Empirical risk minimization over deep neural networks overcomes the curse of dimensionality in the numerical approximation of Kolmogorov equations

Julius Berner¹, Philipp Grohs^{1,2}, Arnulf Jentzen³

¹Faculty of Mathematics, University of Vienna ²Research Platform DataScience@UniVienna, University of Vienna ³Institute for Analysis and Numerics, University of Münster

The Power of Deep Learning [10]

 automatic generation of photo-realistic images (deep generative adversarial networks)

Figure: render natural photographs into different styles - Zhu et al. '17

The Power of Deep Learning [8]

automatic game playing with super-human performance (deep Q-learning)

Video: Learning to play 'ATARI outbreak' - Mnih et al. '15 (https://youtu.be/VieYniJORnk)

The Power of Deep Learning

'Machine learning works spectacularly well, but mathematicians aren't quite sure why.' - Daubechies '15

stacking together artificial neurons

- stacking together artificial neurons
- network architecture $N = (N_0, N_1, \dots, N_L)$ specifying the number of artifical neurons N_I in each of the L layers
- \clubsuit setting: input dimension $N_0 = d$, output dimension $N_L = n$

- stacking together artificial neurons
- network architecture $N = (N_0, N_1, \dots, N_L)$ specifying the number of artifical neurons N_I in each of the L layers
- \clubsuit setting: input dimension $N_0 = d$, output dimension $N_L = n$
- $\clubsuit \varrho$ is Lipschitz continuous, e.g.

- stacking together artificial neurons
- network architecture $N = (N_0, N_1, \dots, N_L)$ specifying the number of artifical neurons N_I in each of the L layers
- \clubsuit setting: input dimension $N_0 = d$, output dimension $N_L = n$
- $\clubsuit \varrho$ is Lipschitz continuous, e.g.
 - rectified linear unit $\varrho(x) = \text{ReLU}(x) = \max\{x, 0\}$
 - sigmoid (logistic) $\varrho(x) = \frac{1}{1+e^{-x}}$

- stacking together artificial neurons
- network architecture $N = (N_0, N_1, \dots, N_L)$ specifying the number of artifical neurons N_I in each of the L layers
- \clubsuit setting: input dimension $N_0 = d$, output dimension $N_L = n$
- ρ is Lipschitz continuous, e.g.
 - rectified linear unit $\varrho(x) = \text{ReLU}(x) = \max\{x, 0\}$
 - sigmoid (logistic) $\varrho(x) = \frac{1}{1+e^{-x}}$

• example: N = (3, 4, 6, 1), d = 3, n = 1, L = 3 ('deep')

7 / 27

set of parametrizations with architecture N and parameter bound R

$$\mathcal{P}_{N}^{R} := \left\{ \Phi = ((A^{(\ell)}, b^{(\ell)}))_{\ell=1}^{L} \; \middle| \; \begin{array}{l} A^{(\ell)} \in [-R, R]^{N_{\ell} \times N_{\ell-1}}, \\ b^{(\ell)} \in [-R, R]^{N_{\ell}} \end{array} \right\}$$

set of parametrizations with architecture N and parameter bound R

$$\mathcal{P} = \mathcal{P}_N^R := \left\{ \Phi = ((A^{(\ell)}, b^{(\ell)}))_{\ell=1}^L \; \middle| \; \begin{array}{l} A^{(\ell)} \in [-R, R]^{N_\ell \times N_{\ell-1}}, \\ b^{(\ell)} \in [-R, R]^{N_\ell} \end{array} \right\}$$

set of parametrizations with architecture N and parameter bound R

$$\mathcal{P} = \mathcal{P}_{N}^{R} := \left\{ \Phi = ((A^{(\ell)}, b^{(\ell)}))_{\ell=1}^{L} \; \middle| \; \begin{array}{l} A^{(\ell)} \in [-R, R]^{N_{\ell} \times N_{\ell-1}}, \\ b^{(\ell)} \in [-R, R]^{N_{\ell}} \end{array} \right\}$$

• realization map with activation function ϱ on compact space $K \subseteq \mathbb{R}^d$ $\mathcal{R}_{\varrho}^K \colon \mathcal{P} \to \mathcal{W}^{1,\infty}(K) \subseteq \mathcal{C}(K)$

$$\Phi \mapsto W^{(L)} \circ \varrho \circ W^{(L-1)} \circ \cdots \circ \varrho \circ W^{(1)},$$

where $W^{(\ell)}(z) := A^{(\ell)}z + b^{(\ell)}$ and ϱ is applied component-wise

set of parametrizations with architecture N and parameter bound R

$$\mathcal{P} = \mathcal{P}_{N}^{R} := \left\{ \Phi = ((A^{(\ell)}, b^{(\ell)}))_{\ell=1}^{L} \; \middle| \; \begin{array}{l} A^{(\ell)} \in [-R, R]^{N_{\ell} \times N_{\ell-1}}, \\ b^{(\ell)} \in [-R, R]^{N_{\ell}} \end{array} \right\}$$

• realization map with activation function ϱ on compact space $K \subseteq \mathbb{R}^d$ $\mathcal{R} = \mathcal{R}_a^K : \mathcal{P} \to \mathcal{W}^{1,\infty}(K) \subseteq \mathcal{C}(K)$

$$\Phi \mapsto W^{(L)} \circ \rho \circ W^{(L-1)} \circ \cdots \circ \rho \circ W^{(1)},$$

where $W^{(\ell)}(z) := A^{(\ell)}z + b^{(\ell)}$ and ϱ is applied component-wise

• not injective

not injective

Example

$$\mathcal{R}(\Phi) = \mathcal{R}(\Psi) \equiv 0$$
 with $\Phi = ((A_1, b_1), \dots, (A_{L-1}, b_{L-1}), (0, 0))$ $\Psi = ((B_1, c_1), \dots, (B_{L-1}, c_{L-1}), (0, 0))$

• not inverse stable w.r.t. $\|\cdot\|_{\mathcal{L}^{\infty}}$ norm

• not inverse stable w.r.t. $\|\cdot\|_{\mathcal{L}^{\infty}}$ norm

Theorem (failure of inverse stability - Petersen et al. '18)

There exist $\Phi \in \mathcal{P}$ and $(g_k) \subseteq \mathcal{R}(\mathcal{P})$ with

$$\|\mathcal{R}\Phi-g_k\|_{\mathcal{L}^\infty}\to 0\quad\text{and}\quad \inf_{k\in\mathbb{N},\ \Psi\in\mathcal{R}^{-1}(g_k)}\|\Phi-\Psi\|_\infty\geq c.$$

• not inverse stable w.r.t. $\|\cdot\|_{\mathcal{L}^{\infty}}$ norm

Properties of the Realization Map [1, 4, 9]

• Lipschitz continuous w.r.t. $\|\cdot\|_{\mathcal{L}^{\infty}}$ norm

Properties of the Realization Map [1, 4, 9]

• Lipschitz continuous w.r.t. $\|\cdot\|_{\mathcal{L}^{\infty}}$ norm

Lemma (quantitative version for ReLU activation)

For every $\Phi, \Psi \in \mathcal{P}$ it holds that

$$\|\mathcal{R}_{\mathsf{ReLU}}\Phi - \mathcal{R}_{\mathsf{ReLU}}\Psi\|_{\mathcal{L}^{\infty}} \leq c(K)(6R\|N\|_{\infty})^{L}\|\Phi - \Psi\|_{\infty}.$$

• training data $z^i = (x^i, y^i) \in \mathbb{R}^d \times \mathbb{R}^n$, $i = 1, \dots, m$

$$= x^i \qquad \longmapsto$$

$$y^i = (0,0,0,0,0,1,0,0,0,0)$$

- training data $z^i = (x^i, y^i) \in \mathbb{R}^d \times \mathbb{R}^n$, $i = 1, \ldots, m$
- loss function $\mathcal{E}_z \colon \mathcal{L}^0(\mathbb{R}^d,\mathbb{R}^n) o \mathbb{R}_+$

$$= x^i \qquad \longmapsto$$

$$y^i = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0)$$

- training data $z^i = (x^i, y^i) \in \mathbb{R}^d \times \mathbb{R}^n$, $i = 1, \ldots, m$
- loss function $\mathcal{E}_z\colon \mathcal{L}^0(\mathbb{R}^d,\mathbb{R}^n) o \mathbb{R}_+$, e.g.
 - quadratic loss $\mathcal{E}_z(g) = \|g(x) y\|_2^2$

$$= x^i \quad \longmapsto$$

$$y^i = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0)$$

- training data $z^i = (x^i, y^i) \in \mathbb{R}^d \times \mathbb{R}^n$, $i = 1, \dots, m$
- loss function $\mathcal{E}_z\colon \mathcal{L}^0(\mathbb{R}^d,\mathbb{R}^n) o \mathbb{R}_+$, e.g.
 - quadratic loss $\mathcal{E}_z(g) = \|g(x) y\|_2^2$
 - softmax + cross-entropy $\mathcal{E}_z(g) = \sum_{j=1}^n -y_j \log \left(\frac{\exp g_j(x)}{\sum_{k=1}^n \exp g_k(x)} \right)$

$$= x^i \quad \longmapsto$$

$$y^i = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0)$$

- training data $z^i = (x^i, y^i) \in \mathbb{R}^d \times \mathbb{R}^n$, $i = 1, \dots, m$
- loss function $\mathcal{E}_z : \mathcal{L}^0(\mathbb{R}^d, \mathbb{R}^n) \to \mathbb{R}_+$, e.g.
 - quadratic loss $\mathcal{E}_z(g) = \|g(x) y\|_2^2$
 - softmax + cross-entropy $\mathcal{E}_z(g) = \sum_{i=1}^n -y_i \log \left(\frac{\exp g_i(x)}{\sum_{i=1}^n \exp g_i(x)} \right)$

Definition (empirical risk minimization (ERM) \Rightarrow empirical target network)

$$\Phi^{\mathsf{emp}} \in \underset{\Phi \in \mathcal{P}}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} \mathcal{E}_{z^{i}}(\mathcal{R}\Phi)$$

$$-\chi^i$$
 $\xrightarrow{\mathcal{R}\Phi^{emp}}$

$$= x^i \qquad \vdash \xrightarrow{\mathcal{R}\Phi^{emp}} \qquad y^i = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0)$$

- training data $z^i = (x^i, y^i) \in \mathbb{R}^d \times \mathbb{R}^n$, $i = 1, \dots, m$
- loss function $\mathcal{E}_z\colon \mathcal{L}^0(\mathbb{R}^d,\mathbb{R}^n) o \mathbb{R}_+$, e.g.
 - quadratic loss $\mathcal{E}_z(g) = \|g(x) y\|_2^2$
 - softmax + cross-entropy $\mathcal{E}_z(g) = \sum_{j=1}^n -y_j \log \left(\frac{\exp g_j(x)}{\sum_{k=1}^n \exp g_k(x)} \right)$

Definition (empirical risk minimization (ERM) \Rightarrow empirical target network)

$$\Phi^{\mathsf{emp}} \in \underset{\Phi \in \mathcal{P}}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} \mathcal{E}_{z^{i}}(\mathcal{R}\Phi)$$

$$= x \qquad \qquad \mathcal{R}^{\Phi^{\text{emp}}}$$

$$y = (0, 0.3, 0.1, 0, 0, 0, 0, 0.6, 0, 0)$$

Statistical Learning Theory

 $((z^i))_{i=1}^m$ are realizations of i.i.d. samples drawn from the distribution of underlying (unknown) data

$$Z = (X, Y) \colon \Omega \to K \times [-D, D]^n \subseteq \mathbb{R}^d \times \mathbb{R}^n$$

on a suitable probability space $(\Omega, \mathcal{F}, \mathbb{P})$

Statistical Learning Theory

 $((z^i))_{i=1}^m$ are realizations of i.i.d. samples drawn from the distribution of underlying (unknown) data

$$Z=(X,Y)\colon\Omega\to K\times [-D,D]^n\subseteq\mathbb{R}^d\times\mathbb{R}^n$$
 on a suitable probability space $(\Omega,\mathcal{F},\mathbb{P})$

Definition (learning problem \Rightarrow regression function)

$$\widehat{g} \in \operatorname*{argmin}_{g \in \mathcal{L}^0(\mathbb{R}^d, \mathbb{R}^n)} \mathbb{E}\left[\mathcal{E}_{Z}(g)\right]$$

Statistical Learning Theory

 $\spadesuit ((z^i))_{i=1}^m$ are realizations of i.i.d. samples drawn from the distribution of underlying (unknown) data

$$Z=(X,Y)\colon\Omega\to K\times [-D,D]^n\subseteq\mathbb{R}^d\times\mathbb{R}^n$$
 on a suitable probability space $(\Omega,\mathcal{F},\mathbb{P})$

Definition (learning problem \Rightarrow regression function)

$$\widehat{g} \in \operatorname*{argmin}_{g \in \mathcal{L}^0(\mathbb{R}^d, \mathbb{R}^n)} \mathbb{E}\left[\mathcal{E}_{Z}(g)\right]$$

Definition (deep learning ⇒ best approximation)

$$\Phi^{best} \in \operatorname*{argmin}_{\Phi \in \mathcal{P}} \mathbb{E} \left[\mathcal{E}_{Z} (\mathcal{R} \Phi) \right]$$

underlying data Z = (X, Y)

$$\widehat{g} \, \in \, \mathrm{argmin}_{g \in \mathcal{L}^0(\mathbb{R}^d, \mathbb{R}^n)} \, \mathbb{E} \left[\mathcal{E}_Z(g) \right]$$

underlying data Z = (X, Y)

$$\widehat{g} \, \in \, \operatorname{argmin}_{g \in \mathcal{L}^0(\mathbb{R}^d,\mathbb{R}^n)} \mathbb{E} \left[\mathcal{E}_Z(g) \right]$$

hypothesis class

approximation error

neural networks given by

 $\mathcal{P} = \mathcal{P}_{N}^{R}$, activation ρ

 $\Phi^{\mathsf{best}} \in \operatorname{argmin}_{\Phi \in \mathcal{P}} \mathbb{E} \left[\mathcal{E}_{\mathsf{Z}}(\mathcal{R}\Phi) \right]$

underlying data Z = (X, Y)

$$\widehat{g} \, \in \, \operatorname{argmin}_{g \in \mathcal{L}^0(\mathbb{R}^d,\mathbb{R}^n)} \mathbb{E} \left[\mathcal{E}_Z(g) \right]$$

hypothesis class

approximation error

neural networks given by $\mathcal{P} = \mathcal{P}_{N}^{R}$, activation ρ

vation
$$\varrho$$

 $\Phi^{\mathsf{best}} \in \operatorname{argmin}_{\Phi \in \mathcal{P}} \mathbb{E} \left[\mathcal{E}_{\mathsf{Z}}(\mathcal{R}\Phi) \right]$

sampling

estimation error

 $Z^i \sim Z$ i.i.d. (i = 1, ..., m)

 $\Phi^{\mathsf{emp}} \in \operatorname{argmin}_{\Phi \in \mathcal{P}} \frac{1}{m} \sum_{i=1}^{m} \mathcal{E}_{Z^{i}}(\mathcal{R}\Phi)$

underlying data Z = (X, Y)

$$\widehat{g} \in \operatorname{argmin}_{g \in \mathcal{L}^0(\mathbb{R}^d, \mathbb{R}^n)} \mathbb{E} \left[\mathcal{E}_{Z}(g) \right]$$

hypothesis class

approximation error

neural networks given by $\mathcal{P} = \mathcal{P}_{N}^{R}$, activation ρ

$$\mathcal{P}^{R}_{ extsf{N}}$$
, activation $arrho$

$$\Phi^{best} \, \in \, \mathrm{argmin}_{\Phi \in \mathcal{P}} \, \mathbb{E} \left[\mathcal{E}_{Z} (\mathcal{R} \Phi) \right]$$

sampling

estimation error

$$Z^i \sim Z$$
 i.i.d. $(i = 1, \ldots, m)$

$$\Phi^{\mathsf{emp}} \in \operatorname{argmin}_{\Phi \in \mathcal{P}} \frac{1}{m} \sum_{i=1}^{m} \mathcal{E}_{Z^{i}}(\mathcal{R}\Phi)$$

stoch. gradient descent

optimization error

n iterations, batches (I_n) , learning rate λ

$$\Phi_{n+1} = \Phi_n - \tfrac{\lambda}{|I_n|} \textstyle \sum_{i \in I_n} \nabla_{\Phi} \big[\mathcal{E}_{Z^i}(\mathcal{R}\Phi) \big]$$

Towards a Mathematical Error Analysis [4, 6]

- \clubsuit quadratic loss, n=1
- $\mathcal{L}^2 := \mathcal{L}^2(K; \mathbb{P}_X)$ where \mathbb{P}_X denotes image measure of X

Theorem (Bias-Variance-Decomposition)

$$\left\|\mathcal{R}\Phi^{\mathsf{emp}}-\widehat{g}\right\|_{\mathcal{L}^{2}}^{2}=\mathit{E}_{m,\mathcal{P}}+\mathit{A}_{\mathcal{P}}$$

Towards a Mathematical Error Analysis [4, 6]

- \clubsuit quadratic loss, n=1
- $\mathcal{L}^2 := \mathcal{L}^2(K; \mathbb{P}_X)$ where \mathbb{P}_X denotes image measure of X

Theorem (Bias-Variance-Decomposition)

$$\left\|\mathcal{R}\Phi^{\mathsf{emp}}-\widehat{g}\right\|_{\mathcal{L}^{2}}^{2}=E_{m,\mathcal{P}}+A_{\mathcal{P}}$$

with

approximation error (bias)

$$A_{\mathcal{P}} = \left\|\mathcal{R}\Phi^{\mathsf{best}} - \widehat{g}\right\|_{\mathcal{L}^2}^2 = \min_{\Phi \in \mathcal{P}} \left\|\mathcal{R}\Phi - \widehat{g}\right\|_{\mathcal{L}^2}^2$$

Towards a Mathematical Error Analysis [4, 6]

- \clubsuit quadratic loss, n=1
- $\mathcal{L}^2 := \mathcal{L}^2(K; \mathbb{P}_X)$ where \mathbb{P}_X denotes image measure of X

Theorem (Bias-Variance-Decomposition)

$$\left\|\mathcal{R}\Phi^{\mathsf{emp}}-\widehat{g}\right\|_{\mathcal{L}^{2}}^{2}=E_{m,\mathcal{P}}+A_{\mathcal{P}}$$

with

• approximation error (bias)

$$A_{\mathcal{P}} = \left\|\mathcal{R}\Phi^{\mathsf{best}} - \widehat{g}\right\|_{\mathcal{L}^2}^2 = \min_{\Phi \in \mathcal{P}} \left\|\mathcal{R}\Phi - \widehat{g}\right\|_{\mathcal{L}^2}^2$$

estimation error (variance)

$$\textit{E}_{\textit{m},\mathcal{P}} = \mathbb{E}\left[\mathcal{E}_{\textit{Z}}\big(\mathcal{R}\Phi^{\mathsf{emp}}\big)\right] - \mathbb{E}\big[\mathcal{E}_{\textit{Z}}\big(\mathcal{R}\Phi^{\mathsf{best}}\big)\big]$$

$$\textit{E}_{\textit{m},\mathcal{P}} = \mathbb{E}\left[\mathcal{E}_{\textit{Z}}\big(\mathcal{R}\Phi^{emp}\big)\right] - \mathbb{E}\big[\mathcal{E}_{\textit{Z}}\big(\mathcal{R}\Phi^{best}\big)\big]$$

$$\begin{split} E_{m,\mathcal{P}} \leq & \mathbb{E}\left[\mathcal{E}_{Z}(\mathcal{R}\Phi^{\mathsf{emp}})\right] - \frac{1}{m} \sum_{i=1}^{m} \mathcal{E}_{Z^{i}}(\mathcal{R}\Phi^{\mathsf{emp}}) \\ & + \frac{1}{m} \sum_{i=1}^{m} \mathcal{E}_{Z^{i}}(\mathcal{R}\Phi^{\mathsf{best}}) - \mathbb{E}\left[\mathcal{E}_{Z}(\mathcal{R}\Phi^{\mathsf{best}})\right] \end{split}$$

$$E_{m,\mathcal{P}} \leq \mathbb{E}\left[\mathcal{E}_{Z}(\mathcal{R}\Phi^{\text{emp}})\right] - \frac{1}{m} \sum_{i=1}^{m} \mathcal{E}_{Z^{i}}(\mathcal{R}\Phi^{\text{emp}})$$
$$+ \frac{1}{m} \sum_{i=1}^{m} \mathcal{E}_{Z^{i}}(\mathcal{R}\Phi^{\text{best}}) - \mathbb{E}\left[\mathcal{E}_{Z}(\mathcal{R}\Phi^{\text{best}})\right]$$

• goal: bound $\sup_{g \in \mathcal{R}(\mathcal{P})} \mathbb{E}\left[\mathcal{E}_{Z}(g)\right] - \frac{1}{m} \sum_{i=1}^{m} \mathcal{E}_{Z^{i}}(g)$

$$E_{m,\mathcal{P}} \leq \mathbb{E}\left[\mathcal{E}_{Z}(\mathcal{R}\Phi^{\text{emp}})\right] - \frac{1}{m} \sum_{i=1}^{m} \mathcal{E}_{Z^{i}}(\mathcal{R}\Phi^{\text{emp}})$$
$$+ \frac{1}{m} \sum_{i=1}^{m} \mathcal{E}_{Z^{i}}(\mathcal{R}\Phi^{\text{best}}) - \mathbb{E}\left[\mathcal{E}_{Z}(\mathcal{R}\Phi^{\text{best}})\right]$$

- goal: bound $\sup_{g \in \mathcal{R}(\mathcal{P})} \mathbb{E}\left[\mathcal{E}_{Z}(g)\right] \frac{1}{m} \sum_{i=1}^{m} \mathcal{E}_{Z^{i}}(g)$
- $\mathbb{E}\left[\mathcal{E}_{Z^i}(g)\right] = \mathbb{E}\left[\mathcal{E}_{Z}(g)\right]$

$$E_{m,\mathcal{P}} \leq \mathbb{E}\left[\mathcal{E}_{Z}(\mathcal{R}\Phi^{\text{emp}})\right] - \frac{1}{m} \sum_{i=1}^{m} \mathcal{E}_{Z^{i}}(\mathcal{R}\Phi^{\text{emp}})$$
$$+ \frac{1}{m} \sum_{i=1}^{m} \mathcal{E}_{Z^{i}}(\mathcal{R}\Phi^{\text{best}}) - \mathbb{E}\left[\mathcal{E}_{Z}(\mathcal{R}\Phi^{\text{best}})\right]$$

- goal: bound $\sup_{g \in \mathcal{R}(\mathcal{P})} \mathbb{E}\left[\mathcal{E}_{\mathcal{Z}}(g)\right] \frac{1}{m} \sum_{i=1}^{m} \mathcal{E}_{\mathcal{Z}^{i}}(g)$
- $\mathbb{E}\left[\mathcal{E}_{Z^i}(g)\right] = \mathbb{E}\left[\mathcal{E}_{Z}(g)\right]$
- ullet reduction to finite case \Rightarrow complexity measure of $\mathcal{R}(\mathcal{P})$

$$E_{m,\mathcal{P}} \leq \mathbb{E}\left[\mathcal{E}_{Z}(\mathcal{R}\Phi^{\text{emp}})\right] - \frac{1}{m} \sum_{i=1}^{m} \mathcal{E}_{Z^{i}}(\mathcal{R}\Phi^{\text{emp}})$$
$$+ \frac{1}{m} \sum_{i=1}^{m} \mathcal{E}_{Z^{i}}(\mathcal{R}\Phi^{\text{best}}) - \mathbb{E}\left[\mathcal{E}_{Z}(\mathcal{R}\Phi^{\text{best}})\right]$$

- goal: bound $\sup_{g \in \mathcal{R}(\mathcal{P})} \mathbb{E}\left[\mathcal{E}_{\mathcal{Z}}(g)\right] \frac{1}{m} \sum_{i=1}^{m} \mathcal{E}_{\mathcal{Z}^{i}}(g)$
- $\mathbb{E}\left[\mathcal{E}_{Z^i}(g)\right] = \mathbb{E}\left[\mathcal{E}_{Z}(g)\right]$
- reduction to finite case \Rightarrow complexity measure of $\mathcal{R}(\mathcal{P})$
- regularity of $\mathcal{E}_{Z^i}(g) \Rightarrow$ Concentration inequality

$$E_{m,\mathcal{P}} \leq \mathbb{E}\left[\mathcal{E}_{Z}(\mathcal{R}\Phi^{\text{emp}})\right] - \frac{1}{m} \sum_{i=1}^{m} \mathcal{E}_{Z^{i}}(\mathcal{R}\Phi^{\text{emp}})$$
$$+ \frac{1}{m} \sum_{i=1}^{m} \mathcal{E}_{Z^{i}}(\mathcal{R}\Phi^{\text{best}}) - \mathbb{E}\left[\mathcal{E}_{Z}(\mathcal{R}\Phi^{\text{best}})\right]$$

- goal: bound $\sup_{g \in \mathcal{R}(\mathcal{P})} \mathbb{E}\left[\mathcal{E}_{\mathcal{Z}}(g)\right] \frac{1}{m} \sum_{i=1}^{m} \mathcal{E}_{\mathcal{Z}^{i}}(g)$
- $\mathbb{E}\left[\mathcal{E}_{Z^i}(g)\right] = \mathbb{E}\left[\mathcal{E}_{Z}(g)\right]$
- reduction to finite case \Rightarrow covering number of $\mathcal{R}(\mathcal{P})$
- regularity of $\mathcal{E}_{Z^i}(g) \Rightarrow$ Concentration inequality

$$E_{m,\mathcal{P}} \leq \mathbb{E}\left[\mathcal{E}_{Z}(\mathcal{R}\Phi^{\text{emp}})\right] - \frac{1}{m} \sum_{i=1}^{m} \mathcal{E}_{Z^{i}}(\mathcal{R}\Phi^{\text{emp}})$$
$$+ \frac{1}{m} \sum_{i=1}^{m} \mathcal{E}_{Z^{i}}(\mathcal{R}\Phi^{\text{best}}) - \mathbb{E}\left[\mathcal{E}_{Z}(\mathcal{R}\Phi^{\text{best}})\right]$$

- goal: bound $\sup_{g \in \mathcal{R}(\mathcal{P})} \mathbb{E}\left[\mathcal{E}_{Z}(g)\right] \frac{1}{m} \sum_{i=1}^{m} \mathcal{E}_{Z^{i}}(g)$
- $\mathbb{E}\left[\mathcal{E}_{Z^i}(g)\right] = \mathbb{E}\left[\mathcal{E}_{Z}(g)\right]$
- reduction to finite case \Rightarrow covering number of $\mathcal{R}(\mathcal{P})$
- boundedness of $\mathcal{E}_{Z^i}(g) \Rightarrow$ Hoeffdings inequality

Assumption (uniformly bounded realization functions)

Replace ${\mathcal R}$ by clipped realization map $\bar{{\mathcal R}}$ given by

$$\bar{\mathcal{R}}\Phi := (\min\{|\cdot|, D\}\operatorname{sgn}(\cdot)) \circ \mathcal{R}\Phi$$

Figure: $\operatorname{cov}\left(\bar{\mathcal{R}}(\mathcal{P}),\varepsilon\right)$ denotes the minimal number of balls of radius ε covering $\bar{\mathcal{R}}(\mathcal{P})$.

A. Rinaldo. Lecture Notes. CMU, 2016.

Figure: $\operatorname{cov}\left(\bar{\mathcal{R}}(\mathcal{P}), \varepsilon\right)$ denotes the minimal number of balls of radius ε covering $\bar{\mathcal{R}}(\mathcal{P})$.

A. Rinaldo. Lecture Notes. CMU, 2016.

Theorem (Haussler '92, Vapnik '98, Cucker and Smale '02)

With

$$m \lesssim D^4 \varepsilon^{-2} \ln \left[\delta^{-1} \underbrace{\operatorname{cov} \left(\bar{\mathcal{R}}(\mathcal{P}), \frac{\varepsilon}{32D} \right)}_{\text{covering number}} \right]$$

samples it holds that $\mathbb{P}\left[E_{m,\mathcal{P}} \leq \varepsilon\right] \geq 1 - \delta$.

Figure: $\operatorname{cov}\left(\bar{\mathcal{R}}(\mathcal{P}), \varepsilon\right)$ denotes the minimal number of balls of radius ε covering $\bar{\mathcal{R}}(\mathcal{P})$.

Lemma

$$\mathrm{cov}\left(\bar{\mathcal{R}}(\mathcal{P}),\varepsilon\right) \leq \mathrm{cov}\left(\mathcal{P},\tfrac{\varepsilon}{\mathrm{Lip}(\mathcal{R})}\right) \leq \left(\tfrac{4R\,\mathrm{Lip}(\mathcal{R})}{\varepsilon}\right)^{\dim(\mathcal{P})}$$

A. Rinaldo. Lecture Notes. CMU, 2016.

Theorem (Haussler '92, Vapnik '98, Cucker and Smale '02)

With

$$m \lesssim D^4 \varepsilon^{-2} \ln \left[\delta^{-1} \underbrace{\operatorname{cov} \left(\bar{\mathcal{R}}(\mathcal{P}), \frac{\varepsilon}{32D} \right)}_{\text{covering number}} \right]$$

samples it holds that $\mathbb{P}\left[E_{m,\mathcal{P}} \leq \varepsilon\right] \geq 1 - \delta$.

Deep Learning without Curse [4]

ullet learning problems for every dimension $d\in\mathbb{N}$

Deep Learning without Curse [4]

ullet learning problems for every dimension $d\in\mathbb{N}$

$$\Rightarrow \mathsf{size}(\mathcal{P}) := \mathsf{max} \left\{ \mathsf{In}(R), \underbrace{\sum_{\ell=1}^{L} \mathit{N}_{\ell} \mathit{N}_{\ell-1} + \mathit{N}_{\ell}}_{\mathsf{dim}(\mathcal{P})} \right\}, \ \varrho = \mathsf{ReLU}$$

Deep Learning without Curse [4]

- ullet learning problems for every dimension $d\in\mathbb{N}$

Assumption (Approximation without curse)

Assume there are \mathcal{P} with $\operatorname{size}(\mathcal{P}) \lesssim \operatorname{poly}(d, \varepsilon^{-1})$ and $A_{\mathcal{P}} \leq \varepsilon$.

Theorem (Deep Learning without curse - B., Grohs, Jentzen '18)

Then with $m \lesssim poly(d, \varepsilon^{-1}) \ln(\delta^{-1})$ samples it holds that

$$\mathbb{P}\left[\left\|\bar{\mathcal{R}}\Phi^{\mathsf{emp}}-\widehat{\mathbf{g}}\right\|_{\mathcal{L}^{2}}^{2}\leq\varepsilon\right]\geq1-\delta.$$

Partial Summary

Assume

- underlying data (X, Y): $\Omega \to K \times [-D, D]$
- i.i.d. training data $(X^i, Y^i) \sim (X, Y)$, $i = 1, \dots, m$
- \widehat{g} can be approximated by ReLU networks in \mathcal{L}^2 without curse

Partial Summary

Assume

- underlying data (X, Y): $\Omega \to K \times [-D, D]$
- i.i.d. training data $(X^i, Y^i) \sim (X, Y)$, $i = 1, \dots, m$
- ullet \widehat{g} can be approximated by ReLU networks in \mathcal{L}^2 without curse

Then $\bar{\mathcal{R}}(\Phi^{emp})$

- approximates \widehat{g} in \mathcal{L}^2 within accuracy ε with high probability
- ullet with size(${\cal P}$) and m scaling polynomially in d and $arepsilon^{-1}$

Partial Summary

Assume

- underlying data (X, Y): $\Omega \to K \times [-D, D]$
- i.i.d. training data $(X^i, Y^i) \sim (X, Y)$, $i = 1, \dots, m$
- ullet \widehat{g} can be approximated by ReLU networks in \mathcal{L}^2 without curse

Then $\bar{\mathcal{R}}(\Phi^{emp})$

- approximates \widehat{g} in \mathcal{L}^2 within accuracy ε with high probability
- ullet with size (\mathcal{P}) and m scaling polynomially in d and $arepsilon^{-1}$

Can the assumptions be satisfied?

Application to Kolmogorov PDEs [2, 4]

- initial condition: $\varphi \in \mathcal{C}(\mathbb{R}^d, [-D, D])$
- coefficient functions: $\sigma \colon \mathbb{R}^d \to R^{d \times d}$, $\mu \colon \mathbb{R}^d \to \mathbb{R}^d$ affine linear

Definition (Kolmogorov equation)

$$\begin{cases} \partial_t u(t,x) = \frac{1}{2} \operatorname{Trace} (\sigma(x) \sigma^T(x) \operatorname{Hess}_x u(t,x)) + \mu(x) \cdot \nabla_x u(t,x) \\ u(0,x) = \varphi(x) \end{cases}$$

for $t \in [0, T]$, $x \in \mathbb{R}^d$

19 / 27

Application to Kolmogorov PDEs [2, 4]

- initial condition: $\varphi \in \mathcal{C}(\mathbb{R}^d, [-D, D])$
- coefficient functions: $\sigma \colon \mathbb{R}^d \to R^{d \times d}$, $\mu \colon \mathbb{R}^d \to \mathbb{R}^d$ affine linear

Definition (Kolmogorov equation)

$$\begin{cases} \partial_t u(t,x) = \frac{1}{2} \operatorname{Trace} (\sigma(x) \sigma^T(x) \operatorname{Hess}_x u(t,x)) + \mu(x) \cdot \nabla_x u(t,x) \\ u(0,x) = \varphi(x) \end{cases}$$

for $t \in [0, T]$, $x \in \mathbb{R}^d$

⇒ goal: approximately compute the function (end value)

$$K \ni x \mapsto u(T, x)$$

•
$$X \sim \mathcal{U}(K) \Rightarrow \mathbb{P}_X = \frac{1}{|K|} \lambda_K$$

- $X \sim \mathcal{U}(K) \Rightarrow \mathbb{P}_X = \frac{1}{|K|} \lambda_K$
- $Y := \varphi(S_T^X)$ where S^X is the solution processes to the stochastic differential equation (SDE)

$$\begin{cases} dS_t^X = \sigma(S_t^X)dB_t + \mu(S_t^X)dt \\ S_0^X = X \end{cases}$$

$$\Rightarrow \|Y\|_{\mathcal{L}^{\infty}} \leq D$$

- $X \sim \mathcal{U}(K) \Rightarrow \mathbb{P}_X = \frac{1}{|K|} \lambda_K$
- $Y := \varphi(S_T^X)$ where S^X is the solution processes to the stochastic differential equation (SDE)

$$\begin{cases} dS_t^X = \sigma(S_t^X)dB_t + \mu(S_t^X)dt \\ S_0^X = X \end{cases}$$

 $\Rightarrow \|Y\|_{\mathcal{L}^{\infty}} \leq D$

Theorem (learning problem - Beck, Becker, Grohs, Jaafari, Jentzen '18)

For a.e. $x \in K$ it holds that

$$u(T,x) = \widehat{g}(x).$$

- $X \sim \mathcal{U}(K) \Rightarrow \mathbb{P}_X = \frac{1}{|K|} \lambda_K$
- $Y := \varphi(S_T^X)$ where S^X is the solution processes to the stochastic differential equation (SDE)

$$\begin{cases} dS_t^X = \sigma(S_t^X)dB_t + \mu(S_t^X)dt \\ S_0^X = X \end{cases}$$

 $\Rightarrow \|Y\|_{\mathcal{L}^{\infty}} \leq D$

Theorem (learning problem - Beck, Becker, Grohs, Jaafari, Jentzen '18)

For a.e. $x \in K$ it holds that

$$u(T,x) = \widehat{g}(x).$$

Proof: Feynman-Kac formula $u(T,x) = \mathbb{E}[\varphi(S_T^x)]$ and representation of regression function $\widehat{g}(x) = \mathbb{E}[Y|X=x]$

Approximation without Curse [7]

- \clubsuit assume φ can be approximated by ReLU networks without curse of dimensionality
- ⇒ satisfied for applications in financial engineering

Approximation without Curse [7]

- \clubsuit assume φ can be approximated by ReLU networks without curse of dimensionality
- ⇒ satisfied for applications in financial engineering

Theorem (approximation without curse - Grohs et al. '18)

Then there are \mathcal{P} with $size(\mathcal{P}) \lesssim poly(d, \varepsilon^{-1})$ and

$$A_{\mathcal{P}} = \min_{\Phi \in \mathcal{P}} \frac{1}{|K|} \left\| \bar{\mathcal{R}} \Phi - u(T, \cdot) \right\|_{\mathcal{L}^{2}(K)}^{2} \leq \varepsilon.$$

Approximation without Curse [7]

- \clubsuit assume φ can be approximated by ReLU networks without curse of dimensionality
- ⇒ satisfied for applications in financial engineering

Theorem (approximation without curse - Grohs et al. '18)

Then there are \mathcal{P} with $\operatorname{size}(\mathcal{P}) \lesssim \operatorname{poly}(d, \varepsilon^{-1})$ and

$$A_{\mathcal{P}} = \min_{\Phi \in \mathcal{P}} \frac{1}{|K|} \left\| \bar{\mathcal{R}} \Phi - u(T, \cdot) \right\|_{\mathcal{L}^{2}(K)}^{2} \leq \varepsilon.$$

Proof: representation of SDE solution and simulation of Monte-Carlo sampling by neural networks

Solving the Kolmogorov PDE without Curse [4]

Our assumptions are satisfied!

Solving the Kolmogorov PDE without Curse [4]

Our assumptions are satisfied!

Corollary (ERM solves the Kolmogorov PDE without curse)

There exists \mathcal{P} and m with

- $\operatorname{size}(\mathcal{P}) \lesssim \operatorname{poly}(d, \varepsilon^{-1})$
- $m \lesssim poly(d, \varepsilon^{-1}) \ln(\delta^{-1})$
- $\mathbb{P}\left[\frac{1}{|\mathcal{K}|}\left\|\bar{\mathcal{R}}\Phi^{\mathsf{emp}}-u(\mathcal{T},\cdot)\right\|_{\mathcal{L}^{2}(\mathcal{K})}^{2}\leq\varepsilon\right]\geq1-\delta.$

Pricing of European Options without Curse [4]

• capped European put option:

$$\varphi(x) = \min \left\{ \max \left\{ D - \sum_{i=1}^{d} c_i x_i, 0 \right\}, D \right\}$$

 \Rightarrow exactly representable by a ReLU network with size scaling linearly in d

Pricing of European Options without Curse [4]

• capped European put option:

$$\varphi(x) = \min \left\{ \max \left\{ D - \sum_{i=1}^{d} c_i x_i, 0 \right\}, D \right\}$$

- \Rightarrow exactly representable by a ReLU network with size scaling linearly in d
- \Rightarrow quantitative version: there exist \mathcal{P} and m with
 - size(\mathcal{P}) $\lesssim d^2 \varepsilon^{-2}$
 - $m \lesssim d^2 \varepsilon^{-4} \ln(d \varepsilon^{-1} \varrho^{-1})$
 - $\bullet \ \ \mathbb{P}\left[\frac{1}{|\mathcal{K}|} \left\| \bar{\mathcal{R}} \Phi^{\mathsf{emp}} u(\mathcal{T}, \cdot) \right\|^2_{\mathcal{L}^2(\mathcal{K})} \leq \varepsilon \right] \geq 1 \varrho.$

Numerical Experiments (Beck et al. '18) [2]

- Black-Scholes equation from financial engineering (option pricing)
- N = (100, 200, 200, 1)

Number of	Relative	Relative	Runtime
descent steps n	\mathcal{L}^1 error	\mathcal{L}^∞ error	in seconds
0	1.004285	1.009524	1
100000	0.371515	0.387978	437.9
250000	0.001220	0.010039	1092.6
500000	0.000949	0.005105	2183.8

Table: Error between $\mathcal{R}_{\mathsf{ReLU}}\Phi_n$ and $u(\mathcal{T},\cdot)$ on $[90,110]^{100}$

Possible Extensions

- learn solution map $(\varphi, \sigma, \mu, t, x) \mapsto u(t, x)$
- combined Dirichlet-Poisson problem

$$\begin{cases} \frac{1}{2} \operatorname{Trace}(\sigma(x) \sigma^{T}(x) \operatorname{Hess}_{x} u(x)) + \nabla_{x} u(x) \cdot \mu(x) = \vartheta(x), & x \in D \\ u(x) = \varphi(x), & x \in \partial D \end{cases}$$

 high dimensional functions that admit a probabilistic representation and that can be approximated by an iterative scheme

Towards an Analysis of the Optimization Error

Theorem (inverse stability on a subset - B., Elbrächter, Grohs)

There exists $\Omega \subseteq \mathcal{P}_{(d,N_1,1)}$ such that for every $\Phi \in \Omega$ and $g \in \mathcal{R}(\Omega)$ there exists a parametrization $\Psi \in \Omega$ with

$$\mathcal{R}\Psi=g$$
 and $\|\Psi-\Phi\|_{\infty}\leq 4|g-\mathcal{R}\Phi|_{\mathcal{W}^{1,\infty}}^{rac{1}{2}}.$

Corollary (parameter minimum \Rightarrow realization minimum)

Let $\Phi_* \in \Omega$ be a local minimum of

$$\min_{\Phi \in \Omega} \frac{1}{m} \sum_{i=1}^{m} \mathcal{E}_{z^{i}}(\mathcal{R}\Phi).$$

Then $\mathcal{R}\Phi_*$ is a local minimum (w.r.t. $|\cdot|_{W^{1,\infty}}$) of

$$\min_{g \in \mathcal{R}(\Omega)} \frac{1}{m} \sum_{i=1}^{m} \mathcal{E}_{z^i}(g)$$

Thank you for your Attention!

- [1] M. Anthony and P. Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge University Press, 2009.
- [2] C. Beck, S. Becker, P. Grohs, N. Jaafari, and A. Jentzen. "Solving stochastic differential equations and Kolmogorov equations by means of deep learning". In: arXiv:1806.00421 (2018).
- [3] J. Berner, D. Elbrächter, and P. Grohs. "How degenerate is the parametrization of neural networks with the ReLU activation function?". In: arXiv:1905.09803 (2019). Accepted at NeurIPS 2019.
- [4] J. Berner, P. Grohs, and A. Jentzen. "Analysis of the generalization error: Empirical risk minimization over deep artificial neural networks overcomes the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations". In: arXiv:1809.03062 (2018).
- [5] J. Berner, D. Elbrächter, P. Grohs, and A. Jentzen. "Towards a regularity theory for ReLU networks-chain rule and global error estimates". In: arXiv:1905.04992 (2019). Accepted for presentation at SampTA 2019.
- [6] F. Cucker and S. Smale. "On the mathematical foundations of learning". In: Bulletin of the American mathematical society 39.1 (2002), pp. 1–49.
- [7] P. Grohs, F. Hornung, A. Jentzen, and P. von Wurstemberger. "A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations". In: arXiv:1809.02362 (2018).
- [8] V. Mnih et al. "Human-level control through deep reinforcement learning". In: Nature 518.7540 (2015), p. 529.
- [9] P. Petersen, M. Raslan, and F. Voigtlaender. "Topological properties of the set of functions generated by neural networks of fixed size". In: arXiv:1806.08459 (2018).
- [10] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. "Unpaired image-to-image translation using cycle-consistent adversarial networks". In: Proceedings of the IEEE international conference on computer vision. 2017, pp. 2223–2232.