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Notation

• set PN of parametrizations with architecture N := (d,N1, . . . , NL−1, D) ∈ NL+1

PN :=

L∏
`=1

(
RN`×N`−1 × RN`

)
• affine mappings W`(x) := A`x + b` and realization map

R : PN → C(Rd,RD)

Θ = ((A`, b`))
L
`=1 7→ R(Θ) := WL ◦ ReLU ◦WL−1 . . .ReLU ◦W1

Inverse Stability

“Given R(Γ) and R(Θ) that are close, does there exist a parametrization Φ with

R(Φ) = R(Θ) such that Γ and Φ are close?”

Definition. Let Ω ⊆ PN . The realization map is (s, α) inverse stable on Ω w.r.t.

‖ · ‖, if for every Γ ∈ Ω and g ∈ R(Ω) there exists Φ ∈ Ω with

R(Φ) = g and ‖Φ− Γ‖∞ ≤ s‖g −R(Γ)‖α.
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Implications of Inverse Stability

“Local minima in the parameter space induce local minima

in the realization space.”

Implication 1. Let L : C(Rd,RD)→ R+ be a loss function

and Γ∗ ∈ Ω be a local min. of L ◦ R on Ω with radius r > 0,

thenR(Γ∗) is a local min. of L onR(Ω) with radius r′ = (rs)
1/α.
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Figure: counter-example without inverse stability

Main Theorem

The realization map is (4, 1
2) inverse stable w.r.t. | · |W 1,∞ on

NN := {Θ ∈ PN : Θ =
(
([a1| . . . |am]T , 0), ([c1| . . . |cm], 0)

)
}

(biasless two-layer networks) regularized such that

• the weights are balanced, i.e. ‖ai‖∞ = ‖ci‖∞,

• there are no redundant directions, i.e. ai 6‖ aj, and

• the last two coordinates of each ai are strictly positive.

“For sufficiently large architectures the local minima of a

regularized neural network optimization problem are almost

optimal.”

Implication 2. Let Λ be a quasi-convex regularizer and

S := {f : Λ(f ) ≤ C}
be compact in the ‖ · ‖-closure of

⋃
NR(PN). We denote

ΩN := {Φ ∈ PN : Λ(R(Φ)) ≤ C}.
Then there is an architecture Nε,r such that for every local min.

Γ∗ of minΓ∈ΩNε,r
L(R(Γ)) with radius at least r it holds that

L(R(Γ∗)) ≤ min
Γ∈ΩNε,r

L(R(Γ)) + ε.
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Failure - Exploding Gradient

•Γ := (0, 0) ∈ N(2,2,1)

• gk(x) := kReLU(〈(k, 0), x〉)
−kReLU(〈(k,− 1

k2), x〉)

Failure - Unbalancedness

•Γ :=
(
(r, 0), 0

)
∈ N(2,1,1)

• gk(x) := 1
k ReLU(〈(0, 1), x〉)

Failure - Redundant Directions

•Γ :=

([
1 0
1 0

]
, (1, 1)

)
∈ N(2,2,1)

• gk(x) := 2 ReLU(〈(1, 0), x〉)
+1
k ReLU(〈(0, 1), x〉)

Failure - Opposite Weights

•Γ :=
(
[A|−A]T ,

(
1,−1

))
∈ N(d,2m,1)

with
∑m

i=1A:,i = 0

• gk(x) := 1
k ReLU(〈v, x〉)
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