergence:** log-variance divergence $D = D_{\text{LV}}$:

 $D_{\mathrm{LV}}^{\mathbb{P}_{X^w}}(\mathbb{P}_{X^u}, \mathbb{P}_{\check{Y}^v}) \coloneqq \mathrm{Var} \left| \log \frac{\mathrm{d}\mathbb{P}_{X^u}}{\mathrm{d}\mathbb{P}_{\check{Y}^v}}(X^w) \right| \,.$

Balance exploitation and exploration by the choice of w.

No differentiation through the SDE solver (detach X^w).

Gradients have zero variance at the optimum (sticking-the-landing).

 $X_T^u \sim Y_0^v \sim p_{\text{target}}$

orior,

J_{target}.

$$= \sigma(T-t))$$

 $+ \int_0^{\infty} (u+v)(X_s^w, s) \cdot \mathrm{d}W_s + \log \frac{1}{p_{\mathrm{target}}(X_T^w)}.$

Numerical experiments

Problem	Method	Loss	$\Delta \log Z \downarrow$	$\mathcal{W}_{\gamma}^{2}\downarrow$	$ESS \uparrow$	$\triangle std \downarrow$
Gaussian Mixture	PIS	KL	1.094	0.467	0.0051	1.937
(d=2)		LV	0.046	0.020	0.9093	0.023
	DIS	KL	1.551	0.064	0.0226	2.522
		LV	0.056	0.020	0.8660	0.004
Funnel	PIS	KL	0.288	5.639	0.1333	6.921
(d = 10)		LV	0.277	5.593	0.0746	6.850
	DIS	KL	0.433	5.120	0.1383	5.254
		LV	0.430	5.062	0.2261	5.220
Double Well	PIS	KL	3.567	1.699	0.0004	1.409
(d = 5)		LV	0.214	0.121	0.6744	0.001
	DIS	KL	1.462	1.175	0.0012	0.431
		LV	0.375	0.120	0.4519	0.001
Double Well	PIS	KL	0.101	6.821	0.8172	0.001
(d = 50)		LV	0.087	6.823	0.8453	0.000
	DIS	KL	1.785	6.854	0.0225	0.009
		LV	1.783	6.855	0.0227	0.009

Prevents mode collapse and improves performance.

arxiv.org/abs/2307.01198 github.com/juliusberner/sde_sampler

Caltech

The **log-variance divergence** significantly **improves performance** for all considered methods.

Reference

