

Solving Poisson Equations using Neural Walk-on-Spheres

Hong Chul Nam^{1*}, Julius Berner^{2*}, Anima Anandkumar² ¹ETH Zurich; ²California Institute of Technology; *Equal Contribution

 $u = g$, on $\partial \Omega$

Goal: Solve Poisson equations of the form $\left\{ \right.$ $\begin{cases} \Delta u = f, \quad & \text{on } \Omega \\ u = g, \quad & \text{on } \partial \Omega \end{cases}$

For simplicity, we assume $f = 0$, and define $\xi \sim \mathcal{U}(\Omega)$

Standard Approach:

 $\mathcal{L}_{\text{PINN}}[\theta] \coloneqq \mathbb{E}\left[\left(\Delta u_{\theta}(\xi) - f(\xi)\right)^2\right] + \beta \mathcal{L}_{\text{boundary}}[u_{\theta}]$

 \odot Requires high-order derivatives and tuning β

SDE Representation:

 $\mathcal{L}_{\text{SDE}}[\theta] \coloneqq \mathbb{E} \left[\left(u_{\theta}(\xi) - g\left(X_{\tau}^{\xi}\right) \right) \right]$ $5)$ ²

where we assume

 $\tau := \{t: X_t^{\mathsf{S}}\}$ $\frac{\xi}{\epsilon} \notin \Omega$ } (exit time) $X_{t+\Delta t}^{\xi} \approx X_{t}^{\xi} + \sqrt{2}\Delta W_{t}$ (Brownian motion) X^S_0 $\frac{\xi}{\delta} = \xi$ (random initial point) $\Delta W_t \sim \mathcal{N}(0, \Delta t I)$ (Gaussian increments) \otimes **Slow convergence until reaching boundary**

NWoS:

Move initial points ξ_0^i ~ $\mathcal{U}(\Omega)$ to boundary via random sampling over spheres $B_r(\xi^i_k)$ at each step k

Leveraging the **SDE representation** and **Walk-on-Spheres** method, we **recursively solve** Poisson equations on spheres inside the domain

$$
\xi_{k+1} \sim X_{\tau_k}^{\xi_k} \sim \partial \mathcal{U}(B_{r_k}(\xi_k)), r_k = \min_{x \in \partial \Omega} ||\xi_k - \tau_k := \{ t : X_t^{\xi_k} \notin B_{r_k}(\xi_k) \} \text{ (local exit time)}
$$

$$
\textcircled{ Does not require any } \alpha
$$

 \odot **Fast propagation of boundary information**

Estimate the solution y^i depending on the convergence of the walk at maximum step K

Optimize the model u_{θ} using y^i as the label

Neural Walk-on-Spheres is

- Applicable to parametric Poisson-type equations on **general domains**
- Supported by **theoretical guarantees** and **free** from the **curse of dimensionality**
- Exploiting a supervised loss with **noisy but cheap and unbiased** estimates for **higher efficiency** and **accuracy**

Key Takeaways

Summary Neural Walk-on-Spheres

