NEURAL OPERATORS WITH LOCALIZED INTEGRAL AND DIFFERENTIAL KERNELS

Miguel Liu-Schiaffini∗¹ , **Julius Berner**∗¹ , **Boris Bonev** ∗2 , **Thorsten Kurth** 2 , **Kamyar Azizzadenesheli** 2 , **Anima Anandkumar** 1

 1 Caltech, 2 NVIDIA, *equal contribution

Motivation

Learning **local operators** is necessary for a variety of applications: turbulent fluid flows, hyperbolic PDEs, etc.

In neural networks, local operations have typically been performed by standard **convolutional layers**. However, regular kernels converge to pointwise operators when the grid width h is refined. They are **not discretization-agnostic**.

- •Subtracting the mean of the kernel,
- Scaling the kernel by the inverse grid width $\frac{1}{h}$

To achieve discretization convergence, we parameterize the convolutional kernel κ as

> $\kappa =$ \sum L $\ell = 1$ $\theta^{(\ell)} \kappa^{(\ell)},$

Existing neural operator methods are either global, inefficient, or require interpolation/downsampling of the input.

where $\kappa^{(\ell)}$ are predefined (continuous) basis functions, and $\theta^{(\ell)}$ are learnable parameters.

In this paper, we develop a framework for introducing **local and differential operators** into neural operator architectures.

Differential layers

nsampling

We introduce **differential layers**, which provably converge to differential operators as resolution increases.

We show that we can learn different directional derivatives with two minor modifications of standard convolutional kernels:

> h .

```
\kappa(g^{-1}x) \cdot v(x) d\mu(x),
```
 $\overline{v}_i^{-1}x_j)\cdot v(x_j)\, q_j,$

We evaluate our local layers on several problems:

Integral kernel layers

In our experiments, we outperform baselines by up to 72% on relative L ² error. We find that **fusion of global and local** operators **outperforms** models with **purely local or global** operators.

We also use **discrete-continuous convolutions** to define discretization-agnostic local convolutions in physical space.

Consider the group convolution on the group G :

GroupConv_{κ} $[v](g) = (\kappa * v)(g) =$ Z G

with group actions $g, x \in G$ and $d\mu(x)$ the invariant Haar measure.

To formulate a neural operator, we use the framework of discretecontinuous convolutions (Ocampo et al., 2022), evaluating the group action analytically and the integral discretely:

$$
(k * v)(g_i) \approx \sum_{j=1}^m \kappa(g_i^{-1} x_j)
$$

where q_j are quadrature weights associated with points x_j and $K_{ij} = \kappa (g_i^{-1} x_j)$ for output position $g_i.$

This formulation allows for **local convolutions on manifolds** (e.g., sphere S 2) and on **irregular grids** with appropriate quadrature weights.

Experiments

- Darcy flow
- 2D Navier-Stokes (NS) equations •Spherical shallow water equations (SWE) • 2D reaction-diffusion equation
-
-
- •Flow past a cylinder (irregular grid)

SWE initial condition The SWE ground truth SWE initial condition

Ground truth

Horizontal velocity on flow over a cylinder

Results on Navier-Stokes (Re 5000):

Model

U-Net FNO 1.381 · 10 FNO + diff. kernel (ours) $FNO + local integral kernel$ **FNO + local int. + diff. kern**

Paper: arxiv.org/abs/2402.16845 **Code (soon):** github.com/neuraloperator/neuraloperator

