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Motivation

Learning local operators is necessary for a variety of applications:
turbulent fluid flows, hyperbolic PDEs, etc.

Regular kernel

Differential kernel

Local integral kernel

h −−−−−→ h/2 −−−−−→ 0

In neural networks, local operations have typically been performed
by standard convolutional layers. However, regular kernels con-
verge to pointwise operators when the grid width h is refined. They
are not discretization-agnostic.

Architecture Efficient
Receptive no input

field downsampling

GNO ✗ local/global ✓

FNO ✓ global ✓

CNO / U-Net ✓ local ✗

FNO + integral ✓ local/global ✓

FNO + differential ✓ local/global ✓

SFNO ✓ global ✓

SFNO + integral ✓ local/global ✓

Existing neural operator methods are either global, inefficient, or
require interpolation/downsampling of the input.

In this paper, we develop a framework for introducing local and
differential operators into neural operator architectures.

Differential layers

We introduce differential layers, which provably converge to
differential operators as resolution increases.

We show that we can learn different directional derivatives with two
minor modifications of standard convolutional kernels:

• Subtracting the mean of the kernel,

• Scaling the kernel by the inverse grid width 1
h.

Integral kernel layers

We also use discrete-continuous convolutions to define
discretization-agnostic local convolutions in physical space.

Consider the group convolution on the group G:

GroupConvκ[v](g) = (κ ⋆ v)(g) =

∫
G

κ(g−1x) · v(x) dµ(x),

with group actions g, x ∈ G and dµ(x) the invariant Haar measure.

To formulate a neural operator, we use the framework of discrete-
continuous convolutions (Ocampo et al., 2022), evaluating the
group action analytically and the integral discretely:

(k ⋆ v)(gi) ≈
m∑
j=1

κ(g−1
i xj) · v(xj) qj,

where qj are quadrature weights associated with points xj and
Kij = κ(g−1

i xj) for output position gi.

To achieve discretization convergence, we parameterize the con-
volutional kernel κ as

κ =

L∑
ℓ=1

θ(ℓ)κ(ℓ),

where κ(ℓ) are predefined (continuous) basis functions, and θ(ℓ) are
learnable parameters.

This formulation allows for local convolutions on manifolds
(e.g., sphere S2) and on irregular grids with appropriate
quadrature weights.

Experiments

We evaluate our local layers on several problems:

• Darcy flow

• 2D Navier-Stokes (NS) equations

• Spherical shallow water equations (SWE)

• 2D reaction-diffusion equation

• Flow past a cylinder (irregular grid)

SWE initial condition SWE ground truth SWE prediction

Ground truth

Prediction

Horizontal velocity on flow over a cylinder

Results on Navier-Stokes (Re 5000):

Model
Relative L2-Error

1 step 5 steps

U-Net 1.674 · 10−1 5.115 · 10−1

FNO 1.381 · 10−1 2.360 · 10−1

FNO + diff. kernel (ours) 1.073 · 10−1 2.129 · 10−1

FNO + local integral kernel (ours) 1.110 · 10−1 2.183 · 10−1

FNO + local int. + diff. kernel (ours) 9.022 · 10−2 1.956 · 10−1

In our experiments, we outperform baselines by up to 72% on rel-
ative L2 error. We find that fusion of global and local operators
outperforms models with purely local or global operators.
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