ROBUST SDE-BASED VARIATIONAL FORMULATIONS FOR SOLVING LINEAR PDES VIA DEEP LEARNING

Lorenz Richter*,1,2,3, Julius Berner*,4

 * Equal contribution, 1 dida Datenschmiede GmbH, 2 Zuse Institute Berlin, 3 Freie Universität Berlin, 4 University of Vienna

Solving Kolmogorov PDEs

• We want to solve *partial differential equations* (PDEs) of the following form:

$$\begin{cases} \left(\partial_t + \frac{1}{2}(\sigma\sigma^{\top}) : \nabla^2 + b \cdot \nabla\right) V(x, t) = 0, \\ V(x, T) = g(x), \quad (x, t) \in \mathbb{R}^d \times [0, T]. \end{cases}$$

- **Applications:** modelling of diffusion processes in physics, pricing of financial derivatives, diffusion-based generative modeling, reinforcement learning, ...
- Idea: minimize *variational formulations* using neural networks $u_{\theta} \in \mathcal{U}$ with parameters θ , i.e., consider losses

$$\mathcal{L}: \mathcal{U} \to \mathbb{R}_{\geq 0},$$

which shall be minimal iff $u \in \mathcal{U}$ fulfills the PDE.

Stochastic Representations

• Itô calculus (cf. Feynman-Kac formula) shows that

$$g(X_T) - V(\xi, \tau) - \int_{\tau}^{T} \sigma(X_s)^{\top} \nabla V(X_s, s) \cdot dW_s = 0,$$

$$= \Delta_V$$

$$= S_V$$

where X is the solution to the associated *stochastic differential equation* (SDE)

$$dX_s = b(X_s) ds + \sigma(X_s) dW_s, \quad X_\tau = \xi.$$

• As the stochastic integral S_u has vanishing expectation, this motivates the two losses

$$egin{aligned} \mathcal{L}_{ ext{FK}}(u) \coloneqq \mathbb{E}\left[\Delta_u^2
ight], \ \mathcal{L}_{ ext{BSDE}}(u) \coloneqq \mathbb{E}\left[(\Delta_u - S_u)^2
ight], \end{aligned}$$

where $(\xi, \tau) \sim \mathrm{Unif}(\mathbb{R}^d \times [0, T])$.

Robust Losses

- The stochastic integral S_u in $\mathcal{L}_{\mathrm{BSDE}}$ can be interpreted as a control variate.
- It guarantees statistical advantages for the estimator versions $\mathcal{L}^{(K)}$ (with K samples) at the optimum $u_{\theta} = V$:

Proposition 1 (Variance of Losses).

$$\mathbb{V}\left[\mathcal{L}_{\mathrm{FK}}^{(K)}(u_{\theta})\right] = \frac{1}{K}\mathbb{V}\left[S_{V}^{2}\right],$$

$$\mathbb{V}\left[\mathcal{L}_{\mathrm{BSDE}}^{(K)}(u_{\theta})\right] = 0.$$

Proposition 2 (Variance of Gradients).

$$\mathbb{V}\left[\nabla_{\theta} \mathcal{L}_{\text{FK}}^{(K)}(u_{\theta})\right] = \frac{4}{K} \mathbb{V}\left[S_{V} \nabla_{\theta} u_{\theta}(\xi, \tau)\right],$$

$$\mathbb{V}\left[\nabla_{\theta} \mathcal{L}_{\mathrm{BSDE}}^{(K)}(u_{\theta})\right] = 0.$$

• For $\mathcal{L}_{\mathrm{BSDE}}$ we can expect small variances also close to the solution $u_{ heta}pprox V$:

Proposition 3 (Stability Close to Solution). Assume that

$$|u_{\theta}(\xi,\tau) - V(\xi,\tau)| \le \varepsilon, \quad ||\nabla_x(u_{\theta} - V)(x,t)|| \le \varepsilon(1 + ||x||^{\gamma}),$$

for some $\gamma \in \mathbb{R}_{>0}$. Then it holds that

$$\mathbb{V}\left[\nabla_{\theta}\mathcal{L}_{\mathrm{BSDE}}^{(K)}(u_{\theta})\right]\lesssim rac{arepsilon^2}{K}$$
 .

This can also be observed empirically:

Numerical Experiments

- We propose various (more efficient) versions to include the control variate: $\mathcal{L}_{\mathrm{BSDE}}^{\mathrm{grad}}$, $\mathcal{L}_{\mathrm{BSDE}}^{\mathrm{detach}}$, and $\mathcal{L}_{\mathrm{BSDE},\,\mathrm{eff}}$.
- We improve state-of-the-art performance and analyze tradeoffs between accuracy and complexity:

• The efficient versions of the BSDE-based method combine accuracy and memory efficiency:

Takeaways and Reference

Our paper provides:

- variational formulations for (linear) PDEs,
- techniques for analyzing the variance of (gradient) estimators,
- novel estimators with reduced variance,
- empirical studies of complexity vs. performance.

arxiv.org/abs/2206.10588 github.com/juliusberner/robust_kolmogorov

