NEURAL OPERATORS WITH LOCALIZED INTEGRAL AND DIFFERENTIAL KERNELS
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Learning local operators is necessary for a variety of applications:

turbulent fluid flows. hvberbolic PDEs. etc We introduce differential layers, which provably converge to We evaluate our local layers on several problems:
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Prediction

To formulate a neural operator, we use the framework of discrete-
continuous convolutions (Ocampo et al., 2022), evaluating the
group action analytically and the integral discretely:

In neural networks, local operations have typically been performed
by standard convolutional layers. However, regular kernels con-
verge to pointwise operators when the grid width A is refined. They

are not discretization-agnostic.
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In our experiments, we outperform baselines by up to 72% on rel-
This formulation allows for local convolutions on manifolds ative L* error. We find that fusion of global and local operators

(e.g., sphere §°) and on irregular grids with appropriate outperforms models with purely local or global operators.
guadrature weights.

Existing neural operator methods are either global, inefficient, or
require interpolation/downsampling of the input.

In this paper, we develop a framework for introducing local and
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differential operators into neural operator architectures. Paper: arxiv.org/abs/2402.16845

B Code (soon): github.com/neuraloperator/neuraloperator
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