# **Mathematical Capabilities of (Chat)GPT**



S. Frieder\*, L. Pinchetti, A. Chevalier, R.-R. Griffiths, T. Salvatori, T. Lukasiewicz, P.C. Petersen, J. Berner

\*corresponding author (<u>simon.frieder@cs.ox.ac.uk</u>, https://friederrr.org)

## The GHOSTS > miniGHOSTS > microGHOSTS dataset

• 1600+ datapoints on various question types (devise proofs at different levels of difficulty, fill in holes in existing proofs, finding mathematical definitions and named theorems, integration etc.)

• three versions of (Chat)GPT: 9-January-2023, 30-January-2023 ("improved factuality and mathematical capabilities" according to **OpenAl's release notes), and GPT-4** 



Average ratings on the GHOSTS dataset for ChatGPT and on the miniGHOSTS dataset for GPT-4. We show the rating for each file from each of the six subdataset that make up (mini)GHOSTS, as well as the averages on the entire subdatasets. We consider 3.5 to be a passing grade. All models struggle on competitive mathematics.

#### Leaderboard: Use microGHOSTS and test your own model



### **Bad Examples**

ChatGPT (version 9-January-2023) gets it wrong:

'prompt": "What is the integral of  $1/(2 + \ln(3/2))$ ", "output": "The integral of  $1/(2 + \ln(3/2))$  cannot be expressed in terms of elementary functions and must be approximated numerically or solved using special functions."

#### **GPT-4** also gets things wrong:

'prompt": " $x^2+y^2=x^2y^2$  has no integral solutions besides x=y=0.", "output": "I'm afraid that's not entirely correct. The equation  $x^2 + y^2 = x^2 y^2$  actually has infinitely many integral solutions, including x = y = 0. To see this, note that the equation can be rewritten as  $x^2(1-y^2)+y^2=0$ . This can be further rearranged to  $x^2 = rac{y^2}{u^2 - 1}$ . This equation holds for all integer values of y such that y=-1,0,1 , as these values result in x=0 (which is an integer). However, for |y|>1, the equation has no integral solutions for x, since the right-hand side will be a fraction. Therefore, the only integral solutions are (x,y) = (0,-1), (0,0), (0,1)."

What kind of (grad-level, **Olympiad**) mathematics can LLMs do and how do we measure it?

## **Novel Benchmark for Mathematics in** Natural-Language

- traditional benchmarks are binary
- we introduce a fine-grained benchmark: our error codes, warning codes tells us not just **THAT** it failed but **HOW** it failed

#### Version Improvements, Results, and a Good Example 30-Jan-23

• Sankey diagram shows: grades are increasing

30-Jan-23 version ("improved factuality and mathematical capabilities") doesn't show a big increase

#### • use MSC codes to identify math subdomains



**GPT-4** outperformed on specialized tasks (integration) by specialized models (w.r.t. MATH dataset)

• LLMs have best performance when used as a **search engine**, see example below



#### **GPT-4** gets it right:

'prompt": "How do you call a topological space, which has a countable dense subset?",

"output": "A topological space that has a countable dense subset is called a "separable space". The term "separable" comes from the idea that the points in the space can be "separated" or distinguished from each other using only countably many rational numbers. A classic example of a separable space is the set of real numbers,  $\mathbb R$ , with the standard topology, because the set of rational numbers,  $\mathbb{Q}$ , is countable and dense in  $\mathbb{R}$ . Another example is the space of continuous functions on the interval [0,1] with the topology of uniform convergence, which is separable because the set of polynomials with rational coefficients is countable and dense in this space."

**Check out the latest version at arXiv.org** https://arxiv.org/abs/2301.13867, or on our website ghosts.friederrr.org (see QR code) for more Information, diagrams about this project as well as media reports on our research

