

# Solving Poisson Equations using Neural Walk-on-Spheres

Hong Chul Nam<sup>1\*</sup>, Julius Berner<sup>2\*</sup>, Anima Anandkumar<sup>2</sup> <sup>1</sup>ETH Zurich; <sup>2</sup>California Institute of Technology; <sup>\*</sup>Equal Contribution

### Summary

**Goal**: Solve Poisson equations of the form  $\int \Delta u = f,$ on  $\Omega$ on  $\partial \Omega$ u = g,

For simplicity, we assume f = 0, and define  $\xi \sim \mathcal{U}(\Omega)$ 

**Standard Approach:** 

 $\mathcal{L}_{\text{PINN}}[\theta] \coloneqq \mathbb{E}\left[\left(\Delta u_{\theta}(\xi) - f(\xi)\right)^{2}\right] + \beta \mathcal{L}_{\text{boundary}}[u_{\theta}]$ 

 $\otimes$  Requires high-order derivatives and tuning  $\beta$ 

**SDE Representation:** 

 $\mathcal{L}_{\text{SDE}}[\theta] \coloneqq \mathbb{E} \left| \left( u_{\theta}(\xi) - g\left( X_{\tau}^{\xi} \right) \right)^2 \right|$ 

where we assume

 $\tau \coloneqq \{t: X_t^{\varsigma} \notin \Omega\} \text{ (exit time)}$  $X_{t+\Delta t}^{\xi} \approx X_t^{\xi} + \sqrt{2}\Delta W_t$  (Brownian motion)  $X_0^{\xi} = \xi$  (random initial point)  $\Delta W_t \sim \mathcal{N}(0, \Delta t I)$  (Gaussian increments) **Slow convergence until reaching boundary** 

NWoS:

Leveraging the SDE representation and Walk-on-**Spheres** method, we **recursively solve** Poisson equations on spheres inside the domain

$$\xi_{k+1} \sim X_{\tau_k}^{\xi_k} \sim \partial \mathcal{U}(B_{r_k}(\xi_k)), r_k = \min_{x \in \partial \Omega} \|\xi_k\|$$
$$\tau_k \coloneqq \{t: X_t^{\xi_k} \notin B_{r_k}(\xi_k)\} \text{ (local exit t } \mathbb{O} \text{ Does not require a } \mathbb{O} \text{ for a } \mathbb{O} \mathbb{O} \text{ for a } \mathbb{O} \text{ for a } \mathbb{O} \text{ for a } \mathbb{O} \text{ fo$$



## Neural Walk-on-Spheres

|                    | Problem                                     |                                             |                                             |
|--------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
| (10d)              | Committor (10d)                             | Poisson Rect. (10d)                         | Poisson (50d)                               |
| $34e^{-4}$         | $4.10^{-3} \pm 1.11e^{-3}$                  | $1.35e^{-2} \pm 1.57e^{-3}$                 | $7.70e^{-3} \pm 2.25e^{-3}$                 |
| $29e^{-5}$         | $6.15e^{-3} \pm 5.30e^{-4}$                 | $1.06e^{-2} \pm 6.20e^{-4}$                 | $1.05e^{-3} \pm 1.70e^{-4}$                 |
| $4e^{-6}$          | $4.48e^{-2} \pm 6.93e^{-3}$                 | $9.69e^{-2} \pm 1.03e^{-2}$                 | $5.96e^{-4} \pm 1.06e^{-5}$                 |
| $8e^{-5}$          | $1.26e^{-3} \pm 5.82e^{-5}$                 | $4.98e^{-2} \pm 1.80e^{-2}$                 | $1.63e^{-2} \pm 1.42e^{-2}$                 |
| $54e^{-6}$         | $1.99e^{-3} \pm 9.79e^{-6}$                 | $2.32e^{-1} \pm 2.09e^{-1}$                 | $4.50e^{-3} \pm 7.38e^{-4}$                 |
| $2\mathrm{e}^{-6}$ | $6.56\mathrm{e}^{-4}\pm2.42\mathrm{e}^{-5}$ | $2.60\mathrm{e}^{-3}\pm9.99\mathrm{e}^{-5}$ | $4.82\mathrm{e}^{-4}\pm1.32\mathrm{e}^{-5}$ |











Move initial points  $\xi_0^i \sim$  $\mathcal{U}(\Omega)$  to boundary via random sampling over spheres  $B_r(\xi_k^i)$  at each step k



Estimate the solution  $y^{i}$ depending on the convergence of the walk at maximum step K



Optimize the model  $u_{\theta}$  using  $y^i$  as the label

### Key Takeaways

### Neural Walk-on-Spheres is

- Applicable to parametric Poisson-type equations on general domains
- Supported by **theoretical** guarantees and free from the curse of dimensionality
- Exploiting a supervised loss with noisy but cheap and unbiased estimates for higher efficiency and accuracy