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Introduction Motivation

The Power of Deep Learning no

e automatic generation of photo-realistic images (deep generative
adversarial networks)

Monet _ Photos Zebras T Horses Summer T Winter

photo —>Monet horse —» zebra

Photograph Monet Van Gogh Cezanne

Figure: render natural photographs into different styles - Zhu et al. '17
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Introduction Motivation

The Power of Deep Learning

e automatic game playing with super-human performance (deep
Q-learning)

Video: Learning to play 'ATARI outbreak’ - Mnih et al. '15 (attps://youtu.be/VieyniJornk)
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https://youtu.be/V1eYniJ0Rnk

Motivation
The Power of Deep Learning

'Machine learning works spectacularly well, but mathematicians
aren’t quite sure why.’ - Daubechies '15
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Introduction Neural Networks

Artificial Feed-Forward Neural Network

e stacking together artificial neurons

2)_(1 2
o (S A2 +52)
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Introduction Neural Networks

Artificial Feed-Forward Neural Network

e stacking together artificial neurons

e network architecture N = (No, N1, ..., N.) specifying the number of
artifical neurons N, in each of the L layers

& setting: input dimension Ny = d, output dimension Ny = n
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Introduction Neural Networks

Artificial Feed-Forward Neural Network

e stacking together artificial neurons

e network architecture N = (Ng, N, ..
artifical neurons N, in each of the L layers

& setting: input dimension Ny = d, output dimension Ny = n

& o is Lipschitz continuous, e.g.

o rectified linear unit p(x) = ReLU(x) =
e sigmoid (logistic) o(x) =

1
1+e—x

0 I \
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Neural Networks
Artificial Feed-Forward Neural Network

e stacking together artificial neurons

e network architecture N = (Ng, N, ..

& setting: input dimension Ny = d, output dimension Ny = n

artifical neurons N, in each of the L layers

& o is Lipschitz continuous, e.g.

0

o rectified linear unit o(x) = ReLU(x) = max{x, 0}

Berner, Grohs, Jentzen

e sigmoid (logistic) o(x) = H%
I T
— =]
softplus
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Introduction Neural Networks

Artificial Feed-Forward Neural Network

e example: N =(3,4,6,1), d =3, n=1, L =3 ('deep’)

2)_(1 2
o (S A + )

Berner, Grohs, Jentzen Learning the solution of Kolmogorov equations without curse 6 /27



Introduction Neural Networks

Artificial Feed-Forward Neural Network

x 2 @
O @@

[: 0 (A@z() + b(2))] = A®Z2) 4 pB®
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Introduction Neural Networks

Artificial Feed-Forward Neural Network

e set of parametrizations with architecture N and parameter bound R
(f) _ NgXNg,
Pl = {o =00ty | Sy SR AT

b e [—R, R]Ne

[: 0 (AP + b("‘))] — A®)2() 1 )
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Introduction Neural Networks

Artificial Feed-Forward Neural Network

e set of parametrizations with architecture N and parameter bound R
(f) _ NgXNg,
P = 73;‘3 — {d) — ((A(Z)7 b(@)))éZI A € [ R, R] 1 }

b e [—R, R]Ne

[: 0 (AP + b("‘))] — A®)2() 1 )
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Introduction Neural Networks

Artificial Feed-Forward Neural Network

e set of parametrizations with architecture N and parameter bound R
Al ¢ [-R, R]NZXNZ—I’
b e [—R, R]Ne

e realization map with activation function p on compact space K C R?
RE:P = WH(K) C C(K)
¢ wh cpo w(t-1) 0---0p0 W(l),
where W) (z) := Az 4 p(®) and o is applied component-wise

P=Pr:=4=(A )L,
)
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Introduction Neural Networks

Artificial Feed-Forward Neural Network

e set of parametrizations with architecture N and parameter bound R
Al ¢ [-R, R]NZXNZ—I’
b e [—R, R]Ne

e realization map with activation function p on compact space K C R?
R=RE:P—W->(K)CC(K)
¢ wh cpo w(t-1) 0---0p0 W(l),
where W) (z) := Az 4 p(®) and o is applied component-wise

P=Pr:=4=(A )L,
)
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Realization Map
(Undesirable) Properties of the Realization Map g.+.9

e not injective
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Realization Map
(Undesirable) Properties of the Realization Map g.+.9

e not injective

Example

R(P) = R(V) = 0 with
® = ((A1, b1),...,(A—1,b1-1),(0,0))
V= ((By,c1),--.,(Bi-1,¢c-1),(0,0))

P C(K,R")

du\zng
wo/
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Realization Map
(Undesirable) Properties of the Realization Map g.+.9

e not inverse stable w.r.t. || - ||gec norm
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Realization Map
(Undesirable) Properties of the Realization Map g.+.9

e not inverse stable w.r.t. || - ||gec norm

Theorem (failure of inverse stability - Petersen et al. '18)
There exist ® € P and (gx) € R(P) with

|R® — gl — 0 and g 10 Vil Z

keN, VeR (g

(P - M) (€K - llzee)
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Realization Map
(Undesirable) Properties of the Realization Map g.+.9

e not inverse stable w.r.t. || - ||zee norm

81

82

Berner, Grohs, Jentzen Learning the solution of Kolmogorov equations without curse

9 /27



Introduction Realization Map

Properties of the Realization Map 4.9

e Lipschitz continuous w.r.t. || - || zec norm

(Pl - lloo) (C(K) - llzee)

¢?\
wé\ ® RO
o RV
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Introduction Realization Map

Properties of the Realization Map 4.9

e Lipschitz continuous w.r.t. || - || zec norm

Lemma (quantitative version for ReLU activation)
For every &, W € P it holds that

[RReLU® = RRetU V|| oo < c(K) (6RIIN||0)"[|® — W][oc.

(Pl - lloo) (€K - llzee)

¢?\
w‘o\ ® RO
o RV
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Error Decompositon
(Deep) Learning

e training data z/ = (x,y') e R xR, i =1,...,m

3 —x % 4 =(0,0,0,0,0,1,0,0,0,0)
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Error Decompositon
(Deep) Learning

e training data z/ = (x,y') e R xR, i =1,...,m
e loss function &,: LO(RY,R") — R

3 —x — % 4 =(0,0,0,0,0,1,0,0,0,0)
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Error Decompositon
(Deep) Learning

e training data z/ = (x,y') e R xR, i =1,...,m
e loss function &,: LO(RY,R") — R, , e.g.

e quadratic loss &,(g) = ||g(X) _sz

3 —x % y=(0,0,0,0,0,1,0,0,0,0)
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Error Decompositon
(Deep) Learning

e training data z/ = (x,y') e R xR, i =1,...,m
e loss function &,: LO(RY,R") — R, , e.g.

e quadratic loss &,(g) = ||g(X) _sz

e softmax + cross-entropy &,(g) = Z —y;jlog (engJ(X))

=x ———— 4 =(0,0,0,0,0,1,0,0,0,0)
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Error Decompositon
(Deep) Learning

e training data z/ = (x,y') e R xR, i =1,...,m
e loss function &,: LO(RY,R") — R, , eg.

e quadratic loss &,(g) = ||g(X) _sz

4 exp gj(x)
e softmax + cross-entropy &,(g) = —vy;log (n)
JZ:; ’ k=1 &xP 8k(x)

Definition (empirical risk minimization (ERM) = empirical target network)

®°™P € argmin L ZE I(R®)

decP i—1
: ; RoemP ;
: :;' =x  ——— y=(0,0,0,0,0,1,0,0,0,0)
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Error Decompositon
(Deep) Learning

e training data z/ = (x,y') e R xR, i =1,...,m
e loss function &,: LO(RY,R") — R, , eg.

e quadratic loss &,(g) = ||g(X) _sz

4 exp gj(x)
e softmax + cross-entropy &,(g) = —vy;log (n)
JZ:; ’ k=1 &xP 8k(x)

Definition (empirical risk minimization (ERM) = empirical target network)

®°™P € argmin L ZE I(R®)

deP i—1
‘ Rpemp
7 =x ———— + y =(0,0.3,0.1,0,0,0,0,0.6,0,0)
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Error Decompositon
Statistical Learning Theory

® ((z)) 7;1 are realizations of i.i.d. samples drawn from the distribution
of underlying (unknown) data

Z=(X,Y):Q— Kx[-D,D]" CR? xR"
on a suitable probability space (2, F, P)
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e
Statistical Learning Theory

® ((z)) 7;1 are realizations of i.i.d. samples drawn from the distribution
of underlying (unknown) data

Z=(X,Y):Q— Kx[-D,D]" CR? xR"
on a suitable probability space (2, F, P)

Definition (learning problem = regression function)

g€ argmin E[Ez(g)]
gELO(RY,R")
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e
Statistical Learning Theory

® ((z)) 7;1 are realizations of i.i.d. samples drawn from the distribution
of underlying (unknown) data

Z=(X,Y):Q— Kx[-D,D]" CR? xR"
on a suitable probability space (2, F, P)

Definition (learning problem = regression function)

g€ argmin E[Ez(g)]
gELO(RY,R")

Definition (deep learning = best approximation)

®Pest ¢ argmin | [€2(RP)]
deP
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Error Decompositon
(Colloquial) Error Analysis

underlying data Z = (X,Y) H g € argmingc orarn) E[E2(g)]
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Error Decompositon
(Colloquial) Error Analysis

underlying data Z = (X, Y) g € argmingc orarn) E[E2(g)]

hypothesis class

neural networks given by
P = PR, activation o

dbest ¢ argmingep E [E2(RP)]

sampling estimation error

Zi~ Ziid. (i=1,...,m) || ¢ € argmingep = > 7 E7i(RP)




Error Decompositon
(Colloquial) Error Analysis

underlying data Z = (X, Y) g € argmingc opdprn) E[E2(8)]

=
hypothesis class
'

neural networks given by
P = PR, activation o

Pbest ¢ argmingep E [E2(RO)]

(. J

sampling estimation error

Zi~ Ziid. (i=1,...,m) { PP € argmingep = S E7i(RP) }

stoch. gradient descent

‘ m fiertions, Eaiches () ’{ Sy =0, — ﬁ Yiet, Vo [Szi(Rq))] }

learning rate A
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Learning Problem Error Decomposition

Towards a Mathematical Error Analysis ¢

& quadratic loss, n =1

o [?:= [L?(K;Px) where Px denotes image measure of X

Theorem (Bias-Variance-Decomposition)

[Ro™ 8|12, = Enp+ A7
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Learning Problem Error Decomposition

Towards a Mathematical Error Analysis ¢

& quadratic loss, n =1

o [?:= [L?(K;Px) where Px denotes image measure of X

Theorem (Bias-Variance-Decomposition)
RO — 2|2 = Enp -+ Ap
with
e approximation error (bias)
12 . ~ 12
Ap = ||RO= — g, = min [|R® — &[]
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Learning Problem Error Decomposition

Towards a Mathematical Error Analysis ¢

& quadratic loss, n =1

o [?:= [L?(K;Px) where Px denotes image measure of X

Theorem (Bias-Variance-Decomposition)
R — 2|2, = En+ A7
with
e approximation error (bias)
112 . ~ 12
Ap = ||RO= — g, = min [|R® — &[]
e estimation error (variance)
Emp = E [£2(RO™)]| — E[£2(ROP=)]
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Learning Problem Generalization Error

Generalization Result 1 4

Emp=IE [52 (quemp)] _ E[gz (Rq)best)]
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Learning Problem Generalization Error

Generalization Result 1 4
Emp <E[E7(RO™P)] — Zgz (Roe™P)

i=1

1 Zé’z’ q)best [EZ (Rq)beSt)]
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Learning Problem Generalization Error

Generalization Result 1 4
Emp <E[E7(RO™P)] — Zgz (Roe™P)
=1

1 Zé’z’ q)best [EZ (Rq)beSt)]

e goal: bound supger(p) E[E2(g)] — % Yo E7i(g)
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Learning Problem Generalization Error

Generalization Result 1 4
Emp <E [£7(RO°™)] — Z £, (RO™)
+LN e (ROPS) — BEz (RO

i=1

e goal: bound supger(p) E[E2(g)] — % Yimi1E7i(g)
° E[¢zi(g)] = E[Ez(g)]
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Learning Problem Generalization Error

Generalization Result 1 4
Emp <E[E7(ROT™)] — Zgz ROMP)

+LN e (ROPS) — BEz (RO
i=1
e goal: bound supgcr(p) E[E2(g)] — LS &)
o E[Ezi(g)] = E[z(g)]
e reduction to finite case = complexity measure of R(P)
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Learning Problem Generalization Error

Generalization Result 1 4
Emp <E[E7(ROT™)] — Zgz ROMP)

+LN e (ROPS) — BEz (RO
i=1

goal: bound supgerp) E[€2(g)] — % Yo E7i(g)
E[Ezi(g)] = E[Ez(g)]

reduction to finite case = complexity measure of R(P)

regularity of £,i(g) = Concentration inequality
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Learning Problem Generalization Error

Generalization Result 1 4
Emp <E[E7(ROT™)] — Zgz ROMP)

+LN e (ROPS) — BEz (RO
i=1

goal: bound supgerp) E[€2(g)] — % Yo E7i(g)
E[Ezi(g)] = E[Ez(g)]

reduction to finite case = covering number of R(P)

regularity of £,i(g) = Concentration inequality

Berner, Grohs, Jentzen Learning the solution of Kolmogorov equations without curse 15 / 27



Learning Problem Generalization Error

Generalization Result 1 4
Emp <E [£7(RO™)] Zgz ROP)

+o Z E7/(ROP) — E[€z(ROPY)]
i=1
goal: bound supgerp) E[€2(g)] — % Yo E7i(g)
E[Ezi(g)] = E[Ez(g)]

reduction to finite case = covering number of R(P)

boundedness of £,i(g) = Hoeffdings inequality

Assumption (uniformly bounded realization functions)

Replace R by clipped realization map R given by
RO := (min{| - |, D} sgn(-)) o R®
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Learning Problem Generalization Error

Generalization Result 1 4

Figure: cov (R(P),¢) denotes the minimal number
of balls of radius ¢ covering R(P).

A. Rinaldo. Lecture Notes.
CMU, 2016.
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Learning Problem Generalization Error

Generalization Result 1 4

Figure: cov (R(P),¢) denotes the minimal number
of balls of radius ¢ covering R(P).

A. Rinaldo. Lecture Notes.
CMU, 2016.

Theorem (Haussler '92, Vapnik '98, Cucker and Smale '02 )
With
m < D*2In [0 cov (R(P), 555 )]

covering number

samples it holds that P [E,p <] > 1 —4.
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Learning Problem Generalization Error

Generalization Result 1 4

Figure: cov (R(P),¢) denotes the minimal number
of balls of radius ¢ covering R(P).

Lemma

cov (R(P),e) < cov (P, LIP?R)) < (* Liep(R))dim(P)

A. Rinaldo. Lecture Notes.
CMU, 2016.

Theorem (Haussler '92, Vapnik '98, Cucker and Smale '02 )

With
m< D*:2In [(S_ICOV (ﬁ(P)’ 32%)]

covering number

samples it holds that P [E,p <] > 1 —4.
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Learning Problem Learning without Curse

Deep Learning without Curse

e learning problems for every dimension d € N
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Learning Problem Learning without Curse

Deep Learning without Curse g

e learning problems for every dimension d € N

L
& size(P) = max{ In(R), " NNy + N, } 0 = RelU
=1

-~

dim(P)
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Learning Problem Learning without Curse

Deep Learning without Curse

e learning problems for every dimension d € N

L
& size(P) = max{ In(R), S_ NgNe_y + N, } 0 = RelU
=1

dim(P)

Assumption (Approximation without curse)

Assume there are P with size(P) < poly(d,e~!) and Ap < e.

Theorem (Deep Learning without curse - B., Grohs, Jentzen '18)
Then with m < poly(d,e~1)In(6~1) samples it holds that
P |[[Ro=™ —g|f. <e| =14

Berner, Grohs, Jentzen Learning the solution of Kolmogorov equations without curse 17 / 27



Learning Problem Learning without Curse

Partial Summary

Assume
e underlying data (X, Y): Q - K x [-D, D]
e i.i.d. training data (X', Y)) ~(X,Y),i=1,...,m

e g can be approximated by RelLU networks in £2 without curse
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Learning Problem Learning without Curse

Partial Summary

Assume

e underlying data (X, Y): Q — K x [-D, D]

e i.i.d. training data (X', Y)) ~(X,Y),i=1,...,m

e g can be approximated by ReLU networks in £2 without curse
Then R(mP)

e approximates g in £2 within accuracy € with high probability

e with size(P) and m scaling polynomially in d and 7!
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Learning Problem Learning without Curse

Partial Summary

Assume

e underlying data (X, Y): Q — K x [-D, D]

e i.i.d. training data (X', Y)) ~(X,Y),i=1,...,m

e g can be approximated by ReLU networks in £2 without curse
Then R(mP)

e approximates g in £2 within accuracy € with high probability

e with size(P) and m scaling polynomially in d and 7!

Can the assumptions be satisfied?
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AT IR
Application to Kolmogorov PDEs . 4

e initial condition: ¢ € C(RY, [-D, D))
e coefficient functions: o: RY — RI*9 1 RY — R affine linear

Definition (Kolmogorov equation)

u(0,x) = ¢(x)
for t € [0, T], x € R

{atu(t, X) = %Trace(a(x)aT(x)HessXu(t, x)) + pu(x) - Vxu(t, x)
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AT IR
Application to Kolmogorov PDEs . 4

e initial condition: ¢ € C(RY, [-D, D))
e coefficient functions: o: RY — RI*9 1 RY — R affine linear

Definition (Kolmogorov equation)

{atu(t, x) = 3Trace(o(x)o T (x)Hessxu(t, x)) + p(x) - Veu(t, x)
u(0,x) = ¢(x)
for t € [0, T], x € R

= goal: approximately compute the function (end value)
K> x— u(T,x)
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Learning Problem Application to PDEs

Learning Problem g

. XNZ/I(K):HPX:‘—}(')\K
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Learning Problem Application to PDEs

Learning Problem g

o X ~UK) = Px = Ak
o Y = go(S)T() where SX is the solution processes to the stochastic
differential equation (SDE)
dSX = o(SX)dB: + p(SX)dt
S =X
= [[Yl= <D
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Learning Problem Application to PDEs

Learning Problem g

o X ~UK) = Px = Ak
o Y = go(S)T() where SX is the solution processes to the stochastic
differential equation (SDE)
dSX = o(SX)dB: + p(SX)dt
S =X
= [[Yl= <D

Theorem (learning problem - Beck, Becker, Grohs, Jaafari, Jentzen '18)
For a.e. x € K it holds that
u(T,x) =g(x).

Berner, Grohs, Jentzen Learning the solution of Kolmogorov equations without curse 20 / 27



Learning Problem Application to PDEs

Learning Problem g

o X ~UK) = Px = Ak
o Y = go(S)T() where SX is the solution processes to the stochastic
differential equation (SDE)
dSX = o(SX)dB: + p(SX)dt
S =X
= [[Yl= <D

Theorem (learning problem - Beck, Becker, Grohs, Jaafari, Jentzen '18)
For a.e. x € K it holds that

u(T,x) = &(x).
Proof: Feynman-Kac formula u(T,x) = E[¢(S7)] and representation of
regression function g(x) = E[Y|X = x]
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Learning Problem Application to PDEs

Approximation without Curse

& assume ¢ can be approximated by ReLU networks without curse of
dimensionality

= satisfied for applications in financial engineering
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Learning Problem Application to PDEs

Approximation without Curse 1

& assume ¢ can be approximated by ReLU networks without curse of
dimensionality

= satisfied for applications in financial engineering

Theorem (approximation without curse - Grohs et al. '18)
Then there are P with size(P) < poly(d,e~1) and
o . 1 = 2
Ap = min i HRCD —u(T, -)HZ:Q(K) <e.
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Learning Problem Application to PDEs

Approximation without Curse

& assume ¢ can be approximated by ReLU networks without curse of
dimensionality

= satisfied for applications in financial engineering

Theorem (approximation without curse - Grohs et al. '18)
Then there are P with size(P) < poly(d,e~1) and
o . 1 = 2
Ap = min i HRCD —u(T, -)HZ:Q(K) <e.

Proof: representation of SDE solution and simulation of Monte-Carlo
sampling by neural networks
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el el
Solving the Kolmogorov PDE without Curse g

Our assumptions are satisfied!
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el el
Solving the Kolmogorov PDE without Curse g

Our assumptions are satisfied!

Corollary (ERM solves the Kolmogorov PDE without curse)
There exists P and m with

e size(P) < poly(d,e 1)

o m S poly(d,e™)In(571)

o Pk RO — u(T, )|[agy < 2| 210
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Learning Problem Application to PDEs

Pricing of European Options without Curse 1

e capped European put option:
©(x) = min {max {D - Z;j:l c,-x,-,O} , D}
= exactly representable by a ReLU network with size scaling linearly in d
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Learning Problem Application to PDEs

Pricing of European Options without Curse 1

e capped European put option:
©(x) = min {max {D — Z;j:l c,-x,-,O} ) D}
= exactly representable by a ReLU network with size scaling linearly in d
= quantitative version: there exist P and m with

o size(P) < d%e72
o m< d?e*In(de" oY)

o P |k [[RO™ — u(T, )Gy < 2| 21— .
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Application to PDEs
Numerical Experiments (Beck et al. '18) g

e Black-Scholes equation from financial engineering (option pricing)
e N = (100,200,200, 1)

Number of Relative | Relative Runtime
descent steps n | L' error | £ error | in seconds
0 1.004285 | 1.009524 1
100000 0.371515 | 0.387978 437.9
250000 0.001220 | 0.010039 1092.6
500000 0.000949 | 0.005105 2183.8

Table: Error between RreLy®, and u(T,-) on [90, 110]1%°
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Learning Problem Application to PDEs

Possible Extensions

e learn solution map (¢, 0, i, t,x) — u(t, x)
e combined Dirichlet-Poisson problem
3Trace(o(x)o T (x)Hesscu(x)) + Viu(x) - p(x) = 9(x), x€D
{U(X) = ¢(x), x € 9D
e high dimensional functions that admit a probabilistic representation
and that can be approximated by an iterative scheme
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(CETOIN SN Optimization Error

Towards an Analysis of the Optimization Error

Theorem (inverse stability on a subset - B., Elbrachter, Grohs)

There exists Q C Pg p;,1) such that for every & € Q and g € R() there

exists a parametrization V € Q with

1
RV =g and |V -, <4g— R -

Corollary (parameter minimum = realization minimum)

Let d, € Q be a local minimum of
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Thank you for your Attention!
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