
Numerically Solving Parametric Families of High-Dimensional Kolmogorov Partial Differential
Equations via Deep Learning

Julius Berner, Markus Dablander, Philipp Grohs
University of Vienna, University of Oxford

Numerically Solving Parametric Families of High-Dimensional Kolmogorov Partial Differential
Equations via Deep Learning

Julius Berner, Markus Dablander, Philipp Grohs
University of Vienna, University of Oxford

Kolmogorov PDEs

•Parametric Kolmogorov PDEs are partial differential equations of

the form

∂uγ
∂t = 1

2Trace
(
σγ[σγ]

∗∇2
xuγ
)

+ 〈µγ,∇xuγ〉, uγ(x, 0) = ϕγ(x),

whereby the initial condition and the coefficient maps

ϕγ : Rd→ R, σγ : Rd→ Rd×d, µγ : Rd→ Rd

are implicitly determined by a real parameter vector γ ∈D.

•Relevance: Kolmogorov PDEs frequently appear in physics (heat

equation) and financial engineering (Black-Scholes model).

•Challenges: Kolmogorov PDEs can generally not be solved explicitly.

Furthermore, standard numerical solution algorithms suffer from the

curse of dimensionality, meaning that their computational cost grows

exponentially in the spatial dimension d.

Contribution: Parametric PDE Solution

via Deep Learning

•Novel Solution Algorithm: We introduce a new deep learning algo-

rithm which makes it possible to train a single deep network

Φ: D × [v, w]d × [0, T ]→ R
to approximate the parametric Kolmogorov PDE solution map

ū : D × [v, w]d × [0, T ]→ R, (γ, x, t) 7→ ū(γ, x, t) := uγ(x, t),

of a family of γ-parametrized Kolmogorov PDEs.

•Successful Experiments: We propose a new Multilevel architec-

ture for Φ and empirically confirm the functionality of our technique

for challenging examples from physics and computational finance.

•Theoretical Guarantees: We investigate the approximation- and gen-

eralization errors of our method and show that the proposed algo-

rithm does not suffer from the curse of dimensionality in various

important cases.

•Novel Parametric Analysis: The approximation Φ ≈ ū allows for

sensitivity analysis, model calibration, and uncertainty quantification.

Algorithm

•Key Idea: To describe the parametric PDE solution map ū as the

regression function of a supervised statistical learning problem and

then use simulated training data to learn ū via deep learning.

•Predictor and Target: The predictor Λ is uniformly distributed,

Λ := (Γ, X, T ) ∼ U(D × [v, w]d × [0, T ]),

and the target variable SΛ is defined as the value of the solution process

(SΓ,X,t)t≥0 of the Γ-parametrized stochastic differential equation

dSΓ,X,t = µΓ(SΓ,X,t)dt + σΓ(SΓ,X,t)dBt, SΓ,X,0 = X,

at the random stopping time t = T . We can easily simulate i.i.d.

samples of SΛ via the Euler-Maruyama scheme.

•Supervised Learning Problem with Simulated Data:

Theorem (Main Learning Problem)

For suitable regularity assumptions, the parametric PDE solution

map ū is the unique minimizer of the statistical learning problem

minf E
[(
f (Λ)− ϕΓ(SΛ)

)2
]
.

The proof of the above statement relies on an application of the

Feynman-Kac formula, which links the SDE solution to the PDE

solution via E[ϕγ(Sγ,x,t)] = uγ(x, t). The theorem delivers a feasi-

ble supervised learning problem with solution ū for which an endless

stream of i.i.d. training data points can be simulated.
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Numerical Results

•Basket Put Option Pricing: Consider the following setting for

d = 3 on (x, t) ∈ [9, 10]3 × [0, 1] with matrices γσ,1, ..., γσ,4, γµ,1,∈
[0.1, 0.6]3×3, vector γµ,2 ∈ [0.1, 0.6]3 and scalar γϕ ∈ [10, 12]:

σγ : R3→ R3×3, σγ(x) = [γσ,1x|γσ,2x|γσ,3x] + γσ,4,

µγ : R3→ R3, µγ(x) = γµ,1x + γµ,2,

ϕγ : R3→ R, ϕγ(x) = max
{
γϕ − 1

3(x1 + x2 + x3), 0
}
.

The corresponding Kolmogorov PDE describes the evolution of a Bas-

ket put option price in a parametric multidimensional Black-Scholes

model with d = 3 potentially highly correlated assets. Our method

allows a deep network Φ to efficiently converge to the solution map ū.

Gradient Steps Time [s] Error ≈ ‖(Φ− ū)/(1 + |ū|)‖L1

0 0 ± 0 0.7912 ± 0.0276
12k 2434 ± 28 0.0062 ± 0.0009
20k 4162 ± 154 0.0046 ± 0.0007
28k 6024 ± 463 0.0039 ± 0.0001

•Additional Experiments: (1) classical parametric Black-Scholes

model for single option pricing, (2) high-dimensional parametric heat

equations with parabolic and Gaussian initial conditions.

•Multilevel Architecture:

Residual-ConnectionDense
Addition Batch	Normalization	/	ReLU	/	Dense


