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Robust Losses

Solving Kolmogorov PDEs

* We want to solve partial differential equations (PDEs) of the
following form:

{ (Or+3(00") V24 b V) V(z,t)=0,
Ve, T)=g(x), (x,t)€Rx[0,T].

* Applications: modelling of diffusion processes in physics,
pricing of financial derivatives, diffusion-based generative
modeling, reinforcement learning, ...

 ldea: minimize variational formulations using neural networks
uyg € U with parameters 0, i.e., consider losses

£IZ/{%R2(),

which shall be minimal iff v € U/ fulfills the PDE.

Stochastic Representations

* [t6 calculus (cf. Feynman-Kac formula) shows that

g(Xp) = V(1) —/ o(X,) ' VV (X, s) - dW, =0,
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where X Is the solution to the associated stochastic differen-
tial equation (SDE)

dX, = b(X,)ds + o(X,) dW,, X, =¢.

* As the stochastic integral S,, has vanishing expectation, this
motivates the two losses

,CFK(U) =31 [/\i] :

Lpspe(u) = E [(Au — Su)ﬂ :

where (£, 7) ~ Unif(R? x [0, T]).

* The stochastic integral S, In Lgspr can be interpreted as a
control variate.

* [t guarantees statistical advantages for the estimator ver-
sions £ (with K samples) at the optimum wuy = V:

Proposition 1 (Variance of Losses).

v [ = v (53]

V | LyShs(ua) | =0

Proposition 2 (Variance of Gradients).

V VoLl )] = 2 VISyVaus(é, 7).

v {vﬁﬁgé])m(u@)] = 0.

* For Lpspr We can expect small variances also close to the
solution uy =~ V':

Proposition 3 (Stability Close to Solution). Assume that

ug(€§,7) = V(& 7)<, [[Valug = V)(,0)|| < e(1+ [lz]]7),

for some v € R.,. Then it holds that

* This can also be observed empirically:
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Numerical Experiments

* We propose various (more efficient) versions to include the
: . perad detach
control variate: L3qpp, Lpsprs and LBSpE, ef-

 We improve state-of-the-art performance and analyze trade-
offs between accuracy and complexity:
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* The efficient versions of the BSDE-based method combine ac-
curacy and memory efficiency:
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Takeaways and Reference

Our paper provides:
e variational formulations for (linear) PDEs,

techniques for analyzing the variance of (gradient) estimators,
* novel estimators with reduced variance,
* empirical studies of complexity vs. performance.
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