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Abstract

This thesis comprises a series of publications that contribute to the emerging field
of mathematical analysis of deep learning. The term deep learning refers to ma-
chine learning methods that use gradient-based optimization techniques to fit the
parameters of deep neural networks to given data. Over the past decade, such
approaches have catalyzed unprecedented advances across a wide range of applica-
tions. While a comprehensive mathematical explanation for their success remains
elusive, this work provides fundamental insights that improve the theoretical un-
derstanding of deep learning. To facilitate a rigorous analysis, we focus on learning
problems with known regularity properties, as frequently encountered in the con-
text of differential equations. Specifically, we analyze deep learning algorithms
for the numerical solution of a class of partial differential equations, known as
Kolmogorov equations, employing representations based on stochastic differential
equations. It is demonstrated that empirical risk minimization over deep neural
networks efficiently approximates the solutions of families of Kolmogorov equations,
with both the size of the neural networks and the number of samples scaling only
polynomially in the underlying dimension. Furthermore, we introduce variance-
reduced loss functions and identify settings in which local minima of corresponding
optimization problems are nearly optimal. On the other hand, we also address the
shortcomings of deep learning and establish fundamental constraints on learning
neural networks from samples. Extensive numerical experiments corroborate the
potential of deep learning to overcome the curse of dimensionality while reveal-
ing its inherent limitations. This comprehensive investigation contributes toward
principled and reliable applications of deep learning in the natural sciences.





Zusammenfassung

Diese Arbeit umfasst eine Reihe an Publikationen, welche einen Beitrag zum auf-
kommenden Gebiet der mathematischen Analyse des tiefen Lernens leisten. Der
Begriff „tiefes Lernen“ (engl. deep learning) bezeichnet Methoden des maschinellen
Lernens, bei denen gradientenbasierte Optimierungsverfahren eingesetzt werden,
um die Parameter von tiefen neuronalen Netzen an gegebene Daten anzupassen. In
den letzten zehn Jahren haben solche Ansätze in einer Vielzahl von Anwendungen
zu beispiellosen Fortschritten geführt. Während eine umfassende mathematische
Erklärung für diesen Erfolg weiterhin aussteht, liefert die vorliegende Arbeit grund-
legende Erkenntnisse, welche ein besseres theoretisches Verständnis des tiefen Ler-
nens ermöglichen. Um eine rigorose Analyse zu ermöglichen, konzentrieren wir uns
auf Lernprobleme mit bekannten Regularitätseigenschaften, wie sie oft im Kontext
von Differentialgleichungen vorkommen. Insbesondere analysieren wir Algorithmen
aus dem Bereich des tiefen Lernens für die numerische Lösung einer Klasse partieller
Differentialgleichungen, bekannt als Kolmogorov-Gleichungen, unter Verwendung
von Repräsentationen, welche auf stochastischen Differentialgleichungen basieren.
Es wird gezeigt, dass empirische Risikominimierung über tiefe neuronale Netze die
Lösungen von Familien von Kolmogorov-Gleichungen effizient approximiert, wobei
sowohl die Größe der neuronalen Netze als auch die Anzahl an Datenpunkten nur
polynomiell in der zugrunde liegenden Dimension skaliert. Darüber hinaus führen
wir varianzreduzierte Verlustfunktionen ein und identifizieren Bedingungen, unter
denen lokale Minima der entsprechenden Optimierungsprobleme nahezu optimal
sind. Andererseits gehen wir auch auf die Unzulänglichkeiten des tiefen Lernens ein
und stellen grundlegende Schranken für das Lernen neuronaler Netze aus Daten auf.
Ausführliche numerische Experimente bestätigen das Potenzial des tiefen Lernens,
den Fluch der Dimensionalität zu überwinden, wobei zugleich dessen inhärente
Grenzen deutlich werden. Diese umfassende Untersuchung trägt zu fundierten und
verlässlichen Anwendungen von tiefem Lernen in den Naturwissenschaften bei.
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1 Introduction

"In short, success in creating AI, could be the biggest event
in the history of our civilization. But it could also be the last,
unless we learn how to avoid the risks."

Stephen Hawking, 2016

In recent years, the field of artificial intelligence (AI) has experienced unprece-
dented advances in areas such as computer vision, speech, natural language pro-
cessing, and the natural sciences. Machine learning algorithms have been able to
solve complex tasks that were previously unattainable with conventional, explicitly
constructed algorithms. This progress is largely driven by the emergence of deep
learning, a machine learning technique based on deep neural networks.

Loosely inspired by the functioning of the human brain, neural networks are
models composed of interconnected artificial neurons, as shown in Figure 1.1. The
first computationally applicable artificial neurons were already developed decades
ago (McCulloch and Pitts, 1943; Rosenblatt, 1958). However, deep learning only
gained significant traction following a breakthrough performance in an annual
image classification challenge in 2012 (Krizhevsky, Sutskever, and Hinton, 2012).

The late rise of neural networks can be attributed to the development of specialized
architectures, i.e., arrangements of artificial neurons. A significant change among
architectures has been the transition from parallel to layered arrangements of
neurons, resulting in so-called deep architectures. The breakthrough was also
facilitated by the rapidly growing amount of available computational resources
and digitally stored data. Substantial engineering efforts coupled with advances in
high-performance computing on graphics processing units (GPUs) made it possible
to train deep neural networks on massive amounts of data using gradient-based
optimization techniques.

Despite their remarkable performance, deep learning algorithms, which are pre-
dominantly data-driven, remain largely opaque and lack theoretical guarantees.
While a considerable amount of mathematical research on neural networks had
been conducted before their empirical success, the paradigm shift and the aston-
ishing performance of deep learning have raised a number of new questions and
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Figure 1.1: Computational graph of an artificial neuron with Heaviside activation
function and parameters w1, . . . , w5, b ∈ R. This represents a model of a biological
neuron, which outputs an action potential, i.e., y = 1, at its axon if the weighted
sum

∑d
j=1 wjxj of the input signals (xj)

d
j=1 from dendritic spines surpasses a certain

threshold −b, see also Géron (2017).

challenges. This thesis aims to formulate these questions and provides answers and
insights for selected questions and applications.

Particular emphasis is placed on the application of deep learning to scientific tasks
with underlying physical models that can be mathematically formalized. Such
models are often governed by partial differential equations (PDEs), arguably the
most important modeling tool in the natural sciences. Despite a long history of
research in the area of PDEs, the numerical solution of many highly relevant prob-
lems remains challenging or even completely out of reach. Recently, however, deep
learning has also led to major breakthroughs in this area, opening up unimagined
possibilities for practitioners. The present work shows how neural networks can
be used to numerically solve certain classes of PDEs and demonstrates that the
resulting algorithms can overcome complexity barriers of classical methods.

In summary, this work aims to define and summarize the emerging field of mathe-
matical analysis of deep learning. It presents numerical algorithms based on deep
learning and contributes toward their theoretical understanding. The primary
focus is on applications in the context of PDEs, in particular so-called Kolmogorov
equations, highlighting the potential of deep learning in solving complex scientific
problems and ultimately advancing our understanding of the natural world.
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2 Preliminaries

We start by giving a slightly abstract definition of deep learning and refer to
Chapter I for further details. In a learning problem, one seeks a model which best
explains observations from an underlying, typically unknown, data distribution.
We assume that the data is represented by a Z-valued random variable Z and that
the set of admissible models is given by M. We measure the performance of a
model f ∈ M on a realization z ∈ Z using a loss function L : M×Z → [0,∞).
The corresponding learning problem1

min
f∈M

E[L(f, Z)] (2.1)

asks for a minimizer f ∗ ∈ M of the expected loss, the so-called risk,

E(f) := E[L(f, Z)], f ∈ M.

For instance, in a regression task with quadratic loss function and data Z := (X,Y )
taking values in Z := X × R, we have the loss function

Lquadr(f, Z) := (Y − f(X))2, f ∈ M, (2.2)

where we can choose M to be the space of measurable functions f : X → R. The
goal is to find a function f ∈ M that predicts the labels Y of given features X.
In the case where Y has finite variance, the tower property of the conditional
expectation ensures that

E[Lquadr(f, Z)] = E[(E[Y |X]− f(X))2] +E[(Y −E[Y |X])2]. (2.3)

This decomposition shows that the optimal solution f ∗ ∈ M to the regression task
satisfies almost surely that

f ∗(X) = E[Y |X]. (2.4)

However, most learning problems as defined in (2.1) turn out to be infeasible. In
particular, the data Z is generally unknown and one is only given realizations of
samples (Z(i))mi=1, typically assumed to be mutually independent and drawn from
the distribution of Z. Moreover, the set M might also be too large to be optimized

1We work on a filtered probability space satisfying the usual conditions and denote by E[X]
and V[X] the expectation and variance of a random variable X. For details on measurability and
regularity assumptions that guarantee well-defined learning problems, we refer to Chapter III.
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over. A common approach to finding an approximate solution to the learning
problem in (2.1) is to consider the empirical risk minimization problem

min
f∈H

1

m

m∑
i=1

L(f, Z(i)) (2.5)

over a suitable hypothesis set H ⊂ M. In this approach, one picks a model
f̂ ∈ H that minimizes the average loss on the given samples (Z(i))mi=1, the so-called
empirical risk

Ê(f) := 1

m

m∑
i=1

L(f, Z(i)), f ∈ M.

Then, we can also define the best approximation f ∗
H ∈ H in the hypothesis set H

as a minimizer of
min
f∈H

E[L(f, Z)].

In the context of deep learning, the hypothesis set is given by a parametric family

H := R(Θ) = {R(θ) : θ ∈ Θ} (2.6)

with a suitable parameter space Θ and realization map R : Θ → M. Assuming
that the mapping θ 7→ (Ê ◦ R)(θ) is differentiable, the empirical risk minimization
problem in (2.5) is typically tackled using variants of gradient descent. In their
most basic form, gradient descent schemes are given by the parameter update

θ(n+1) := θ(n) − λ∇(Ê ◦ R)(θ(n)), θ(0) ∈ Θ, (2.7)

where λ ∈ (0,∞) is some step size, also known as learning rate. In practice, one
usually considers stochastic gradient descent, where only a random subset of the
samples (Z(i))mi=1, a so-called mini-batch, is used in the empirical risk Ê for each
update in (2.7). For a sufficiently large number of steps N ∈ N, the model R(θ(N))
serves as a candidate for an approximate solution to the learning problem, as
illustrated in Figure 2.1.

In deep learning, the realization map R in (2.6) is generally defined as a composition
of simple functions R(`) : Θ → C(Ra`−1 ,Ra`), so-called layers, such that2

R(θ) = R(L)(θ) ◦ · · · ◦ R(1)(θ), θ ∈ Θ, (2.8)

2In view of (2.6), this definition implies that H ⊂ C(Ra0 ,RaL), implicitly assuming a suitable
set of admissible models M ⊃ H.
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f∗ f∗
H f̂ R(θ(N)) · · · R(θ(0))

H
M

Ê
E

Figure 2.1: Illustration of the risk E , the solution to the learning problem
f ∗ ∈ argminf∈M E(f), the hypothesis set H ⊂ M, the best approximation
f ∗
H ∈ argminf∈H E(f), the empirical risk Ê (for a given realization of samples),

the empirical risk minimizer f̂ ∈ argminf∈H Ê(f), and a sequence of models
(R(θ(n)))Nn=0 obtained by applying gradient descent to the mapping θ 7→ (Ê ◦R)(θ).

where a = (a`)
L
`=0 ∈ NL+1 is a given architecture with depth L ∈ N. Models of the

form R(θ), θ ∈ Θ, are then commonly referred to as neural networks3. Based on
analytic expressions of the derivatives of the simple functions in (2.8), the chain
rule allows for an efficient and accurate evaluation of the gradients ∇(Ê ◦ R)(θ(n))
needed in (2.7) on a computer by means of automatic differentiation, a specific
form of which is often called the backpropagation algorithm (Rumelhart, Hinton,
and Williams, 1986).

We mostly focus on classical, fully-connected feed-forward neural networks, where
the outputs of the simple functions R(`) are affine-linear mappings composed with
univariate functions which are applied componentwise. Specifically, we choose

Θ ⊂
L×̀
=1

(
Ra`×a`−1 × Ra`

)
,

3By common abuse of notation, we use the term neural network to denote functions of the
form R(θ), as defined in (2.8). However, it is important to note that typical realization maps
R are not injective. In order to talk about the parametrization θ ∈ Θ of a neural network R(θ),
one would need to define the neural network as a tuple (R, θ).
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AW (1),b(1) %(1) AW (2),b(2) %(2) AW (3),b(3) R(θ)(x)%(3)

R(1)(θ) R(2)(θ) R(3)(θ)

Figure 2.2: Computational graph of a fully connected feedforward neural network
R(θ) : R3 → R with architecture a = (3, 4, 6, 1), depth 3, and parameters θ =
((W (`), b(`)))3`=1. In accordance with Figure 1.1, we refer to W (`) and b(`) as the
weights and biases in the `-th layer. We call R(θ) a ReLU network if %(1)(x) =
%(2)(x) = max{x, 0} and %(3)(x) = x for x ∈ R.

and for every ` ∈ {1, . . . , L} we define

R(`) : Θ → C(Ra`−1 ,Ra`), θ = ((W (`), b(`)))L`=1 7→ %(`) ◦ AW (`),b(`) .

In the above, the functions

AW (`),b(`) : Ra`−1 → Ra` , x 7→ W (`)x+ b(`),

denote affine-linear mappings and, by common abuse of notation, the activation
functions %(`) ∈ C(R) are applied componentwise, see Figure 2.2. In this context,
the number of parameters of the architecture a = (a`)

L
`=0 is given by

dim(Θ) :=
L∑

`=1

a`a`−1 + a`

and a` denotes the width, i.e., the number of artificial neurons, in the `-th layer.
A frequently utilized activation function, which is also used for the majority of
results in this thesis, is the so-called Rectified Linear Unit (ReLU) given by

%(`)(x) = %R(x) := max{x, 0}, x ∈ R,
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%S(x) =
1

1+e−x

Figure 2.3: Two commonly used activation functions. In this thesis, we focus on the
ReLU activation function %R. For binary classification tasks, where the labels Y
take only two values, the sigmoid activation function %S can be used as activation
function %(L) in the last layer to interpret the output as the probability of a given
class in the range [0, 1].

as depicted in Figure 2.3. Depending on the desired output range, the last activation
function %(L) is often chosen differently. For instance, we will mostly use the identity,
i.e., %(L)(x) = x. We further use the abbreviation ReLU networks to denote classical
neural networks with ReLU activation functions in all layers except the last one.

Roughly speaking, the overarching question in the mathematical analysis of deep
learning can be formulated as follows:

How well does a neural network R(θ(N)) as defined in (2.8),
trained for N steps using a variant of gradient descent as in (2.7),

approximate the solution f ∗ of the learning problem in (2.1)?

Since this question cannot be answered in such generality, one often analyzes
learning problems with additional prior knowledge, such as those arising in the
context of PDEs. In this thesis, we repeatedly consider PDEs that admit stochastic
representations based on stochastic differential equations (SDEs), often referred
to as Kolmogorov equations. For simplicity, let us focus on linear, homogeneous
Kolmogorov (backward) equations defined by

(∂tu+ Fu)(x, t) = 0, u(x, T ) = ϕ(x), (x, t) ∈ Rd × [0, T ], (2.9)

with spatial dimension d ∈ N, terminal time T ∈ (0,∞), and differential operator
F given by

Fu :=
1

2
Trace

(
σσ> Hessx(u)

)
+ µ · ∇xu.

In the above,

µ ∈ C(Rd × [0, T ],Rd) and σ ∈ C(Rd × [0, T ],Rd×d) (2.10)
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are suitable drift and diffusion coefficient functions, ϕ ∈ C(Rd) is a given terminal
condition, and we are interested in finding the corresponding solution4 u ∈ C2,1(Rd×
[0, T ]) of the PDE in (2.9).

The class of Kolmogorov equations covers a broad spectrum of PDEs, for which
accurate and reliable solvers are of great importance to practitioners, see also Chap-
ter V for an overview. For instance, such PDEs frequently appear in physics for
the modeling of diffusion processes. Moreover, the class includes the Black-Scholes
equation and extensions thereof, used for pricing financial derivative instruments.
Via the Hopf-Cole transform, u 7→ − log(u), Kolmogorov equations can also be
connected to Hamilton-Jacobi-Bellman equations, prominent in the fields of rein-
forcement learning and optimal control.

Kolmogorov equations naturally lead to learning problems, as defined in (2.1). To
see this, let ξ be a random variable with values on a compact subset D ⊂ Rd and
define Sξ = (Sξ

t )t∈[0,T ] to be a solution to the SDE

dSξ
t = µ(Sξ

t , t) dt+ σ(Sξ
t , t) dBt, Sξ

0 = ξ, (2.11)

with B denoting a standard d-dimensional Brownian motion. Under suitable
conditions, see Chapter III, Itô’s formula shows that almost surely it holds that

ϕ(Sξ
T ) = u(Sξ

T , T )

= u(Sξ
0 , 0) +

∫ T

0

(∂tu+ Fu)(Sξ
t , t) dt+

∫ T

0

(
σ>∇xu

)
(Sξ

t , t) · dBt

= u(ξ, 0) +

∫ T

0

(
σ>∇xu

)
(Sξ

t , t) · dBt,

(2.12)

where we used the fact that u solves the Kolmogorov equation in (2.9). Noting that,
under mild regularity conditions, the stochastic integral in (2.12) has vanishing
expectation conditioned on ξ, we obtain a version of the Feynman-Kac formula,
i.e., it almost surely holds that

u(ξ, 0) = E
[
ϕ(Sξ

T )|ξ]. (2.13)

In view of (2.4), this shows that the solution to the Kolmogorov equation in (2.9)
evaluated at time t = 0, i.e.,

D 3 x 7→ u(x, 0), (2.14)
4For ease of presentation, we assume that there exists a unique strong solution u ∈ C2,1(Rd ×

[0, T ]) to the Kolmogorov equation in (2.9), which is twice continuously differentiable in the
spatial coordinate x ∈ Rd and once continuously differentiable in the time coordinate t ∈ [0, T ].
For conditions guaranteeing the existence and uniqueness of (viscosity) solutions u, we refer to
the work by Hairer, Hutzenthaler, and Jentzen (2015).
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Figure 2.4: Realization of the solution Sξ to the SDE in (2.11) and the associated
data (ξ, ϕ(Sξ

T )) of the learning problem for the Kolmogorov equation in (2.9), where
σ(x, t) := σ̂x, µ(x, t) := 1

2
σ̂2x, and ϕ(x) :=

∑n
i=0 cix

i for (x, t) ∈ R × [0, T ] with
σ̂ = 1

4
, n = 2, c0 = c1 = 0, c2 = 1

2
, and T = 1. Using Itô’s formula and the

Laplace transform of a Gaussian random variable, one can show that Sξ
T = ξeσ̂BT

and f ∗(x) = u(x, 0) = E
[
ϕ(Sξ

T )|ξ = x] =
∑n

i=0 cie
T
2
(iσ̂)2xi, see Berner (2018).

is the unique5 solution f ∗ ∈ M := C(D) to the learning problem with data
Z = (ξ, ϕ(Sξ

T )) and quadratic loss function Lquadr as in (2.2), see also Figure 2.4.
In Section 3.4, we will extend this framework to learn the whole time evolution of
u, i.e., the mapping D × [0, T ] 3 (x, t) 7→ u(x, t).

For the above learning problem, we can easily generate (approximate) samples
(Z(i))mi=1 of the data Z = (ξ, ϕ(Sξ

T )). Specifically, we can choose a suitable dis-
tribution for ξ, for instance, a uniform distribution on D, and simulate the SDE
in (2.11) relying on standard numerical solvers. For instance, one can discretize
the SDE solution Ŝξ

tk
≈ Sξ

tk
on a grid 0 = t0 < · · · < tK = T with K ∈ N steps

using the Euler-Maruyama approximation (Ŝξ
tk
)Kk=0 given by

Ŝξ
tk+1

= Ŝξ
tk
+ µ(Ŝξ

tk
, tk)(tk+1 − tk) + σ(Ŝξ

tk
, tk) (Btk+1

−Btk)︸ ︷︷ ︸
∼ N (0, (tk+1 − tk)Id)

, Ŝξ
t0 = ξ, (2.15)

see Chapter IV and Kloeden and Platen (1992) for convergence results and further
numerical schemes. Given samples of the data Z, one can tackle the correspond-
ing empirical risk minimization problem in (2.5) over a hypothesis set of neural
networks H := R(Θ) with input dimension a0 = d and output dimension aL = 1
using variants of stochastic gradient descent. Given that we can control the errors

R(θ(N)) ≈ f̂ ≈ f ∗
H ≈ f ∗ = u(·, 0), (2.16)

5In general, the solution f∗ is unique up to sets of measure zero w.r.t. the distribution of ξ. In
the typical case where ξ follows a uniform distribution, the solution to the Kolmogorov equation,
D 3 x 7→ u(x, 0), is the unique continuous solution.
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this results in an approximate solution R(θ(N)) to the Kolmogorov equation, see
also Figure 2.1.

We emphasize that such learning problems represent a rare scenario for real-world
applications of deep learning. First, we have control over choosing the features
ξ and can generate independent and identically distributed (i.i.d.) samples at
will. Furthermore, we can leverage the underlying SDEs and PDEs to obtain a
priori estimates on the regularity of the data Z = (ξ, ϕ(Sξ

T )) and the solution to
the learning problem u(·, 0). Such assumptions will be the basis for a rigorous
mathematical analysis of the errors occurring in (2.16). In the following Chapter,
we will summarize the publications included in this thesis and outline how they
contribute to such an analysis.

24



3 Synopses of the Publications

This chapter presents the main concepts and findings of the publications that are
contained in this thesis, see Table 3.1 for an overview.

Title Reference

Ch. I
Sec. 3.1

The Modern Mathematics of Deep Learning Berner, Grohs, Kutyniok,
and Petersen (2022).
CUP.

Ch. II
Sec. 3.2

Towards a regularity theory for ReLU networks–
chain rule and global error estimates

Berner, Elbrächter, Grohs,
and Jentzen (2019).
SampTA.

Ch. III
Sec. 3.3

Analysis of the Generalization Error: Empirical
Risk Minimization over Deep Artificial Neural Net-
works Overcomes the Curse of Dimensionality in the
Numerical Approximation of Black–Scholes Partial
Differential Equations

Berner, Grohs, and
Jentzen (2020).
SIMODS.

Ch. IV
Sec. 3.4

Numerically Solving Parametric Families of High-
Dimensional Kolmogorov Partial Differential Equa-
tions via Deep Learning

Berner, Dablander, and
Grohs (2020).
NeurIPS.

Ch. V
Sec. 3.5

Robust SDE-Based Variational Formulations for
Solving Linear PDEs via Deep Learning

Richter and Berner (2022).
ICML.

Ch. VI
Sec. 3.6

How degenerate is the parametrization of neural net-
works with the ReLU activation function?

Berner, Elbrächter, and
Grohs (2019).
NeurIPS.

Ch. VII
Sec. 3.7

Learning ReLU networks to high uniform accuracy
is intractable

Berner, Grohs, and
Voigtlaender (2023).
ICLR.

Table 3.1: Overview of the publications included in this thesis.

In Chapter 4, we will discuss the results and highlight potential extensions. To
give a short outline, let us first state the research questions each of the publications
attempts to answer:
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I. The Modern Mathematics of Deep Learning

What are the open questions in the field of mathematical
analysis of deep learning, and which results already exist?

II. Towards a Regularity Theory for ReLU Networks – Chain Rule
and Global Error Estimates

What can be said about the approximation capabilities of deep
neural networks, in particular with respect to Sobolev norms?

III. Analysis of the Generalization Error: Empirical Risk Minimization
over Deep Artificial Neural Networks Overcomes the Curse of
Dimensionality in the Numerical Approximation of Black–Scholes
Partial Differential Equations

Given that the solution to the learning problem can be
efficiently approximated by deep neural networks, can it

also be learned by means of empirical risk minimization?

IV. Numerically Solving Parametric Families of High-Dimensional Kol-
mogorov Partial Differential Equations via Deep Learning

Can neural networks efficiently learn the solutions
of parametric families of Kolmogorov equations?

V. Robust SDE-Based Variational Formulations for Solving Linear
PDEs via Deep Learning

Can we reduce the variance of the gradients, which
are used in gradient descent schemes for solving the
corresponding empirical risk minimization problem?

VI. How Degenerate is the Parametrization of Neural Networks with
the ReLU Activation Function?

How suited is the empirical risk minimization problem
to the application of gradient descent based on prior

knowledge about the regularity of the learning problem?

VII. Learning ReLU Networks to High Uniform Accuracy is Intractable

Do there exist fundamental lower bounds on the
learnability of neural networks from samples?
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3.1 The Modern Mathematics of Deep Learning

Over the past few decades, a substantial amount of research has been conducted
to mathematically analyze machine learning methods and neural networks in par-
ticular. In this survey, we first summarize classical results in the field of learning
theory. In particular, this includes the approximation and interpolation capabilities
of so-called shallow neural networks with depth L = 2, the framework of probably
approximately correct (PAC) learning based on VC-dimensions of hypothesis sets,
and the convergence of variants of stochastic gradient descent for convex objectives.
However, despite the plethora of results, recent applications of deep learning still
pose a number of open questions. We further identify these newly emerging ques-
tions and define the field of mathematical analysis of deep learning. In addition, we
give an overview of modern approaches, yielding partial answers to these questions.
The questions concern the following topics:

1. Generalization of overparametrized neural networks: Successful ap-
plications of deep learning often use overparametrized neural networks R(θ),
θ ∈ Θ, where the number of parameters dim(Θ) is significantly larger than
the number m of given training samples (Z(i))mi=1. Classical learning the-
ory suggests that such expressive models R(θ) would overfit, i.e., depict
random fluctuation of the samples, and not generalize well, meaning that
their risk E(R(θ)) is significantly larger than their empirical risk Ê(R(θ)).
Specifically, corresponding hypothesis sets R(Θ) typically contain models
that can interpolate the samples, and their VC-dimensions, which scale with
the number of parameters, yield vacuous bounds on the generalization error.
We summarize modern attempts to extend and reconcile classical learning
theory for overparametrized models. For instance, we describe the double
descent phenomenon suggesting that the risk of models can also decrease
when their expressiveness surpasses the interpolation threshold. Moreover,
we present complexity measures for neural network hypothesis sets based on
norms of the parameters rather than their number. We also show that, under
suitable assumptions, neural networks behave like linear models operating
on nonlinear features (given by the so-called neural tangent kernel) in the
infinite-width limit a1, . . . , aL−1 → ∞. Finally, we investigate the depen-
dence of the generalization performance on the optimization scheme and, in
particular, the implicit bias of gradient descent.

2. Success of gradient descent: In typical applications, the empirical risk
minimization problem minθ∈Θ(Ê ◦ R) is non-convex (and non-smooth for ac-
tivation functions such as the ReLU). Thus, one would expect that (stochas-
tic) gradient descent gets stuck in local minima and does not converge
to parameters θ(N) which approximately minimize the empirical risk, i.e.,
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Ê(R(θ(N))) ≈ Ê(f̂). However, we present results showing that the loss land-
scape, i.e., the graph of θ 7→ (Ê ◦ R)(θ), can be well-behaved for the use of
gradient descent. For instance, we describe scenarios where local minima
are almost optimal, see also Section 3.6, or where the empirical risk is only
slightly increasing on a suitable path from a local to a global minimizer. We
also show how the neural tangent kernel can be used to prove convergence
results for overparametrized neural networks.

3. Effects of different architectures: Classical results primarily investigated
the expressiveness of shallow feed-forward neural networks. Under mild
assumptions on the activation function, the universal approximation theorem
guarantees that depth L = 2 suffices to approximate any continuous function
arbitrarily well on compact sets. However, commonly used architectures in
practice are typically very deep. As a theoretical explanation, we present
results showing that the efficient approximation of certain function classes,
such as radial functions or smooth functions, indeed requires sufficiently deep
architectures. Moreover, we list mathematical properties of commonly used
types of neural networks, such as convolutional, residual, and recurrent neural
networks, U-Nets, as well as batch normalization layers. The connections of
neural networks to other iterative or hierarchical methods (e.g., the scattering
transform or methods in sparse coding) further reveal potential invariances
and sparsity in the (intermediate) outputs of neural networks.

4. Applicability to high-dimensional problems: The complexity of grid-
based methods inevitably scales exponentially in the underlying dimension,
a phenomenon often referred to as the curse of dimensionality. We present
several settings where neural networks are able to overcome the curse of
dimensionality, possibly explaining successful applications of deep learning
to very high-dimensional problems in practice. These explanations build upon
assumptions on the structure of the learning problem, such as underlying
differential equations, stochastic representations, or the manifold hypothesis,
which assumes that the features X of a regression task have a high likelihood
of lying close to a low-dimensional manifold. The compositionality of neural
networks then allows us to emulate and combine classical methods, such as
Monte-Carlo methods and local Taylor approximations on manifolds, see also
Sections 3.2 and 3.3. Finally, we mention deep learning methods for solving
high-dimensional problems in the natural sciences, e.g., in the context of
inverse problems and PDEs, see also Sections 3.4 and 3.5.

The paper presents selected approaches in more detail to provide the reader with
fundamental ideas and intuition. As mentioned above, we will also shed light on
these questions in the following sections.
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3.2 Towards a Regularity Theory for ReLU Networks –
Chain Rule and Global Error Estimates

This paper deals with the approximation capabilities of ReLU networks, i.e., how
the architecture a = (a`)

L
`=0 needs to be chosen to ensure that

inf
θ∈Θ

‖R(θ)− f ∗‖ ≤ ε

for given ε ∈ (0,∞) and norm ‖ · ‖. While the solution to the learning problem
f ∗ is typically unknown, we can utilize regularity properties of f ∗ and analyze the
worst-case error over a corresponding function class. For instance, one might know
a priori that f ∗ is contained in a ball in the Sobolev space Wk,p, which consists of
functions having weak derivatives up to order k ∈ N belonging to the Lebesgue
space Lp with p ∈ [1,∞]. Such estimates can, for instance, also be established for
(weak) solutions of Kolmogorov equations (Evans, 2010, Section 7.1).

Generally speaking, neural networks exhibit optimal approximation capabilities for
a variety of function classes (Elbrächter et al., 2021). The expressivity of neural
networks is largely induced by the fact that compositions and linear combinations of
neural networks can again be represented as a neural network. In contrast, classical,
dictionary-based approximation methods only employ linear combinations of simple
basis functions.

The compositionality of neural networks has, for instance, been used in a series of
approximation results for ReLU networks originating from a construction of Yarot-
sky (2017). The main idea is to combine very simple functions to gradually build
up approximations of complex functions. We start with the series representation

xy =
∞∑
n=1

4−n
(
h◦n
2 (x) + h◦n

2 (y)− h◦n
2 (x+ y)

)
, x, y ∈ [0, 1], (3.1)

where h◦n
δ denotes the n-fold composition of the hat function

hδ : R → R, hδ(x) := 2%R(x)− 4%R

(
x− δ

2

)
, δ ∈ (0,∞), (3.2)

depicted in Figure 3.1. From (3.2) it is obvious that hδ and, by compositionality, h◦n
δ

can be represented as ReLU networks. Together with the exponential decay of the
series in (3.1), this implies that the multiplication operation, i.e., (x, y) 7→ xy, can
be approximated on bounded domains by ReLU networks with depth and number
of parameters scaling only logarithmically in the reciprocal accuracy. Consequently,
by using linear combinations and compositions, the same holds for polynomials,
enabling efficient approximation of various types of regular functions.
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Figure 3.1: Composition of the hat function hδ in (3.2) with itself.

To establish approximation results for the composition of functions f and g in
such constructions, estimates on ‖R(θg)− g‖ and ‖R(θf )− f‖ are used to obtain
a bound on

‖R(θg) ◦ R(θf )− g ◦ f‖. (3.3)

While this has been successfully carried out for the L∞-norm by Yarotsky (2017),
we consider the stronger Sobolev norm ‖·‖ = ‖·‖W1,∞ , measuring the simultaneous
uniform approximation of a function and its derivative. In particular, this requires
estimating the derivative of R(θg) ◦ R(θf ) in (3.3). When using classical neural
networks with locally Lipschitz continuous activation functions (%(`))L`=1, the com-
position R(θg)◦R(θf ) is almost everywhere differentiable. However, the chain rule
can, in general, not be applied if %(`) exhibits points of non-differentiability, such
as the ReLU activation function. It might happen that the inner function maps
sets of nonzero measure to points where the outer function is non-differentiable.

We circumvent this issue by defining a derivative of ReLU networks that coincides
almost everywhere with the classical derivative and obeys a version of the chain
rule. Moreover, we explain how this notion of derivative can lead to approximation
results for smooth functions, e.g., with bounded Wk,p-norm for k ≥ 2 and p ∈ [1,∞],
using a partition of unity and localized (averaged) Taylor polynomials, see also the
concurrent work by Gühring, Kutyniok, and Petersen (2020).

Finally, we demonstrate how to construct neural networks R(θf ) globally approx-
imating functions f ∈ C2(Rd) with at most polynomially growing derivatives in
the sense that

|R(θf )(x)− f(x)| ≤ ε(1 + ‖x‖ν2), x ∈ Rd, (3.4)
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Figure 3.2: An approximation of the characteristic function 1[−D,D]2 by the ReLU
network in (3.6) with d = 2.

and
‖∇R(θf )(x)−∇f(x)‖2 . εη(1 + ‖x‖ν2), x ∈ Rd, (3.5)

for some ν, η ∈ (0,∞). The main idea is to adapt a neural network, which
approximates f on a sufficiently large domain, to be zero outside that domain. This
can be achieved using an approximative multiplication with the ReLU network

x 7→ %R

(
1

δ

d∑
i=1

(
%R(xi +D + δ)− %R(xi +D)− %R(xi −D)

)
− (d− 1)

)
, (3.6)

which approximates the characteristic function 1[−D,D]d of the hypercube [−D,D]d

with D ∈ (0,∞) for sufficiently small δ ∈ (0,∞), as depicted in Figure 3.2. The
next sections show that estimates of the form (3.4) and (3.5) are, for instance,
demanded in the context of Kolmogorov equations.

3.3 Analysis of the Generalization Error: Empirical Risk
Minimization over Deep Artificial Neural Networks Over-
comes the Curse of Dimensionality in the Numerical Ap-
proximation of Black–Scholes Partial Differential Equations

The previous paper focused on estimating how well the solution to a learning
problem f ∗ can be approximated by a hypothesis set of neural networks H based
on regularity assumptions on f ∗. This paper goes one step further and studies the
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error between the empirical risk minimizer f̂ over H and f ∗. For a regression task
as in (2.2), we can leverage the decomposition in (2.3) to show that1

‖f̂ − f ∗‖L2(PX) = E(f̂)− E(f ∗
H)︸ ︷︷ ︸

generalization error

+ ‖f ∗
H − f ∗‖L2(PX)︸ ︷︷ ︸

approximation error

, (3.7)

see also Figure 2.1. For f ∗ that is sufficiently smooth, the approximation error
could be tackled with tools outlined in the last section, e.g., using local Taylor
approximation. However, note that such approximation results naturally underlie
the curse of dimensionality. This paper focuses on the specific application of
learning solutions f ∗ = u(·, 0) to Kolmogorov equations as defined in (2.14). In
this case, the features X = ξ are typically chosen to follow a uniform distribution
such that the L2(PX)-norms in (3.7) correspond to standard (scaled) L2(D)-norms.
Leveraging the structure of the underlying PDE and the Feynman-Kac formula
in (2.13), we refine the estimates of Grohs, Hornung, et al. (2020) to establish
approximation results that only scale polynomially in the spatial dimension d of
the corresponding Kolmogorov equation.

Specifically, for time-homogeneous, affine-linear coefficient functions µ and σ
in (2.10), one can prove the existence of random variables W and b, such that
for every x ∈ Rd it holds almost surely that

Sx
T = AW,b(x) = Wx+ b, (3.8)

where Sx = (Sx
t )t∈[0,T ] denotes the solution to the SDE in (2.11) with initial

condition x ∈ Rd. We further assume that the terminal condition ϕ is bounded
and can be approximated by a neural network R(θϕ) in the sense of (3.4). Now,
let ((W (i), b(i)))ni=1 be independent samples drawn from the distribution of (W, b)
and define the (random) function

f :=
1

n

n∑
i=1

R(θϕ) ◦ AW (i),b(i) . (3.9)

Then, we can use the Feynman-Kac formula in (2.13), combined with the repre-
sentation in (3.8) and uniform Monte Carlo estimates, to establish the bound

E
[
‖f − u(·, 0)‖L2

]
≤ ε
∥∥1 +E[‖AW,b‖ν2

]∥∥
L2 +

1√
n

∥∥V[R(θϕ) ◦ AW,b

] 1
2
∥∥
L2 . (3.10)

The monotonicity of the expectation implies that there is a realization of f in (3.9)
such that the bound in (3.10) still holds. As any realization of f can be represented

1For a measurable function f : X → R, we define ‖f‖pLp(PX)
:=
∫
|f |p dPX , p ∈ [1,∞), and

‖f‖L∞(PX) := inf{c ∈ [0,∞) : |f(X)| ≤ c almost surely}, where PX denotes the distribution of
the features X. In the following, we further abbreviate ‖ · ‖Lp := ‖ · ‖Lp(PX).
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as a neural network, approximation of the terminal condition ϕ without the curse
of dimensionality carries over to the solution u(·, 0) of the Kolmogorov equation.

Based on such bounds on the approximation error in (3.7), the paper develops a
general framework to establish bounds on the generalization error, which are also
not succumbed to the curse of dimensionality. Assuming that the functions in H
are uniformly bounded, we can show that

E(f̂)− E(f ∗
H) ≤ 2r

(
Lip(E) + Lip(Ê )

)
+ 2

K
max
k=1

|E(fk)− Ê(fk)|, (3.11)

where (fk)
K
k=1 is a covering of H with radius r ∈ (0,∞) and Lip denotes the

Lipschitz constant w.r.t. the ‖ · ‖L∞-norm. Note that, by definition, it holds that

E
[
Ê(fk)

]
= E(fk), k = 1, . . . , K.

The last term in (3.11) can thus be bounded using a union bound and concentration
inequalities. The size K ∈ N of a covering of neural network realizations H = R(Θ)
with compact parameter space Θ is obtained from the size of a covering of Θ and
estimates of the Lipschitz constant of the realization map R : Θ → H. The latter
can be estimated by a layer-wise induction argument. In summary, we show that,
with high probability over draws of data (Z(i))mi=1, the number of samples m, needed
to guarantee a given generalization error in (3.7), i.e.,

E(f̂)− E(f ∗
H) ≤ ε,

scales polynomially in the underlying dimension d and the reciprocal accuracy ε−1,
given that the size of the hypothesis set H required to achieve an approximation
error of ε in (3.7) also scales polynomially in d and ε−1.

Thus, we conclude that empirical risk minimization over deep neural networks can
overcome the curse of dimensionality for the numerical solution of Kolmogorov
equations with affine-linear coefficient functions whenever the terminal condition
ϕ can be efficiently approximated. This assumption is, for instance, satisfied for
Kolmogorov equations arising in option pricing problems from financial engineering,
where typical terminal conditions ϕ can be exactly represented by ReLU networks.

For time-homogeneous, affine-linear coefficient functions µ and σ, every realiza-
tion of Sx

T can be represented by an affine-linear function, see (3.8). However,
we can also obtain approximations to realizations of Sx

T by emulating SDE dis-
cretization schemes, such as the Euler-Maruyama method in (2.15), with deep
neural networks. Assuming sufficient regularity, this allows obtaining analogous
approximation and generalization results for more general Kolmogorov equations if
additionally µ and σ can be efficiently approximated in the sense of (3.4) and (3.5),
see also Jentzen, Salimova, and Welti (2021) and Reisinger and Zhang (2020) for
similar constructions.
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3.4 Numerically Solving Parametric Families of High-Di-
mensional Kolmogorov Partial Differential Equations via
Deep Learning

The results of the previous paper are supported by numerical experiments con-
ducted by Beck, Becker, et al. (2021), which show that the solution to the Kol-
mogorov equation in (2.9) at time t = 0, i.e.,

D 3 x 7→ u(x, 0),

can indeed be efficiently learned in high dimensions. We generalize this work by
investigating the numerical solution of parametric families of Kolmogorov equations
on the whole space-time domain D × [0, T ]. Specifically, we are given terminal
conditions (ϕγ)γ∈Λ and coefficient functions (µγ)γ∈Λ and (σγ)γ∈Λ, parametrized by
some parameter set Λ ⊂ Rp with p ∈ N, and we want to numerically compute
the solutions (uγ)γ∈Λ of the corresponding parametrized family of Kolmogorov
equations in (2.9). In other words, we want to learn the parametric solution map

ū : Rd × [0, T ]× Λ → R, (x, t, γ) 7→ uγ(x, t), (3.12)

which we assume to be continuous. To this end, let ξ, τ , and Γ be random
variables distributed on compact space, time, and parameter domains D, [0, T ],
and Λ. Similar to (2.12), Itô’s formula shows that, under suitable conditions, it
almost surely holds that

ϕΓ(S
X
T ) = uΓ(ξ, τ) +

∫ T

τ

(
σ>
Γ∇xuΓ

)
(SX

t , t) · dBt, (3.13)

where X := (ξ, τ,Γ) and SX = (Sξ,τ,Γ
t )t∈[0,T ] satisfies the SDE

dSX
t = µΓ(S

X
t , t) dt+ σΓ(S

X
t , t) dBt, SX

τ = ξ. (3.14)

Using the vanishing expectation of the stochastic integral in (3.13) conditioned on
X, the corresponding version of the Feynman-Kac formula in (2.13) states that

E[ϕΓ(S
X
T )|X] = uΓ(ξ, τ)

almost surely. In other words, the optimal solution f ∗ ∈ M := C(D × [0, T ]× Λ)
of the learning problem with data

Z = (X,Y ) := ((ξ, τ,Γ), ϕΓ(S
ξ,τ,Γ
T )) (3.15)

and quadratic loss function Lquadr is given by the parametric solution map

D × [0, T ]× Λ 3 (x, t, γ) 7→ ū(x, t, γ).
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Figure 3.3: Average empirical risk and relative L1-error (and corresponding stan-
dard deviations over four random seeds in light gray) w.r.t. the number of gradient
steps n when solving a parametric heat equation using the algorithm developed in
Section 3.4 (in black). We follow the settings described in Chapter IV with dimen-
sion d = 5, batch-size 8192, and N = 30000 steps, resulting in m = 8192N samples.
In particular, we choose a parabolic terminal condition ϕγ(x) = ‖x‖22 and coefficient
functions µγ(x, t) = 0 and σγ(x, t) = γ, such that the reference solution is given by
f ∗(x, t, γ) = uγ(x, t) = ‖x‖22 + (T − t) Trace(γγ>) for (x, t, γ) ∈ Rd × [0, T ]×Rd×d.
The loss function Lrobust (in gray) will be presented in (3.22) in the next section.

One can now simulate independent samples ((X(i), Y (i)))mi=1 distributed according
to (X,Y ) in (3.15) and minimize the corresponding empirical risk

Ê(f) = 1

m

m∑
i=1

Lquadr(f, (X
(i), Y (i))) =

1

m

m∑
i=1

(Y (i) − f(X(i)))2, f ∈ H, (3.16)

over a hypothesis set of neural networks H = R(Θ) with input dimension a0 =
d+p+1 and output dimension aL = 1 using variants of stochastic gradient descent.

Specifically, we propose a neural network architecture inspired by Multilevel Monte
Carlo methods (Berner, 2018; Giles, 2008), which significantly improves the numeri-
cal performance. In Figure 3.3, we present exemplary results for an implementation
of this method. Our extensive experiments in Chapter IV indicate that such ap-
proaches are capable of numerically solving parametric families of Kolmogorov
equations with only polynomial dependence on the input dimension. For selected
examples, this is supported by theoretical bounds on the approximation and gen-
eralization errors based on the techniques obtained in the previous sections.

Using a trained neural network R(θ(N)), satisfying that

R(θ(N)) ≈ ū, (3.17)
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one can easily compute partial derivatives of the form ∂γR(θ(N)) by means of
automatic differentiation. Assuming that the approximation in (3.17) also holds
for the derivatives2, this allows analyzing the sensitivity of the solution uγ w.r.t.
the parameter γ or fitting the parameter γ to a given data set using variants of
gradient descent.

3.5 Robust SDE-Based Variational Formulations for Solv-
ing Linear PDEs via Deep Learning

This work aims to improve the method for learning solutions to (parametric families
of) Kolmogorov equations presented in the previous section. More precisely, we
propose variance-reduced versions of the loss function Lquadr used in the empirical
risk Ê in (3.16). To this end, we define the stochastic integral

If :=

∫ T

τ

(
σ>
Γ (S

X
t , t)∇xf(S

X
t , t,Γ)

)
· dBt (3.18)

for suitable f ∈ M. For instance, we can choose M to be the space of continuous
functions on Rd × [0, T ] × Λ which are continuously differentiable in the spatial
coordinate. Recalling Itô’s formula in (3.13), it almost surely holds that

Y − ū(X) = ϕΓ(S
X
T )− uΓ(ξ, τ) = Iū. (3.19)

Under suitable regularity assumptions, this establishes that for the optimal solution,
i.e., R(θ∗) = ū, it holds that

V

[
(Ê ◦ R)(θ∗)

]
=

1

m
V
[
(Y −R(θ∗)(X))2

]
=

1

m
V
[
I2
R(θ∗)

]
(3.20)

and
V

[
∇(Ê ◦ R)(θ∗)

]
=

4

m
V
[
IR(θ∗)∇θR(θ∗)(X)

]
. (3.21)

While the variances of the empirical risk and its gradient in (3.20) and (3.21) can
be reduced by choosing a larger number of samples m, we observe that they are, in
general, not vanishing at the optimum ū, see also Figure 3.4. Variants of gradient
descent as in (2.7) rely on the gradient ∇(Ê ◦R) in (3.21) and might therefore not
stick to the optimal parameters θ∗.

To counteract this issue, we propose to replace the quadratic loss function Lquadr

in (3.16) with the loss function

Lrobust(f, Z) := (Y − f(X)− If )
2, f ∈ M, (3.22)

2Such approximations can be proven to exist using the techniques described in Section 3.2. As
an easy example, we note that ReLU networks with O(d4 log(d/ε) parameters can approximate
the solution of the problem in Figure 3.3 up to precision ε in the W1,∞(D × [0, T ]× Λ)-norm.
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Figure 3.4: The variance of the empirical risk and the maximum variance of its
gradient for the experiment in Figure 3.3. As predicted by our theory in Section 3.5,
the variances are vanishing when converging to the minimum if one uses the loss
function Lrobust. To simulate the stochastic integral occurring in Lrobust, we use the
Euler-Maruyama method, see (2.15), with number of steps gradually increasing
up to K = 150 at the last gradient step N = 30000. Compared to the quadratic
loss function Lquadr, this increases the average time per gradient step from 0.02s
to 1.02s. However, Figure 3.3 and Figure 3.7 below show that the loss function
Lrobust can also lead to significantly improved accuracies.

where the stochastic integral If can be thought of as a control variate. Since the
definition of If in (3.18) depends on the same Brownian motion B as the SDE
in (3.14), we define our data as

Z := ((ξ, τ,Γ), B)

such that both Y = ϕΓ(S
ξ,τ,Γ
T ) and If in (3.22) can be computed3 from Z. Us-

ing (3.19), we see that the corresponding learning problem can be rewritten as

E[Lrobust(f, Z)] = E
[
(ū(X)− f(X))2

]
+E

[
I2
ū−f

]
, (3.23)

which can be compared to the decomposition of E[Lquadr(f, Z)] in (2.3). The
representation in (3.23) shows that the solution f ∗ to the learning problem with loss
function Lrobust is still given by the parametric solution map ū of the Kolmogorov
equation in (3.12). In addition, we note that the minimal risk for the loss function
Lrobust equals zero, as opposed to V [Iū] for the quadratic loss function Lquadr,
see (2.3) and (3.23). This can also be observed in Figure 3.3 and the experiments
in Chapter V. More importantly, the identity in (3.19) implies that the variances

3To prove the existence of a mapping from the Brownian motion B to a corresponding SDE
solution, we refer to Le Gall (2016, Theorem 8.5). Note that we could have used the same
definition of the data Z also for the quadratic loss function in the previous sections.
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of the empirical risk Ê , corresponding to the new loss function Lrobust, and its
gradient vanish at the optimal solution R(θ∗) = ū, i.e.,

V

[
(Ê ◦ R)(θ∗)

]
= V

[
∇(Ê ◦ R)(θ∗)

]
= 0. (3.24)

We further show that the variances in (3.24) are already reduced if

∇xR(θ(N)) ≈ ∇xū

in the sense of (3.5). This is supported by extensive numerical experiments in
Chapter V, see also Figure 3.4 for an illustration. While the reduced variance
significantly improves the accuracies in our numerical experiments, the stochastic
integral If in the loss function Lrobust needs to be discretized and requires pointwise
evaluations of the gradient ∇xf . To find a trade-off between accuracy and com-
plexity, the paper presents other variants of the loss function Lrobust, for instance,
using a separate neural network to parametrize the gradient ∇xf . Overall, we can
considerably improve the sample efficiency and accuracy of the method developed
in Section 3.4, even for a fixed time or memory budget.

3.6 How Degenerate is the Parametrization of Neural Net-
works with the ReLU Activation Function?

The previous sections presented deep learning-based solvers for Kolmogorov equa-
tions and ways of obtaining bounds on the approximation and generalization errors.
However, we implicitly assumed that we could find an empirical risk minimizer

f̂ ∈ argmin
f∈H

Ê(f),

see also the error decomposition in (3.7). It remains unclear why gradient descent
should yield parameters θ(N) ∈ Θ for which the realization R(θ(N)) has close to
minimal empirical risk, i.e.,

Ê(R(θ(N))) ≈ Ê(f̂).

In this paper, we consider a regularized hypothesis set of neural networks H :=
R(Θ) ∩ U , where U is a convex and bounded subset of M w.r.t. to a suitable
norm ‖ · ‖. For instance, U can be a ball in a Sobolev space known to contain the
solution to the Kolmogorov equation in (2.9). We further assume that U can be
well-approximated by corresponding regularized neural network parametrizations

ΘU := {θ ∈ Θ: R(θ) ∈ U}
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Ê

U

f̂

r

f

R(θf )

f∗

ε
Ê(f̂)

Ê(f)

Ê(f∗)
Ê(R(θf ))

Lip(Ê)ε

Figure 3.5: Illustration of the loss landscape around a local minimum f∗ (with
radius r) and a global minimum f̂ in the (regularized) realization space R(ΘU) ⊂ U ,
where the empirical risk Ê is convex and Lipschitz continuous on U .

in the sense that
sup
f∈U

inf
θ∈ΘU

‖R(θ)− f‖ ≤ ε. (3.25)

For U consisting of functions with bounded Wk,p-norm, we discussed estimates
on the size of the neural network architecture to guarantee such approximation
results in Section 3.2. Under natural4 assumptions on the empirical risk Ê , namely
that it is Lipschitz continuous and convex on U , this paper shows that every local
minimum on the realization space R(ΘU) is either sharp or almost optimal. To
see this, let f̂ be a global and f∗ be a local5 minimum of

min
f∈R(ΘU )

Ê(f). (3.26)

Now define α := r

2‖f̂−f∗‖
and

f := (1− α)f∗ + αf̂ ∈ U,

where r ∈ (0,∞) is the radius of the local minimum. Due to (3.25), there is
θf ∈ ΘU such that ‖R(θf )− f‖ ≤ ε and, given that r ≥ 2ε, it holds that

Ê(f∗) ≤ Ê(R(θf )) ≤ Ê(f) + Lip(Ê)ε ≤ (1− α)Ê(f∗) + αÊ(f̂) + Lip(Ê)ε,
4For instance, for a given realization of samples, the empirical risk w.r.t. the quadratic loss

function Lquadr in (2.2) is convex and locally Lipschitz continuous on L∞(X ).
5We call f∗ ∈ F a local minimum of inff∈F E(f) of radius r ∈ (0,∞) if E(f∗) ≤ E(f) for all

f ∈ F with ‖f − f∗‖ ≤ r.
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Figure 3.6: ReLU networks fk : [−1, 1]2 → R, x 7→ k%R (kx1) − k%R
(
kx1 − 1

k2
x2

)
,

which convergence uniformly towards the zero function R (0) for k → ∞. However,
the norms of all parametrizations in R−1({fk}) with architecture a = (2, 2, 1) tend
towards infinity, see Chapter VI.

see also Figure 3.5. This implies that

Ê(f∗)− Ê(f̂) ≤ 2 diam(U) Lip(Ê)ε
r

,

i.e., every local minimum f∗ on the realization space R(ΘU) is either sharp (r < 2ε)
or optimal up to O( ε

r
).

However, in practice, gradient descent is applied on the parameter space Θ and a
local minimum of

min
θ∈ΘU

Ê(R(θ)) (3.27)

does not necessarily correspond to a local minimum of (3.26). For this to hold,
proximity of neural network realizations needs to imply proximity of their para-
metrizations, i.e.,

inf
θ∈R−1({f})

‖θ − θ∗‖∞

can be bounded in terms of
‖f −R(θ∗)‖

for all f ∈ R(ΘU). However, for all nonlinear activation functions, this so-called
inverse stability does not hold w.r.t. to the uniform norm ‖·‖ = ‖·‖L∞ , see Petersen,
Raslan, and Voigtlaender (2020, Theorem 4.2) and Figure 3.6.

We characterize further degeneracies preventing inverse stability for ReLU networks,
i.e., unbalanced magnitudes of the parameters in different layers and redundant
neurons. Slightly enlarging a two-layer ReLU network and factoring out such
pathologies, we end up with a parameter space Θ̂ such that inverse stability w.r.t.
to the Sobolev W1,∞-norm and R(Θ) ⊂ R(Θ̂) holds. In other words, the hy-
pothesis set R(Θ̂) is at least as expressive as R(Θ), but with certain degenerate
parametrizations excluded so that the quality of the local minima in (3.27) can
be estimated. In this sense, our results can also be viewed as principled ways of
regularizing ReLU networks.
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Figure 3.7: The relative L2 and L∞-errors for the experiment in Figure 3.3. While
the Lp-norms (w.r.t. to the probability measure PX) are by definition increasing in
p, there is a significant gap. As predicted by the learning theory in Section 3.3, the
L2-errors are reasonably small, however, the L∞-errors stagnate at a rather large
value. Section 3.7 indicates that, without further prior knowledge, an intractable
number of samples m might be required to reach a small error in the latter norm.

3.7 Learning ReLU Networks to High Uniform Accuracy
is Intractable

Finally, we establish fundamental limits for learning ReLU networks from samples.
While classical learning theory provides bounds on the error in the L2-norm, see
also Section 3.3, we show that learning with uniform accuracy, i.e., measured in the
L∞-norm, might be intractable for realistic scenarios. Without further knowledge
about the learning problem, we cannot guarantee high accuracies for all points in
the input domain. This observation poses problems for safety-critical or scientific
applications and sheds light on instabilities reported in the context of deep learning,
such as adversarial examples (Szegedy et al., 2014). Moreover, our results provide
theoretical evidence for the gap between the uniform accuracies guaranteed by
approximation results, see Section 3.2, and the performance of deep learning in
practice, as, for instance, observed by Adcock and Dexter (2021). In Figure 3.7,
we see that also for our learning problem in the context of Kolmogorov equations,
one can not always guarantee high uniform accuracies.

Let us sketch a simplified version of the result in the following. We assume that
we only know a priori that6

f ∗ ∈ U ⊂ M := C([0, 1]d)

6For ease of presentation, we work on the domain [0, 1]d and abbreviate L∞ := L∞([0, 1]d).
However, our results can readily be transferred to any bounded domain.
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for some set U containing a sufficiently large class of ReLU networks. For instance,
it is reasonable to assume that our hypothesis set H = R(Θ) of neural networks is
contained in U . Specifically, we assume that there exists u0 ∈ U with

u0 +R({θ ∈ Θ: ‖θ‖∞ ≤ c}) ⊂ U (3.28)

for some bound c ∈ (0,∞) on the parameter magnitudes and an architecture
a = (d, 3d, . . . , 3d, 1) ∈ NL+1 with L ≥ 3 layers.

We want to compute the worst-case reconstruction error, i.e.,

ε := sup
u∈U

‖A(u)− u‖L∞ , (3.29)

for an arbitrary algorithm A : U → L∞, which leverages m samples of the form
(X(i), u(X(i)))mi=1. In particular, we consider all variants of gradient descent and
even potentially intractable algorithms, such as empirical risk minimization. We
further emphasize that the samples do not need to be i.i.d. and can even be chosen
in an adaptive fashion, as, e.g., done in active learning. In addition, we analyze
the favorable case where the labels (u(X(i)))mi=1 do not contain any noise.

We first note that the assumption in (3.28) implies that U contains functions of
the form u0 ± fy,M , where fy,M ∈ C([0, 1]d) are bump functions given by7

fy,M(x) :=
cL(3d)L−2

2M
%R

(
M

2

d∑
i=1

h 2
M

(
xi − yi +

1

M

)
− (d− 1)

)
, (3.30)

for x, y ∈ [0, 1]d and M ∈ [1,∞), as depicted in Figure 3.8. In the above, h 2
M

denotes the hat function defined in (3.2). To see that u0 ± fy,M ∈ U , we can write
fy,M = R(θy,M), where the parameters θy,M = ((W (`), b(`)))L`=1 are given by8

(W (1), b(1)) :=
(
c
[
1d×d

2
,1d×d,0d×d

]>
, c
[
M−111×d−y>

2
,−y>, d−1

2Md
11×d

]> )
,

(W (2), b(2)) :=
(
c
[
13d×d,−13d×d,−13d×d

]
,03d×1

)
,

(W (`), b(`)) := (c13d×3d,03d×1), ` = 3, . . . , L− 1, and
(W (L), b(L)) := (c11×3d, 0).

We further note that the definition of the bump function in (3.30) implies that

supp(fy,M) ⊂ y +

[
1

M
,
1

M

]d
and ‖fy,M‖L∞ =

cL(3d)L−2

2M
. (3.31)

7The functions fy,M are Lipschitz continuous and compactly supported, see (3.31). Different
from other notions of bump functions, they are, however, not smooth, i.e., in C∞([0, 1]d). We
also note that their construction is similar to the approximate characteristic function in (3.6).

8For k, d ∈ N, we denote by 1k,d ∈ Rk×d and 0k,d ∈ Rk×d the matrices containing only ones
and zeros, respectively.
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Figure 3.8: The bump function fy,M in (3.30) for d = 2, which can be represented
by a ReLU network R(θy,M) with architecture a = (d, 3d, . . . , 3d, 1) ∈ NL+1 and
parameters θy,M bounded by c ∈ (0,∞).

Now let
(
(X(i), u0(X

(i))
)m
i=1

be the samples used by a given algorithm A for recon-
structing the function u0 in (3.28). Due to (3.31), we can choose M := 4dm1/de
and consider a grid of width 1

2M
to find y ∈

[
1

4M
, 1− 1

4M

]d such that

fy,M(X(i)) = 0, i = 1, . . . ,m.

As A only depends on the function values at the features (X(i))mi=1, we have that
A(u0) = A(u0 ± fy,M). Together with (3.31) and the triangle inequality, this
establishes that

ε = sup
u∈U

‖A(u)− u‖L∞

≥ 1

2
‖A(u0 + fy,M)− (u0 + fy,M)‖L∞ +

1

2
‖A(u0 − fy,M)− (u0 − fy,M)‖L∞

≥ 1

2
‖A(u0)− (u0 + fy,M)‖L∞ +

1

2
‖A(u0)− (u0 − fy,M)‖L∞

≥ ‖fy,M)‖L∞ =
cL(3d)L−2

2M
≥ cL(3d)L−2

16m1/d
.

As our choice of the algorithm A was arbitrary, we have shown that any algorithm
that only depends on point evaluations requires at least

m ≥ 1

16
cdL(3d)d(L−2)ε−d
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samples to achieve a uniform accuracy of ε for all functions in U , as defined
in (3.29). In particular, the number of required samples depends exponentially on
the input dimension d and the depth L of the neural networks, which quickly renders
the problem intractable for realistic scenarios. While the expressivity of ReLU
networks leads to efficient approximation results in the L∞-norm, see Section 3.7,
it also allows realizing sharp bump functions fy,M with relatively few bounded
parameters. The number of samples m required to learn the representations in such
approximation results can therefore massively exceed the number of parameters
dim(Θ) defining the hypothesis set. We note that other hypothesis sets, e.g.,
subsets of polynomials or certain reproducing kernel Hilbert spaces, show different
behavior and can realize their approximation rates from samples.

The paper further considers more general randomized algorithms A and provides
similar estimates for Lp-reconstruction errors subject to `q-regularization on the
neural network parameters, where p, q ∈ [1,∞]. We also construct an asymptoti-
cally sharp upper bound based on piecewise interpolation of Lipschitz continuous
functions and corroborate the results with numerical experiments.
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4 Discussion

Let us recall the central question posed in the introduction regarding the theo-
retical performance of deep learning and, in particular, the analysis of the errors
in (2.16) for numerically solving Kolmogorov equations. In the previous chapters,
we formalized this question and provided corresponding theoretical guarantees, of-
ten by focusing on sub-problems concerning the approximation, generalization, and
optimization errors. Let us summarize our contributions to each of these problems
in the following:

1. Approximation error: How well does the best approximation

f ∗
H ∈ argmin

f∈H
E(f)

in a hypothesis set H = R(Θ) of neural networks approximate the solution

f ∗ ∈ argmin
f∈M

E(f)

to the learning problem?

If we know that f ∗ obeys certain regularity properties, such as smoothness,
compositionality, or symmetries, there are a number of results on the re-
quired size of the neural network architecture needed to approximate f ∗ up
to a desired precision, see Chapter I. For f ∗ belonging to certain Sobolev
spaces, the simultaneous approximation of f ∗ and its derivative has been
outlined in Section 3.2. Such approximation results are often obtained via
local polynomial approximation, which, however, suffers from the curse of
dimensionality. In specific scenarios, one can achieve approximation results
where the size of the neural networks scales only polynomially in the un-
derlying dimension, see Section 3.1 for an overview. For instance, we have
seen how we can frame the solution of parametric families of Kolmogorov
equations as a learning problem and how neural networks can approximate
the solution f ∗ without the curse of dimensionality by emulating uniform
Monte Carlo approximations, see Sections 3.3 and 3.4.

2. Generalization error: How well does the empirical risk minimizer

f̂ ∈ argmin
f∈H

Ê(f)

generalize, i.e., minimize the risk E?
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One can compute certain intrinsic dimensions of the hypothesis set H, which,
together with concentration inequalities, can be used to bound the number of
samples m needed such that the risk of the empirical risk minimizer is almost
optimal, i.e., E(f̂) ≈ E(f ∗

H), see Chapter I. For instance, using the Lipschitz
continuity of R and covering numbers of the parameter space Θ, one can
compute covering numbers of neural network hypothesis sets H = R(Θ), see
Section 3.3. If f ∗ can be approximated without the curse of dimensionality,
such bounds can be used to show that also the number of samples required
to bound the generalization error, i.e., E(f̂) − E(f ∗

H) ≤ ε, scales only poly-
nomially in the underlying dimension d and the reciprocal accuracy ε−1, see
Section 3.3. Based on the approximation results established for Kolmogorov
equations, this implies that empirical risk minimization over deep neural
networks can overcome the curse of dimensionality in the numerical solution
of Kolmogorov equations.

3. Optimization error: How well does (stochastic) gradient descent, applied
to the mapping

θ 7→ (Ê ◦ R)(θ), (4.1)

minimize the empirical risk Ê?

Several works show that the mapping in (4.1) can be well-behaved for the
use of gradient descent despite its non-convexity, see Chapter I. For instance,
reasonably large hypothesis sets of neural networks can be viewed as almost
convex, given that they can approximate well certain convex sets of functions
U ⊂ M. In particular, this guarantees that all sufficiently wide local minima
of the empirical risk minimization problem over the corresponding regular-
ized hypothesis set, i.e., minf∈R(Θ)∩U Ê(f), are nearly optimal, see Section 3.6.
However, to estimate the quality of local minima for the practically relevant
minimization problem on the parameter space, i.e., minθ∈Θ∩R−1(U)(Ê ◦R)(θ),
one needs to factor out a series of degeneracies from the parametrizations.
For two-layer ReLU networks, we have successfully characterized these degen-
eracies in Chapter VI. Empirically, we found that neural networks are capable
of numerically solving high-dimensional (parametric families of) Kolmogorov
equations that are completely out of reach for classical methods, see Sec-
tion 3.4. In Section 3.5, we developed a loss function that further improves
performance by reducing the variance of the gradients of the mapping in (4.1).
However, we also noticed that it is generally hard to achieve high uniform
accuracies with neural networks. In Section 3.7, we showed that a hypothesis
set of ReLU networks R(Θ) ⊂ M can contain sharp bump functions, such
that, without further knowledge about f ∗ ∈ M, an intractable number of
samples might be needed to identify f ∗ with high uniform accuracy.
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Most of the aforementioned results make use of assumptions on the learning problem
which are hard to verify in practice, such as regularity properties of f ∗ or i.i.d.
assumptions on the samples (Z(i))mi=1. However, we showed how scientific machine
learning tasks, for instance, arising in the context of PDEs, provide suitable settings,
where such assumptions can be guaranteed. This leads to rigorous results on the
theoretical performance of corresponding algorithms, which is a rare scenario for
applications of deep learning, often regarded as black-box algorithms.

However, we also point out that there are still a few shortcomings in our analysis.
For the results on the optimality of local minima to be applicable in practical
settings, e.g., with subsets U of certain smoothness spaces, we need to investigate
the degeneracies of deep networks with smoother activation functions in order to
guarantee inverse stability. As outlined in Section 3.7, there is also a gap between
theoretically achievable approximation rates and the rates obtained in practice.
One can observe that the neural network parametrizations constructed in such
approximation results are often not robust w.r.t. perturbations and might thus
correspond to sharp minima in the loss landscape of the empirical risk minimization
problem. While our bounds are useful in an asymptotic sense, proving the absence
of the curse of dimensionality, they do not provide us with practical guidance on
how to choose the number of samples and the architectures of the neural networks
for a specific task.

As results from classical learning theory typically bound the generalization error
uniformly over the whole hypothesis set H, such bounds can also be completely
vacuous for certain real-world applications. In Section 3.1, we observed that the
performance of deep learning often depends on an intricate interplay between
the chosen neural network architecture and the optimization scheme, questioning
whether a separate analysis of approximation, generalization, and optimization
errors can lead to tight bounds. Nevertheless, we believe that our results provide a
solid starting point for a rigorous mathematical analysis of deep learning algorithms.
While we used Kolmogorov equations and their SDE-based representations as a
convenient exemplary application, many of the results in this thesis can be applied
to other settings and applications as well.

In this context, we want to mention a more general way of transforming the
numerical solution of PDEs into a learning problem, called Physics Informed
Neural Networks (PINNs), see Raissi, Perdikaris, and Karniadakis (2019). Instead
of leveraging SDE-based representations, PINNs directly minimize the pointwise
residual of the PDE. For instance, for the Kolmogorov equation in (2.9), one can
use the loss function

L(f, Z) := |(∂tf + Ff)(ξ, τ)|2 + c|f(ξ̄, T )− ϕ(ξ̄)|2, f ∈ M, (4.2)
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where c ∈ (0,∞) is a penalty parameter, Z = (ξ, ξ̄, τ) is a suitable random variable
distributed on D × D × [0, T ], and M ⊂ C2,1(Rd × [0, T ]) is a set of sufficiently
regular functions. When using a hypothesis set of neural networks R(Θ) ⊂ M,
the derivatives appearing in the differential operator F in (4.2) can, for instance,
be computed using automatic differentiation.

While the PINN framework can readily be applied to a wide range of PDEs, it can
be sensitive to the choice of penalty parameters, such as c in (4.2), and potentially
unstable, as discussed by Krishnapriyan et al. (2021) and S. Wang, Teng, and
Perdikaris (2021). In addition, computing the loss in (4.2) requires the evaluation
of pointwise derivatives, which can be computationally expensive. For special
classes of PDEs, one can leverage SDE-based representations, as in the case of
Kolmogorov equations, or weak formulations of PDEs to mitigate these issues. The
work by Nüsken and Richter (2021a) shows that one can also interpolate between
SDE-based formulations and PINNs, providing a unified view of these approaches.

For the solution of parametric PDEs, PINNs have been combined with neural oper-
ators (Li et al., 2021; S. Wang and Perdikaris, 2023). The latter architectures learn
a discretization-invariant approximation to the operator mapping PDE coefficient
functions and boundary conditions, such as σ, µ, and ϕ, to the corresponding
solution u. We note that analyses of the approximation and generalization errors,
similar to the ones in this thesis, have since then been carried out for PINNs (De
Ryck and Mishra, 2022), neural operators (Lanthaler, Mishra, and Karniadakis,
2022), weak formulations of elliptic PDEs (Y. Lu, J. Lu, and M. Wang, 2021), and
general neural network training (Beck, Jentzen, and Kuckuck, 2022).

We also want to highlight potential extensions of our work within the context of
Kolmogorov equations. First, note that there are also SDE-based representations
for nonlinear problems based on backward SDEs (Beck, E, and Jentzen, 2019; Han,
Jentzen, and E, 2018) and for bounded domains and elliptic PDEs using stopping
times for the SDE solutions, see, e.g., Baldi (2017). Starting from the theoretical
analysis presented by Grohs and Herrmann (2022), a promising direction is to
leverage walk-on-spheres methods for the solution of elliptic PDEs on complex
domains. Another interesting extension would be the combination of SDE-based
formulations with neural operators.

Finally, we want to mention the importance of the PDEs considered in this work in
optimal control and generative modeling. Specifically, solutions to Hamilton-Jacobi-
Bellman equations, given as Hopf-Cole transforms of Kolmogorov equations, are
intimately connected to optimal control and sampling problems (Dai Pra, 1991;
Fleming and Soner, 2006; Nüsken and Richter, 2021b; Pavon, 1989; Tzen and
Raginsky, 2019). Moreover, so-called diffusion models, which have established

48



themselves as state-of-the-art in generative modeling of high-dimensional image
data, can be analyzed using reverse-time SDEs, the density of which is governed
by Kolmogorov equations (Berner, Richter, and Ullrich, 2022; Huang, Lim, and
Courville, 2021). These connections allow transferring both the theoretical results
and the practical PDE solvers presented in this thesis to a variety of applications.

In conclusion, the present thesis provides a solid foundation for future research in
the field of mathematical analysis of deep learning. Special emphasis is placed on
the study and development of methods that reside at the interface of deep learning
and differential equations. As such, this effort represents a step toward a rigorous
and comprehensive analysis of deep learning for scientific problems, ultimately
culminating in well-founded algorithms that advance the natural sciences.
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Abstract

We describe the new field of mathematical analysis of deep learning. This field emerged around a list
of research questions that were not answered within the classical framework of learning theory. These
questions concern: the outstanding generalization power of overparametrized neural networks, the role of
depth in deep architectures, the apparent absence of the curse of dimensionality, the surprisingly successful
optimization performance despite the non-convexity of the problem, understanding what features are
learned, why deep architectures perform exceptionally well in physical problems, and which fine aspects
of an architecture affect the behavior of a learning task in which way. We present an overview of modern
approaches that yield partial answers to these questions. For selected approaches, we describe the main
ideas in more detail.
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1 Introduction

Deep learning has undoubtedly established itself as the outstanding machine learning technique of recent
times. This dominant position was claimed through a series of overwhelming successes in widely different
application areas.

Perhaps the most famous application of deep learning and certainly one of the first where these techniques
became state-of-the-art is image classification [LBBH98, KSH12, SLJ+15, HZRS16]. In this area, deep
learning is nowadays the only method that is seriously considered. The prowess of deep learning classifiers
goes so far that they often outperform humans in image labelling tasks [HZRS15].

A second famous application area is the training of deep-learning-based agents to play board games or
computer games, such as Atari games [MKS+13]. In this context, probably the most prominent achievement
yet is the development of an algorithm that beat the best human player in the game of Go [SHM+16, SSS+17]—
a feat that was previously unthinkable owing to the extreme complexity of this game. Besides, even in
multiplayer, team-based games with incomplete information deep-learning-based agents nowadays outperform
world-class human teams [BBC+19, VBC+19].

In addition to playing games, deep learning has also led to impressive breakthroughs in the natural
sciences. For example, it is used in the development of drugs [MSL+15], molecular dynamics [FHH+17], or in
high-energy physics [BSW14]. One of the most astounding recent breakthroughs in scientific applications
is the development of a deep-learning-based predictor for the folding behavior of proteins [SEJ+20]. This
predictor is the first method to match the accuracy of lab-based methods.

Finally, in the vast field of natural language processing, which includes the subtasks of understanding,
summarizing, or generating text, impressive advances were made based on deep learning. Here, we refer
to [YHPC18] for an overview. One technique that recently stood out is based on a so-called transformer neural
network [BCB15, VSP+17]. This network structure gave rise to the impressive GPT-3 model [BMR+20]
which not only creates coherent and compelling texts but can also produce code, such as, for the layout of a
webpage according to some instructions that a user inputs in plain English. Transformer neural networks
have also been successfully employed in the field of symbolic mathematics [SGHK18, LC19].

In this article, we present and discuss the mathematical foundations of the success story outlined above.
More precisely, our goal is to outline the newly emerging field of mathematical analysis of deep learning. To
accurately describe this field, a necessary preparatory step is to sharpen our definition of the term deep
learning. For the purposes of this article, we will use the term in the following narrow sense: Deep learning
refers to techniques where deep neural networks1 are trained with gradient-based methods. This narrow

1We will define the term neural network later but, for this definition, one can view it as a parametrized family of functions
with a differentiable parametrization.
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definition is helpful to make this article more concise. We would like to stress, however, that we do not claim
in any way that this is the best or the right definition of deep learning.

Having fixed a definition of deep learning, three questions arise concerning the aforementioned emerging
field of mathematical analysis of deep learning: To what extent is a mathematical theory necessary? Is it
truly a new field? What are the questions studied in this area?

Let us start by explaining the necessity of a theoretical analysis of the tools described above. From a
scientific perspective, the primary reason why deep learning should be studied mathematically is simple
curiosity. As we will see throughout this article, many practically observed phenomena in this context are
not explained theoretically. Moreover, theoretical insights and the development of a comprehensive theory
are often the driving force underlying the development of new and improved methods. Prominent examples
of mathematical theories with such an effect are the theory of fluid mechanics which is an invaluable asset
to the design of aircraft or cars and the theory of information that affects and shapes all modern digital
communication. In the words of Vladimir Vapnik2: “Nothing is more practical than a good theory”, [Vap13,
Preface]. In addition to being interesting and practical, theoretical insight may also be necessary. Indeed, in
many applications of machine learning, such as medical diagnosis, self-driving cars, and robotics, a significant
level of control and predictability of deep learning methods is mandatory. Also, in services, such as banking
or insurance, the technology should be controllable to guarantee fair and explainable decisions.

Let us next address the claim that the field of mathematical analysis of deep learning is a newly emerging
area. In fact, under the aforementioned definition of deep learning, there are two main ingredients of the
technology: deep neural networks and gradient-based optimization. The first artificial neuron was already
introduced in 1943 in [MP43]. This neuron was not trained but instead used to explain a biological neuron.
The first multi-layered network of such artificial neurons that was also trained can be found in [Ros58].
Since then, various neural network architectures have been developed. We will discuss these architectures in
detail in the following sections. The second ingredient, gradient-based optimization, is made possible by the
observation that due to the graph-based structure of neural networks the gradient of an objective function
with respect to the parameters of the neural network can be computed efficiently. This has been observed in
various ways, see [Kel60, Dre62, Lin70, RHW86]. Again, these techniques will be discussed in the upcoming
sections. Since then, techniques have been improved and extended. As the rest of the manuscript is spent
reviewing these methods, we will keep the discussion of literature at this point brief. Instead, we refer to
some overviews of the history of deep learning from various perspectives: [LBH15, Sch15, GBC16, HH19].

Given the fact that the two main ingredients of deep neural networks have been around for a long
time, one would expect that a comprehensive mathematical theory has been developed that describes
why and when deep-learning-based methods will perform well or when they will fail. Statistical learning
theory [AB99, Vap99, CS02, BBL03, Vap13] describes multiple aspects of the performance of general learning
methods and in particular deep learning. We will review this theory in the context of deep learning in
Subsection 1.2 below. Hereby, we focus on classical, deep learning-related results that we consider well-known
in the machine learning community. Nonetheless, the choice of these results is guaranteed to be subjective.
We will find that the presented, classical theory is too general to explain the performance of deep learning
adequately. In this context, we will identify the following questions that appear to be difficult to answer
within the classical framework of learning theory: Why do trained deep neural networks not overfit on the
training data despite the enormous power of the architecture? What is the advantage of deep compared to
shallow architectures? Why do these methods seemingly not suffer from the curse of dimensionality? Why
does the optimization routine often succeed in finding good solutions despite the non-convexity, non-linearity,
and often non-smoothness of the problem? Which aspects of an architecture affect the performance of the
associated models and how? Which features of data are learned by deep architectures? Why do these methods
perform as well as or better than specialized numerical tools in natural sciences?

The new field of mathematical analysis of deep learning has emerged around questions like the ones listed
above. In the remainder of this article, we will collect some of the main recent advances to answer these
questions. Because this field of mathematical analysis of deep learning is incredibly active and new material
is added at breathtaking speeds, a brief survey on recent advances in this area is guaranteed to miss not only

2This claim can be found earlier in a non-mathematical context in the works of Kurt Lewin [Lew43].
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a couple of references but also many of the most essential ones. Therefore, we do not strive for a complete
overview, but instead, showcase several fundamental ideas on a mostly intuitive level. In this way, we hope to
allow the reader to familiarize themselves with some exciting concepts and provide a convenient entry-point
for further studies.

1.1 Notation

We denote by N the set of natural numbers, by Z the set of integers and by R the field of real numbers.
For N ∈ N, we denote by [N ] the set {1, . . . , N}. For two functions f, g : X → [0,∞), we write f . g, if
there exists a universal constant c such that f(x) ≤ cg(x) for all x ∈ X . In a pseudometric space (X , dX ),
we define the ball of radius r ∈ (0,∞) around a point x ∈ X by BdXr (x) or Br(x) if the pseudometric dX
is clear from the context. By ‖ · ‖p, p ∈ [1,∞], we denote the `p-norm, and by 〈·, ·〉 the Euclidean inner
product of given vectors. By ‖ · ‖op we denote the operator norm induced by the Euclidean norm and by
‖ · ‖F the Frobenius norm of given matrices. For p ∈ [1,∞], s ∈ [0,∞), d ∈ N, and X ⊂ Rd, we denote by
W s,p(X ) the Sobolev-Slobodeckij space, which for s = 0 is just a Lebesgue space, i.e., W 0,p(X ) = Lp(X ).
For measurable spaces X and Y, we define M(X ,Y) to be the set of measurable functions from X to Y.
We denote by ĝ the Fourier transform3 of a tempered distribution g. For probabilistic statements, we will
assume a suitable underlying probability space with probability measure P. For an X -valued random variable
X, we denote by E[X] and V[X] its expectation and variance and by PX the image measure of X on X ,
i.e., PX(A) = P(X ∈ A) for every measurable set A ⊂ X . If possible, we use the corresponding lowercase
letter to denote the realization x ∈ X of the random variable X for a given outcome. We write Id for the
d-dimensional identity matrix and, for a set A, we write 1A for the indicator function of A, i.e., 1A(x) = 1 if
x ∈ A and 1A(x) = 0 else.

1.2 Foundations of learning theory

Before we continue to describe recent developments in the mathematical analysis of deep learning methods,
we start by providing a concise overview of the classical mathematical and statistical theory underlying
machine learning tasks and algorithms which, in their most general form, can be formulated as follows.

Definition 1.1 (Learning - informal). Let X ,Y, and Z be measurable spaces. In a learning task, one is given
data in Z and a loss function L : M(X ,Y)×Z → R. The goal is to choose a hypothesis set F ⊂M(X ,Y)
and construct a learning algorithm, i.e., a mapping

A :
⋃
m∈N
Zm → F ,

that uses training data s = (z(i))mi=1 ∈ Zm to find a model fs = A(s) ∈ F that performs well on the training
data s and also generalizes to unseen data z ∈ Z. Here, performance is measured via the loss function L
and the corresponding loss L(fs, z) and, informally speaking, generalization means that the out-of-sample
performance of fs at z behaves similar to the in-sample performance on s.

Definition 1.1 is deliberately vague on how to measure generalization performance. Later, we will often
study the expected out-of-sample performance. To talk about expected performance, a data distribution
needs to be specified. We will revisit this point in Assumption 1.10 and Definition 1.11.

For simplicity, we focus on one-dimensional, supervised prediction tasks with input features in Euclidean
space as defined in the following.

Definition 1.2 (Prediction task). In a prediction task, we have that Z := X × Y, i.e., we are given training
data s = ((x(i), y(i)))mi=1 that consist of input features x(i) ∈ X and corresponding labels y(i) ∈ Y. For
one-dimensional regression tasks with Y ⊂ R, we consider the quadratic loss L(f, (x, y)) = (f(x)− y)2 and,

3Respecting common notation, we will also use the hat symbol to denote the minimizer of the empirical risk f̂s in Definition 1.8
but this clash of notation does not cause any ambiguity.
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for binary classification tasks with Y = {−1, 1}, we consider the 0-1 loss L(f, (x, y)) = 1(−∞,0)(yf(x)). We

assume that our input features are in Euclidean space, i.e., X ⊂ Rd with input dimension d ∈ N.

In a prediction task, we aim for a model fs : X → Y, such that, for unseen pairs (x, y) ∈ X × Y, fs(x) is
a good prediction of the true label y. However, note that large parts of the presented theory can be applied
to more general settings.

Remark 1.3 (Learning tasks). Apart from straightforward extensions to multi-dimensional prediction tasks
and other loss functions, we want to mention that unsupervised and semi-supervised learning tasks are
often treated as prediction tasks. More precisely, one transforms unlabeled training data z(i) into features
x(i) = T1(z(i)) ∈ X and labels y(i) = T2(z(i)) ∈ Y using suitable transformations T1 : Z → X , T2 : Z → Y. In
doing so, one asks for a model fs approximating the transformation T2 ◦ T−1

1 : X → Y which is, e.g., done in
order to learn feature representations or invariances.

Furthermore, one can consider density estimation tasks, where X = Z, Y := [0,∞], and F consists of
probability densities with respect to some σ-finite reference measure µ on Z. One then aims for a probability
density fs that approximates the density of the unseen data z with respect to µ. One can perform L2(µ)-
approximation based on the discretization L(f, z) = −2f(z) + ‖f‖2L2(µ) or maximum likelihood estimation

based on the surprisal L(f, z) = − log(f(z)).

In deep learning the hypothesis set F consists of realizations of neural networks Φa(·, θ), θ ∈ P, with
a given architecture a and parameter set P. In practice, one uses the term neural network for a range of
functions that can be represented by directed acyclic graphs, where the vertices correspond to elementary
almost everywhere differentiable functions parametrizable by θ ∈ P and the edges symbolize compositions
of these functions. In Section 6, we will review some frequently used architectures, in the other sections,
however, we will mostly focus on fully connected feedforward (FC) neural networks as defined below.

Definition 1.4 (FC neural network). A fully connected feedforward neural network is given by its architecture
a = (N, %), where L ∈ N, N ∈ NL+1, and % : R→ R. We refer to % as the activation function, to L as the
number of layers, and to N0, NL, and N`, ` ∈ [L− 1], as the number of neurons in the input, output, and
`-th hidden layer, respectively. We denote the number of parameters by

P (N) :=
L∑
`=1

N`N`−1 +N`

and define the corresponding realization function Φa : RN0 × RP (N) → RNL which satisfies for every input
x ∈ RN0 and parameters

θ = (θ(`))L`=1 = ((W (`), b(`)))L`=1 ∈
L×̀
=1

(RN`×N`−1 × RN`) ∼= RP (N)

that Φa(x, θ) = Φ(L)(x, θ), where

Φ(1)(x, θ) = W (1)x+ b(1),

Φ̄(`)(x, θ) = %
(
Φ(`)(x, θ)

)
, ` ∈ [L− 1], and

Φ(`+1)(x, θ) = W (`+1)Φ̄(`)(x, θ) + b(`+1), ` ∈ [L− 1],

(1.1)

and % is applied componentwise. We refer to W (`) ∈ RN`×N`−1 and b(`) ∈ RN` as the weight matrices and
bias vectors, and to Φ̄(`) and Φ(`) as the activations and pre-activations of the N` neurons in the `-th layer.
The width and depth of the architecture are given by ‖N‖∞ and L and we call the architecture deep if L > 2
and shallow if L = 2.

The underlying directed acyclic graph of FC networks is given by compositions of the affine linear maps
x 7→ W (`)x + b(`), ` ∈ [L], with the activation function % intertwined, see Figure 1.1. Typical activation
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Figure 1.1: Graph (grey) and (pre-)activations of the neurons (white) of a deep fully connected feedforward
neural network Φa : R3 × R53 7→ R with architecture a = ((3, 4, 6, 1), %) and parameters θ = ((W (`), b(`))3

`=1.

functions used in practice are variants of the rectified linear unit (ReLU) given by %R(x) := max{0, x} and
sigmoidal functions % ∈ C(R) satisfying %(x)→ 1 for x→∞ and %(x)→ 0 for x→ −∞, such as the logistic
function %σ(x) := 1/(1 +e−x) (often referred to as the sigmoid function). See also Table 1 for a comprehensive
list of widely used activation functions.

Remark 1.5 (Neural networks). If not further specified, we will use the term (neural) network, or the
abbreviation NN, to refer to FC neural networks. Note that many of the architectures used in practice (see
Section 6) can be written as special cases of Definition 1.4 where, e.g., specific parameters are prescribed by
constants or shared with other parameters. Furthermore, note that affine linear functions are NNs with depth
L = 1. We will also consider biasless NNs given by linear mappings without bias vector, i.e., b(`) = 0, ` ∈ [L].
In particular, any NN can always be written without bias vectors by redefining

x→
[
x
1

]
, (W (`), b(`))→

[
W (`) b(`)

0 1

]
, ` ∈ [L− 1], and (W (L), b(L))→

[
W (L) b(L)

]
.

To enhance readability we will often not specify the underlying architecture a = (N, %) or the parameters θ ∈
RP (N) and use the term NN to refer to the architecture as well as the realization functions Φa(·, θ) : RN0 → RNL
or Φa : RN0×RP (N) → RNL . However, we want to emphasize that one cannot infer the underlying architecture
or properties like magnitude of parameters solely from these functions as the mapping (a, θ) 7→ Φa(·, θ) is
highly non-injective. As an example, we can set W (L) = 0 which implies Φa(·, θ) = b(L) for all architectures
a = (N, %) and all values of (W (`), b(`))L−1

`=1 .

In view of our considered prediction tasks in Definition 1.2, this naturally leads to the following hypothesis
sets of neural networks.

Definition 1.6 (Hypothesis sets of neural networks). Let a = (N, %) be a NN architecture with input
dimension N0 = d, output dimension NL = 1, and measurable activation function %. For regression tasks the
corresponding hypothesis set is given by

Fa =
{

Φa(·, θ) : θ ∈ RP (N)
}

and for classification tasks by

Fa,sgn =
{

sgn(Φa(·, θ)) : θ ∈ RP (N)
}
, where sgn(x) :=

{
1, if x ≥ 0,

−1, if x < 0.
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Name Given as a function of x ∈ R by Plot

linear x

Heaviside / step function 1(0,∞)(x)

logistic / sigmoid 1
1+e−x

rectified linear unit (ReLU) max{0, x}

power rectified linear unit max{0, x}k for k ∈ N

parametric ReLU (PReLU) max{ax, x} for a ≥ 0, a 6= 1

exponential linear unit (ELU) x · 1[0,∞)(x) + (ex − 1) · 1(−∞,0)(x)

softsign x
1+|x|

inverse square root linear unit x · 1[0,∞)(x) + x√
1+ax2

· 1(−∞,0)(x) for a > 0

inverse square root unit x√
1+ax2

for a > 0

tanh ex−e−x
ex+e−x

arctan arctan(x)

softplus ln(1 + ex)

Gaussian e−x
2/2

Table 1: List of commonly used activation functions.
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Note that we compose the output of the NN with the sign function in order to obtain functions mapping
to Y = {−1, 1}. This can be generalized to multi-dimensional classification tasks by replacing the sign by an
argmax function. Given a hypothesis set, a popular learning algorithm is empirical risk minimization (ERM),
which minimizes the average loss on the given training data, as described in the next definitions.

Definition 1.7 (Empirical risk). For training data s = (z(i))mi=1 ∈ Zm and a function f ∈ M(X ,Y), we
define the empirical risk by

R̂s(f) :=
1

m

m∑
i=1

L(f, z(i)).

Definition 1.8 (ERM learning algorithm). Given a hypothesis set F , an empirical risk minimization

algorithm Aerm chooses4 for training data s ∈ Zm a minimizer f̂s ∈ F of the empirical risk in F , i.e.,

Aerm(s) ∈ arg min
f∈F

R̂s(f). (1.2)

Remark 1.9 (Surrogate loss and regularization). Note that, for classification tasks, one needs to optimize
over non-differentiable functions with discrete outputs in (1.2). For NN hypothesis sets Fa,sgn one typically

uses the corresponding hypothesis set for regression tasks Fa to find an approximate minimizer f̂ surr
s ∈ Fa of

1

m

m∑
i=1

Lsurr(f, z(i)),

where Lsurr : M(X ,R)×Z → R is a surrogate loss guaranteeing that sgn(f̂ surr
s ) ∈ arg minf∈Fa,sgn

R̂s(f). A

frequently used surrogate loss is the logistic loss5 given by

Lsurr(f, z) = log
(

1 + e−yf(x)
)
.

In various learning tasks one also adds regularization terms to the minimization problem in (1.2), such as
penalties on the norm of the parameters of the NN, i.e.,

min
θ∈RP (N)

R̂s(Φa(·, θ)) + α‖θ‖22,

where α ∈ (0,∞) is a regularization parameter. Note that in this case the minimizer depends on the chosen
parameters θ and not only on the realization function Φa(·, θ), see also Remark 1.5.

Coming back to our initial, informal description of learning in Definition 1.1, we have now outlined
potential learning tasks in Definition 1.2, NN hypothesis sets in Definition 1.6, a metric for the in-sample
performance in Definition 1.7, and a corresponding learning algorithm in Definition 1.8. However, we are still
lacking a mathematical concept to describe the out-of-sample (generalization) performance of our learning
algorithm. This question has been intensively studied in the field of statistical learning theory, see Section 1
for various references.

In this field one usually establishes a connection between unseen data z and the training data s = (z(i))mi=1

by imposing that z and z(i), i ∈ [m], are realizations of independent samples drawn from the same distribution.

Assumption 1.10 (Independent and identically distributed data). We assume that z(1), . . . , z(m), z are
realizations of i.i.d. random variables Z(1), . . . , Z(m), Z.

4For simplicity, we assume that the minimum is attained which, for instance, is the case if F is a compact topological space
on which R̂s is continuous. Hypothesis sets of NNs F(N,%) constitute a compact space if, e.g., one chooses a compact parameter

set P ⊂ RP (N) and a continuous activation function %. One could also work with approximate minimizers, see [AB99].
5This can be viewed as cross-entropy between the label y and the output of f composed with a logistic function %σ. In a

multi-dimensional setting one can replace the logistic function with a softmax function.
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In this formal setting, we can compute the average out-of-sample performance of a model. Recall from
our notation in Section 1.1 that we denote by PZ the image measure of Z on Z, which is the underlying
distribution of our training data S = (Z(i))mi=1 ∼ PmZ and unknown data Z ∼ PZ .

Definition 1.11 (Risk). For a function f ∈M(X ,Y), we define6 the risk by

R(f) := E
[
L(f, Z)

]
=

∫
Z
L(f, z) dPZ(z).

Defining S := (Z(i))mi=1, the risk of a model fS = A(S) is thus given by R(fS) = E
[
L(fS , Z)|S

]
.

For prediction tasks, we can write Z = (X,Y ), such that the input features and labels are given by an
X -valued random variable X and a Y-valued random variable Y , respectively. Note that for classification
tasks the risk equals the probability of misclassification

R(f) = E[1(−∞,0)(Y f(X))] = P[f(X) 6= Y ].

For noisy data, there might be a positive, lower bound on the risk, i.e., an irreducible error. If the lower
bound on the risk is attained, one can also define the notion of an optimal solution to a learning task.

Definition 1.12 (Bayes-optimal function). A function f∗ ∈ M(X ,Y) achieving the smallest risk, the
so-called Bayes risk

R∗ := inf
f∈M(X ,Y)

R(f),

is called a Bayes-optimal function.

For the prediction tasks in Definition 1.2, we can represent the risk of a function with respect to the
Bayes risk and compute the Bayes-optimal function, see, e.g., [CZ07, Propositions 1.8 and 9.3].

Lemma 1.1 (Regression and classification risk). For a regression task with V[Y ] < ∞, the risk can be
decomposed into

R(f) = E
[
(f(X)−E[Y |X])2

]
+R∗, f ∈M(X ,Y), (1.3)

which is minimized by the regression function f∗(x) = E[Y |X = x]. For a classification task, the risk can be
decomposed into

R(f) = E
[
|E[Y |X]|1(−∞,0)(E[Y |X]f(X))

]
+R∗, f ∈M(X ,Y),

which is minimized by the Bayes classifier f∗(x) = sgn(E[Y |X = x]).

As our model fS is depending on the random training data S, the risk R(fS) is a random variable and
we might aim7 for R(fS) small with high probability or in expectation over the training data. The challenge
for the learning algorithm A is to minimize the risk by only using training data but without knowing the
underlying distribution. One can even show that for every learning algorithm there exists a distribution
where convergence of the expected risk of fS to the Bayes risk is arbitrarily slow with respect to the number
of samples m [DGL96, Theorem 7.2].

Theorem 1.13 (No free lunch). Let am ∈ (0,∞), m ∈ N, be a monotonically decreasing sequence with
a1 ≤ 1/16. Then for every learning algorithm A of a classification task there exists a distribution PZ such
that for every m ∈ N and training data S ∼ PmZ it holds that

E
[
R(A(S))

]
≥ R∗ + am.

6Note that this requires z 7→ L(f, z) to be measurable for every f ∈M(X ,Y), which is the case for our considered prediction
tasks.

7In order to make probabilistic statements on R(fS) we assume that R(fS) is a random variable, i.e., measurable. This is,
e.g., the case if F constitutes a measurable space and s 7→ A(s) and f →R|F are measurable.
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Figure 1.2: Illustration of the errors (A)–(C) in the decomposition of (1.4). It shows an exemplary risk R̂
(blue) and empirical risk R̂s (red) with respect to the projected space of measurable functions M(X ,Y).
Note that the empirical risk and thus εgen and εopt depend on the realization s = (z(i))mi=1 of the training
data S ∼ PmZ .

Theorem 1.13 shows the non-existence of a universal learning algorithm for every data distribution PZ and
shows that useful bounds must necessarily be accompanied by a priori regularity conditions on the underlying
distribution PZ . Such prior knowledge can then be incorporated in the choice of the hypothesis set F . To
illustrate this, let f∗F ∈ arg minf∈F R(f) be a best approximation in F , such that we can bound the error

R(fS)−R∗ = R(fS)− R̂S(fS) + R̂S(fS)− R̂S(f∗F ) + R̂S(f∗F )−R(f∗F ) +R(f∗F )−R∗

≤ εopt + 2εgen + εapprox
(1.4)

by

(A) an optimization error εopt := R̂S(fS)− R̂S(f̂S) ≥ R̂S(fS)− R̂S(f∗F ), with f̂S as in Definition 1.8,

(B) a (uniform8) generalization error εgen := supf∈F |R(f)− R̂S(f)| ≥ max{R(fS)− R̂S(fS), R̂S(f∗F )−
R(f∗F )}, and

(C) an approximation error εapprox := R(f∗F )−R∗,

see also Figure 1.2. The approximation error is decreasing when enlarging the hypothesis set, but taking
F =M(X ,Y) prevents controlling the generalization error, see also Theorem 1.13. This suggests a sweet-spot
for the complexity of our hypothesis set F and is usually referred to as the bias-variance trade-off, see
also Figure 1.4 below. In the next sections, we will sketch mathematical ideas to tackle each of the errors
in (A)–(C) in the context of deep learning. Observe that we bound the generalization and optimization

error with respect to the empirical risk R̂S and its minimizer f̂S which is motivated by the fact that in
deep-learning-based applications one typically tries to minimize variants of R̂S .

1.2.1 Optimization

The first error in the decomposition of (1.4) is the optimization error: εopt. This error is primarily influenced
by the numerical algorithm A that is used to find the model fs in a hypothesis set of NNs for given training
data s ∈ Zm. We will focus on the typical setting where such an algorithm tries to approximately minimize
the empirical risk R̂s. While there are many conceivable methods to solve this minimization problem, by
far the most common are gradient-based methods. The main reason for the popularity of gradient-based

8Although this uniform deviation can be a coarse estimate it is frequently considered to allow for the application of uniform
laws of large numbers from the theory of empirical processes.
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methods is that for FC networks as in Definition 1.4, the accurate and efficient computation of pointwise
derivatives ∇θΦa(x, θ) is possible by means of automatic differentiation, a specific form of which is often
referred to as the backpropagation algorithm [Kel60, Dre62, Lin70, RHW86, GW08]. This numerical scheme
is also applicable in general settings, such as, when the architecture of the NN is given by a general directed
acyclic graph. Using these pointwise derivatives, one usually attempts to minimize the empirical risk R̂s by
updating the parameters θ according to a variant of stochastic gradient descent (SGD), which we shall review
below in a general formulation:

Algorithm 1: Stochastic gradient descent

Input : Differentiable function r : Rp → R, sequence of step-sizes ηk ∈ (0,∞), k ∈ [K],
Rp-valued random variable Θ(0).

Output : Sequence of Rp-valued random variables (Θ(k))Kk=1.
for k = 1, . . . ,K do

Let D(k) be a random variable such that E[D(k)|Θ(k−1)] = ∇r(Θ(k−1));

Set Θ(k) := Θ(k−1) − ηkD(k);

end

If D(k) is chosen deterministically in Algorithm 1, i.e., D(k) = ∇r(Θ(k−1)), then the algorithm is known as

gradient descent. To minimize the empirical loss, we apply SGD with r : RP (N) → R set to r(θ) = R̂s(Φa(·, θ)).
More concretely, one might choose a batch-size m′ ∈ N with m′ ≤ m and consider the iteration

Θ(k) := Θ(k−1) − ηk
m′

∑
z∈S′
∇θL(Φa(·,Θ(k−1)), z), (1.5)

where S′ is a so-called mini-batch of size |S′| = m′ chosen uniformly9 at random from the training data
s. The sequence of step-sizes (ηk)k∈N is often called learning rate in this context. Stopping at step K, the
output of a deep learning algorithm A is then given by

fs = A(s) = Φa(·, θ̄),

where θ̄ can be chosen to be the realization of the last parameter Θ(K) of (1.5) or a convex combination of
(Θ(k))Kk=1 such as the mean.

Algorithm 1 was originally introduced in [RM51] in the context of finding the root of a nondecreasing
function from noisy measurements. Shortly afterwards this idea was applied to find a unique minimum of a
Lipschitz-regular function that has no flat regions away from the global minimum [KW52].

In some regimes, we can guarantee convergence of SGD at least in expectation, see [NY83, NJLS09,
SSSSS09], [SDR14, Section 5.9], [SSBD14, Chapter 14]. One prototypical convergence guarantee that is found
in the aforementioned references in various forms is stated below.

Theorem 1.14 (Convergence of SGD). Let p,K ∈ N and let r : Rp ⊃ B1(0) → R be differentiable and
convex. Further let (Θ(k))Kk=1 be the output of Algorithm 1 with initialization Θ(0) = 0, step-sizes ηk = K−1/2,
k ∈ [K], and random variables (D(k))Kk=1 satisfying that ‖D(k)‖2 ≤ 1 almost surely for all k ∈ [K]. Then

E[r(Θ̄)]− r(θ∗) ≤ 1√
K
,

where Θ̄ := 1
K

∑K
k=1 Θ(k) and θ∗ ∈ arg minθ∈B1(0) r(θ).

Theorem 1.14 can be strengthened to yield a faster convergence rate if the convexity is replaced by strict
convexity. If r is not convex, then convergence to a global minimum can in general not be guaranteed. In
fact, in that case, stochastic gradient descent may converge to a local, non-global minimum, see Figure 1.3
for an example.

9We remark that in practice one typically picks S′ by selecting a subset of training data in a way to cover the full training
data after one epoch of dm/m′e many steps. This, however, does not necessarily yield an unbiased estimator D(k) of ∇θr(Θ(k−1))
given Θ(k−1).
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Figure 1.3: Examples of the dynamics of gradient descent (left) and stochastic gradient descent (right) for an
objective function with one non-global minimum next to the global minimum. We see that depending on the
initial condition and also on fluctuations in the stochastic part of SGD the algorithm can fail or succeed in
finding the global minimum.

Moreover, gradient descent, i.e., the deterministic version of Algorithm 1, will stop progressing if at any
point the gradient of r vanishes. This is the case in every stationary point of r. A stationary point is either a
local minimum, a local maximum, or a saddle point. One would expect that if the direction of the step D(k)

in Algorithm 1 is not deterministic, then the random fluctuations may allow the iterates to escape saddle
points. Indeed, results guaranteeing convergence to local minima exist under various conditions on the type
of saddle points that r admits, [NJLS09, GL13, GHJY15, LSJR16, JKNvW20].

In addition, many methods that improve the convergence by, for example, introducing more elaborate
step-size rules or a momentum term have been established. We shall not review these methods here, but
instead refer to [GBC16, Chapter 8] for an overview.

1.2.2 Approximation

Generally speaking, NNs, even FC NNs (see Definition 1.4) with only L = 2 layers, are universal approximators,
meaning that under weak conditions on the activation function % they can approximate any continuous
function on a compact set up to arbitrary precision [Cyb89, Fun89, HSW89, LLPS93].

Theorem 1.15 (Universal approximation theorem). Let d ∈ N, let K ⊂ Rd be compact, and let % ∈ L∞loc(R)
be an activation function such that the closure of the points of discontinuity of % is a Lebesgue null set.
Further let

F̃ :=
⋃
n∈N
F((d,n,1),%)

be the corresponding set of two-layer NN realizations. Then it holds that C(K) ⊂ cl(F̃) (where the closure is
taken with respect to the topology induced by the L∞(K)-norm) if and only if there does not exist a polynomial
p : R→ R with p = % almost everywhere.

The theorem can be proven by the theorem of Hahn–Banach, which implies that F̃ being dense in some
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real normed vector space S is equivalent to the following condition: For all non-trivial functionals F ∈ S ′ \{0}
from the topological dual space of S there exist parameters w ∈ Rd and b ∈ R such that

F (%(〈w, ·〉+ b)) 6= 0.

In case of S = C(K) we have by the Riesz–Markov–Kakutani representation theorem that S ′ is the space of
signed Borel measures on K, see [Rud06]. Therefore, Theorem 1.15 holds, if % is such that, for a signed Borel
measure µ, ∫

K

%(〈w, x〉+ b) dµ(x) = 0 (1.6)

for all w ∈ Rd and b ∈ R implies that µ = 0. An activation function % satisfying this condition is called
discriminatory. It is not hard to see that any sigmoidal % is discriminatory. Indeed, assume that % satisfies (1.6)
for all w ∈ Rd and b ∈ R. Since for every x ∈ Rd it holds that %(ax+ b)→ 1(0,∞)(x) +%(b)1{0}(x) for a→∞,

we conclude by superposition and passing to the limit that for all c1, c2 ∈ R and w ∈ Rd, b ∈ R∫
K

1[c1,c2](〈w, x〉+ b) dµ(x) = 0.

Representing the exponential function x 7→ e−2πix as the limit of sums of elementary functions yields that∫
K
e−2πi(〈w,x〉+b) dµ(x) = 0 for all w ∈ Rd, b ∈ R. Hence, the Fourier transform of µ vanishes which implies

that µ = 0.
Theorem 1.15 addresses a uniform approximation problem on a general compact set. If we are given a

finite number of points and only care about good approximation at these points, then one can ask if this
approximation problem is potentially simpler. Below we see that, if the number of neurons is larger or equal
to the number of data points, then one can always interpolate, i.e., exactly fit the data on a given finite
number of points.

Proposition 1.1 (Interpolation). Let d,m ∈ N, let x(i) ∈ Rd, i ∈ [m], with x(i) 6= x(j) for i 6= j, let
% ∈ C(R), and assume that % is not a polynomial. Then, there exist parameters θ(1) ∈ Rm×d × Rm with the
following property: For every k ∈ N and every sequence of labels y(i) ∈ Rk, i ∈ [m], there exist parameters
θ(2) = (W (2), 0) ∈ Rk×m × Rk for the second layer of the NN architecture a = ((d,m, k), %) such that

Φa(x(i), (θ(1), θ(2))) = y(i), i ∈ [m].

Let us sketch the proof in the following. First, note that Theorem 1.15 also holds for functions g ∈ C(K,Rm)
with multi-dimensional output by approximating each one-dimensional component x 7→ (g(x))i and stacking
the resulting networks. Second, one can add an additional row containing only zeros to the weight matrix
W (1) of the approximating neural network as well as an additional entry to the vector b(1). The effect of
this is that we obtain an additional neuron with constant output. Since % 6= 0, we can choose b(1) such that
the output of this neuron is not zero. Therefore, we can include the bias vector b(2) of the second layer
into the weight matrix W (2), see also Remark 1.5. Now choose g ∈ C(Rm,Rm) to be a function satisfying
g(x(i)) = e(i), i ∈ [m], where e(i) ∈ Rm denotes the i-th standard basis vector. By the discussion before there

exists a neural network architecture ã = ((d, n,m), %) and parameters θ̃ = ((W̃ (1), b̃(1)), (W̃ (2), 0)) such that

‖Φã(·, θ̃)− g‖L∞(K) <
1

m
, (1.7)

where K is a compact set with x(i) ∈ K, i ∈ [m]. Let us abbreviate the output of the activations in the first
layer evaluated at the input features by

Ã :=
[
%(W̃ (1)(x(1)) + b̃(1))) . . . %(W̃ (1)(x(m)) + b̃(1)))

]
∈ Rn×m.

The equivalence of the max and operator norm and (1.7) establish that

‖W̃ (2)Ã− Im‖op ≤ m max
i,j∈[m]

∣∣(W̃ (2)Ã− Im)i,j
∣∣ = m max

j∈[m]
‖Φã(x(j), θ̃)− g(x(j))‖∞ < 1,
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where Im denotes the m×m identity matrix. Thus, the matrix W̃ (2)Ã ∈ Rm×m needs to have full rank and
we can extract m linearly independent rows from Ã resulting in an invertible matrix A ∈ Rm×m. Now, we
define the desired parameters θ(1) for the first layer by extracting the corresponding rows from W̃ (1) and b̃(1)

and the parameters θ(2) of the second layer by

W (2) :=
[
y(1) . . . y(m)

]
A−1 ∈ Rk×m.

This proves that with any discriminatory activation function we can interpolate arbitrary training data
(x(i), y(i)) ∈ Rd × Rk, i ∈ [m], using a two-layer NN with m hidden neurons, i.e., O(m(d+ k)) parameters.

One can also first project the input features to a one-dimensional line where they are separated and then
apply Proposition 1.1 with d = 1. For nearly all activation functions, this can be represented by a three-layer
NN using only O(d+mk) parameters10.

Beyond interpolation results, one can obtain a quantitative version of Theorem 1.15 if one knows additional
regularity properties of the Bayes optimal function f∗, such as smoothness, compositionality, and symmetries.
For surveys on such results, we refer the reader to [DHP20, GRK20]. For instructive purposes, we review one
such result, which can be found in [Mha96, Theorem 2.1], below:

Theorem 1.16 (Approximation of smooth functions). Let d, k ∈ N and p ∈ [1,∞]. Further let % ∈ C∞(R)
and assume that % is not a polynomial. Then there exists a constant c ∈ (0,∞) with the following property: For
every n ∈ N there exist parameters θ(1) ∈ Rn×d×Rn for the first layer of the NN architecture a = ((d, n, 1), %)
such that for every g ∈W k,p((0, 1)d) it holds that

inf
θ(2)∈R1×n×R

‖Φa(·, (θ(1), θ(2)))− g‖Lp((0,1)d) ≤ cn−
d
k ‖g‖Wk,p((0,1)d).

Theorem 1.16 shows that NNs achieve the same optimal approximation rates that, for example, spline-
based approximation yields for smooth functions. The idea behind this theorem is based on a strategy that is
employed repeatedly throughout the literature. This is the idea of re-approximating classical approximation
methods by NNs and thereby transferring the approximation rates of these methods to NNs. In the example
of Theorem 1.16, approximation by polynomials is used. The idea is that due to the non-vanishing derivatives
of the activation function11, one can approximate every univariate polynomial via divided differences of the
activation function. Specifically, accepting unbounded parameter magnitudes, for any activation function
% : R → R which is p-times differentiable at some point λ ∈ R with %(p)(λ) 6= 0, one can approximate the
monomial x 7→ xp on a compact set K ⊂ R up to arbitrary precision by a fixed-size NN via rescaled p-th
order difference quotients as

lim
h→0

sup
x∈K

∣∣∣ p∑
i=0

(−1)i
(
p
i

)
hp%(p)(λ)

%
(
(p/2− i)hx+ λ

)
− xp

∣∣∣ = 0. (1.8)

Let us end this subsection by clarifying the connection of the approximation results above to the error
decomposition of (1.4). Consider, for simplicity, a regression task with quadratic loss. Then, the approximation
error εapprox equals a common L2-error

εapprox = R(f∗F )−R∗ (∗)
=

∫
X

(f∗F (x)− f∗(x))2 dPX(x)

(∗)
= min

f∈F
‖f − f∗‖2L2(PX)

≤ min
f∈F
‖f − f∗‖2L∞(X ),

where the identities marked by (∗) follow from Lemma 1.1. Hence, Theorem 1.15 postulates that εapprox → 0
for increasing NN sizes, whereas Theorem 1.16 additionally explains how fast εapprox converges to 0.

10To avoid the m× d weight matrix (without using shared parameters as in [ZBH+17]) one interjects an approximate one-
dimensional identity [PV18, Definition 2.5], which can be arbitrarily well approximated by a NN with architecture a = ((1, 2, 1), %)
given that %′(λ) 6= 0 for some λ ∈ R, see (1.8) below.

11The Baire category theorem ensures that for a non-polynomial % ∈ C∞(R) there exists λ ∈ R with %(p)(λ) 6= 0 for all p ∈ N,
see, e.g., [Don69, Chapter 10].
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1.2.3 Generalization

Towards bounding the generalization error εgen = supf∈F |R(f)−R̂S(f)|, one observes that, for every f ∈ F ,

Assumption 1.10 ensures that L(f, Z(i)), i ∈ [m], are i.i.d. random variables. Thus, one can make use of

concentration inequalities to bound the deviation of the empirical risk R̂S(f) = 1
m

∑m
i=1 L(f, Z(i)) from its

expectation R(f). For instance, assuming boundedness12 of the loss, Hoeffding’s inequality [Hoe63] and a
union bound directly imply the following generalization guarantee for countable, weighted hypothesis sets F ,
see, e.g., [BBL03].

Theorem 1.17 (Generalization bound for countable, weighted hypothesis sets). Let m ∈ N, δ ∈ (0, 1) and
assume that F is countable. Further let p be a probability distribution on F and assume that L(f, Z) ∈ [0, 1]
almost surely for every f ∈ F . Then with probability 1− δ (with respect to repeated sampling of PmZ -distributed
training data S) it holds for every f ∈ F that

|R(f)− R̂S(f)| ≤
√

ln(1/p(f)) + ln(2/δ)

2m
.

While the weighting p needs to be chosen before seeing the training data, one could incorporate prior
information on the learning algorithm A. For finite hypothesis sets without prior information, setting
p(f) = 1/|F| for every f ∈ F , Theorem 1.17 implies that, with high probability, it holds that

εgen .

√
ln(|F|)
m

. (1.9)

Again, one notices that, in line with the bias-variance trade-off, the generalization bound is increasing with
the size of the hypothesis set |F|. Although in practice the parameters θ ∈ RP (N) of a NN are discretized
according to floating-point arithmetic, the corresponding quantities |Fa| or |Fa,sgn| would be huge and we
need to find a replacement for the finiteness condition.

We will focus on binary classification tasks and present a main result of VC theory which is to a great
extent derived from the work of Vladimir Vapnik and Alexey Chervonenkis [VC71]. While in (1.9) we counted
the number of functions in F , we now refine this analysis to the number of functions restricted to a finite
subset of X , given by the growth function

growth(m,F) := max
(x(i))mi=1∈Xm

|{f |(x(i))mi=1
: f ∈ F}|.

The growth function can be interpreted as the maximal number of classification patterns in {−1, 1}m which
functions in F can realize on m points and thus growth(m,F) ≤ 2m. The asymptotic behavior of the growth
function is determined by a single intrinsic dimension of our hypothesis set F , the so-called VC-dimension

VCdim(F) := sup
{
m ∈ N ∪ {0} : growth(m,F) = 2m

}
,

which defines the largest number of points such that F can realize any classification pattern, see, e.g., [AB99,
BBL03]. There exist various results on VC-dimensions of NNs with different activation functions, see,
for instance, [BH89, KM97, BMM98, Sak99]. We present the result of [BMM98] for piecewise polynomial
activation functions %. It establishes a bound on the VC-dimension of hypothesis sets of NNs for classification
tasks F(N,%),sgn that scales, up to logarithmic factors, linear in the number of parameters P (N) and quadratic
in the number of layers L.

Theorem 1.18 (VC-dimension of neural network hypothesis sets). Let % be a piecewise polynomial activation
function. Then there exists a constant c ∈ (0,∞) such that for every L ∈ N and N ∈ NL+1 it holds that

VCdim(F(N,%),sgn) ≤ c
(
P (N)L log(P (N)) + P (N)L2

)
.

12Note that for our classification tasks in Definition 1.2 it holds that L(f, Z) ∈ {0, 1} for every f ∈ F . For the regression
tasks, one typically assumes boundedness conditions, such as |Y | ≤ c and supf∈F |f(X)| ≤ c almost surely for some c ∈ (0,∞),

which yields that supf∈F |L(f, Z)| ≤ 4c2.
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Given (x(i))mi=1 ∈ Xm, there exists a partition of RP (N) such that Φ(x(i), ·), i ∈ [m], are polynomials on
each region of the partition. The proof of Theorem 1.18 is based on bounding the number of such regions
and the number of classification patterns of a set of polynomials.

A finite VC-dimension ensures the following generalization bound [Tal94, AB99]:

Theorem 1.19 (VC-dimension generalization bound). There exists a constant c ∈ (0,∞) with the following
property: For every classification task as in Definition 1.2, every Z-valued random variable Z, and every
m ∈ N, δ ∈ (0, 1) it holds with probability 1− δ (with respect to repeated sampling of PmZ -distributed training
data S) that

sup
f∈F
|R(f)− R̂S(f)| ≤ c

√
VCdim(F) + log(1/δ))

m
.

In summary, using NN hypothesis sets F(N,%),sgn with a fixed depth and piecewise polynomial activation
% for a classification task, with high probability it holds that

εgen .

√
P (N) log(P (N))

m
. (1.10)

In the remainder of this section we will sketch a proof of Theorem 1.19 and, in doing so, present
further concepts and complexity measures connected to generalization bounds. We start by observing that
McDiarmid’s inequality [McD89] ensures that εgen is sharply concentrated around its expectation, i.e., with
probability 1− δ it holds that13 ∣∣εgen −E

[
εgen

]∣∣ .√ log(1/δ)

m
. (1.11)

To estimate the expectation of the uniform generalization error we employ a symmetrization argu-
ment [GZ84]. Define G := L ◦ F := {L(f, ·) : f ∈ F}, let S̃ = (Z̃(i))mi=1 ∼ PmZ be a test data set independent

of S, and note that R(f) = E[R̂S̃(f)]. By properties of the conditional expectation and Jensen’s inequality
it holds that

E
[
εgen

]
= E

[
sup
f∈F
|R(f)− R̂S(f)|

]
= E

[
sup
g∈G

1

m

∣∣ m∑
i=1

E
[
g(Z̃(i))− g(Z(i))|S

]∣∣]
≤ E

[
sup
g∈G

1

m

∣∣ m∑
i=1

g(Z̃(i))− g(Z(i))
∣∣]

= E
[

sup
g∈G

1

m

∣∣ m∑
i=1

τi
(
g(Z̃(i))− g(Z(i))

)∣∣]
≤ 2E

[
sup
g∈G

1

m

∣∣ m∑
i=1

τig(Z(i))
∣∣],

where we used that multiplications with Rademacher variables (τ1, . . . , τm) ∼ U({−1, 1}m) only amount

to interchanging Z(i) with Z̃(i) which has no effect on the expectation, since Z(i) and Z̃(i) have the same
distribution. The quantity

Rm(G) := E
[

sup
g∈G

∣∣ 1

m

m∑
i=1

τig(Z(i))
∣∣]

is called the Rademacher complexity14 of G. One can also prove a corresponding lower bound [vdVW97], i.e.,

Rm(G)− 1√
m

. E
[
εgen

]
. Rm(G). (1.12)

13For precise conditions to ensure that the expectation of εgen is well-defined, we refer the reader to [vdVW97, Dud14].
14Due to our decomposition in (1.4), we want to uniformly bound the absolute value of the difference between the risk and

the empirical risk. It is also common to just bound supf∈F R(f)− R̂S(f) leading to a definition of the Rademacher complexity
without the absolute values which can be easier to deal with.
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Now we use a chaining method to bound the Rademacher complexity of F by covering numbers on different
scales. Specifically, Dudley’s entropy integral [Dud67, LT91] implies that

Rm(G) . E
[ ∫ ∞

0

√
logNα(G, dS)

m
dα
]
, (1.13)

where
Nα(G, dS) := inf

{
|G| : G ⊂ G, G ⊂

⋃
g∈G

BdSα (g)
}

denotes the covering number with respect to the (random) pseudometric given by

dS(f, g) = d(Z(i))mi=1
(f, g) :=

√√√√ 1

m

m∑
i=1

(
f(Z(i))− g(Z(i))

)2
.

For the 0-1 loss L(f, z) = 1(−∞,0)(yf(x)) = (1− f(x)y)/2, we can get rid of the loss function by the fact that

Nα(G, dS) = N2α(F , d(X(i))mi=1
). (1.14)

The proof is completed by combining the inequalities in (1.11), (1.12), (1.13) and (1.14) with a result of
David Haussler [Hau95] which shows that for α ∈ (0, 1) we have

log(Nα(F , d(X(i))mi=1
)) . VCdim(F) log(1/α). (1.15)

We remark that this resembles a typical behavior of covering numbers. For instance, the logarithm of the
covering number log(Nα(M)) of a compact d-dimensional Riemannian manifold M essentially scales like
d log(1/α). Finally, note that there exists a similar bound to the one in (1.15) for bounded regression tasks
making use of the so-called fat-shattering dimension [MV03, Theorem 1].

1.3 Do we need a new theory?

Despite the already substantial insight that the classical theories provide, a lot of open questions remain. We
will outline these questions below. The remainder of this article then collects modern approaches to explain
the following issues:

Why do large neural networks not overfit? In Subsection 1.2.2, we have observed that three-layer
NNs with commonly used activation functions and only O(d+m) parameters can interpolate any training
data (x(i), y(i)) ∈ Rd×R, i ∈ [m]. While this specific representation might not be found in practice, [ZBH+17]
indeed trained convolutional15 NNs with ReLU activation function and about 1.6 million parameters to
achieve zero empirical risk on m = 50000 training images of the CIFAR10 dataset [KH09] with 32× 32 pixels
per image, i.e., d = 1024. For such large NNs, generalization bounds scaling with the number of parameters
P (N) as the VC-dimension bound in (1.10) are vacuous. However, they observed close to state-of-the-art
generalization performance16.

Generally speaking, NNs in practice are observed to generalize well despite having more parameters than
training samples (usually referred to as overparametrization) and approximately interpolating the training data
(usually referred to as overfitting). As we cannot perform any better on the training data, there is no trade-off
between fit to training data and complexity of the hypothesis set F happening, seemingly contradicting
the classical bias-variance trade-off of statistical learning theory. This is quite surprising, especially given
the following additional empirical observations in this regime, see [NTS14, ZBH+17, NBMS17, BHMM19,
NKB+20]:

15The basic definition of a convolutional NN will be given in Section 6. In [ZBH+17] more elaborate versions such as an
Inception architecture [SLJ+15] are employed.

16In practice one usually cannot measure the risk R(fs) and instead evaluates the performance of a trained model fs by

R̂s̃(fs) using test data s̃, i.e., realizations of i.i.d. random variables distributed according to PZ and drawn independently of the
training data. In this context one often calls Rs(fs) the training error and Rs̃(fs) the test error.
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Figure 1.4: The first plot (and its semi-log inset) shows median and interquartile range of the test and training
errors of ten independent linear regressions with m = 20 samples, polynomial input features X = (1, Z, . . . , Zd)
of degree d ∈ [40], and labels Y = f∗(Z) + ν, where Z ∼ U([−0.5, 0.5]), f∗ is a polynomial of degree three,
and ν ∼ N (0, 0.01). This clearly reflects the classical u-shaped bias-variance curve with a sweet-spot at d = 3
and drastic overfitting beyond the interpolation threshold at d = 20. However, the second plot shows that
we can control the complexity of our hypothesis set of linear models by restricting the Euclidean norm of
their parameters using ridge regression with a small regularization parameter α = 10−3, i.e., minimizing
the regularized empirical risk 1

m

∑m
i=1(Φ(X(i), θ) − Y (i))2 + α‖θ‖22, where Φ(·, θ) = 〈θ, ·〉. Corresponding

examples of f̂s are depicted in the last plot.

1. Zero training error on random labels: Zero empirical risk can also be achieved for random labels using
the same architecture and training scheme with only slightly increased training time: This suggests
that the considered hypothesis set of NNs F can fit arbitrary binary labels, which would imply that
VCdim(F) ≈ m or Rm(F) ≈ 1 rendering our uniform generalization bounds in Theorem 1.19 and
in (1.12) vacuous.

2. Lack of explicit regularization: The test error depends only mildly on explicit regularization like norm-
based penalty terms or dropout (see [Gér17] for an explanation of different regularization methods): As
such regularization methods are typically used to decrease the complexity of F , one might ask if there
is any implicit regularization (see Figure 1.4), constraining the range of our learning algorithm A to

some smaller, potentially data-dependent subset, i.e., A(s) ∈ F̃s ( F .

3. Dependence on the optimization: The same NN trained to zero empirical risk using different variants of
SGD or starting from different initializations can exhibit different test errors: This indicates that the
dynamics of gradient descent and properties of the local neighborhood around the model fs = A(s)
might be correlated with generalization performance.

4. Interpolation of noisy training data: One still observes low test error when training up to approximately
zero empirical risk using a regression (or surrogate) loss on noisy training data. This is particularly
interesting, as the noise is captured by the model but seems not to hurt generalization performance.

5. Further overparametrization improves generalization performance: Further increasing the NN size can
lead to even lower test error: Together with the previous item, this might ask for a different treatment
of models complex enough to fit the training data. According to the traditional lore “The training error
tends to decrease whenever we increase the model complexity, that is, whenever we fit the data harder.
However with too much fitting, the model adapts itself too closely to the training data, and will not
generalize well (i.e., have large test error)”, [HTF01]. While this flawlessly describes the situation for
certain machine learning tasks (see Figure 1.4), it seems not to be directly applicable here.

In summary, this suggests that the generalization performance of NNs depends on an interplay of the data
distribution PZ combined with properties of the learning algorithm A, such as the optimization procedure
and its range. In particular, classical uniform bounds as in Item (B) of our error decomposition might only
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deliver insufficient explanation, see also [NK19]. The mismatch between predictions of classical theory and
the practical generalization performance of deep NNs is often referred to as generalization puzzle. In Section 2
we will present possible explanations for this phenomenon.

What is the role of depth? We have seen in Subsection 1.2.2 that NNs can closely approximate every
function if they are sufficiently wide [Cyb89, Fun89, HSW89]. There are additional classical results that even
provide a trade-off between the width and the approximation accuracy [CLM94, Mha96, MP99]. In these
results, the central concept is the width of a NN. In modern applications, however at least as much focus if
not more lies on the depth of the underlying architectures, which can have more than 1000 layers [HZRS16].
After all, the depth of NNs is responsible for the name of deep learning.

This consideration begs the question of whether there is a concrete mathematically quantifiable benefit of
deep architectures over shallow NNs. Indeed, we will see effects of depth at many places throughout this
manuscript. However, one of the aspects of deep learning that is most clearly affected by deep architectures
is the approximation theoretical aspect. In this framework, we will discuss in Section 3 multiple approaches
that describe the effect of depth.

Why do neural networks perform well in very high-dimensional environments? We have seen
in Subsection 1.2.2 and will see in Section 3 that from the perspective of approximation theory deep NNs
match the performance of the best classical approximation tool in virtually every task. In practice, we
observe something that is even more astounding. In fact, NNs seem to perform incredibly well on tasks that
no classical, non-specialized approximation method can even remotely handle. The approximation problem
that we are talking about here is that of approximation of high-dimensional functions. Indeed, the classical
curse of dimensionality [Bel52, NW09] postulates that essentially every approximation method deteriorates
exponentially fast with increasing dimension.

For example, for the uniform approximation error of 1-Lipschitz continuous functions on a d-dimensional
unit cube in the uniform norm, we have a lower bound of Ω(p−1/d), for p→∞, when approximating with a
continuous scheme17 of p free parameters [DeV98].

On the other hand, in most applications, the input dimensions are massive. For example, the following
datasets are typically used as benchmarks in image classification problems: MNIST [LBBH98] with 28× 28
pixels per image, CIFAR-10/CIFAR-100 [KH09] with 32×32 pixels per image and ImageNet [DDS+09, KSH12]
which contains high-resolution images that are typically down-sampled to 256 × 256 pixels. Naturally, in
real-world applications, the input dimensions may well exceed those of these test problems. However, already
for the simplest of the test cases above, the input dimension is d = 784. If we use d = 784 in the aforementioned
lower bound for the approximation of 1-Lipschitz functions, then we require O(ε−784) parameters to achieve
a uniform error of ε ∈ (0, 1). Already for moderate ε this value will quickly exceed the storage capacity
of any conceivable machine in this universe. Considering the aforementioned curse of dimensionality, it is
puzzling to see that NNs perform adequately in this regime. In Section 4, we describe three approaches that
offer explanations as to why deep NN-based approximation is not rendered meaningless in the context of
high-dimensional input dimensions.

Why does stochastic gradient descent converge to good local minima despite the non-convexity
of the problem? As mentioned in Subsection 1.2.1, a convergence guarantee of stochastic gradient descent
to a global minimum is typically only given if the underlying objective function admits some form of convexity.
However, the empirical risk of a NN, i.e., R̂s(Φ(·, θ)), is typically not a convex function with respect to the
parameters θ. For a simple intuitive reason why this function fails to be convex, it is instructive to consider
the following example.

17One can achieve better rates at the cost of discontinuous (with respect to the function to be approximated) parameter
assignment. This can be motivated by the use of space-filling curves. In the context of NNs with piecewise polynomial activation
functions, a rate of p−2/d can be achieved by very deep architectures [Yar18a, YZ20].
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Figure 1.5: Two-dimensional projection of the loss landscape of a neural network with four layers and ReLU
activation function on four different scales. From top-left to bottom-right, we zoom into the global minimum
of the landscape.

Example 1.20. Consider the NN

Φ(x, θ) = θ1%R(θ3x+ θ5) + θ2%R(θ4x+ θ6), θ ∈ R6, x ∈ R,

with the ReLU activation function %R(x) = max{0, x}. It is not hard to see that the two parameter values
θ = (1,−1, 1, 1, 1, 0) and θ̄ = (−1, 1, 1, 1, 0, 1) produce the same realization function18, i.e., Φ(·, θ) = Φ(·, θ̄).
However, since (θ + θ̄)/2 = (0, 0, 1, 1, 1/2, 1/2), we conclude that Φ(·, (θ + θ̄)/2) = 0. Clearly, for the data
s = ((−1, 0), (1, 1)), we now have that

R̂s(Φ(·, θ)) = R̂s(Φ(·, θ̄)) = 0 and R̂s
(
Φ(·, (θ + θ̄)/2)

)
=

1

2
,

showing the non-convexity of R̂s.

18This corresponds to interchanging the two neurons in the hidden layer. In general it holds that the realization function of a
FC NN is invariant under permutations of the neurons in a given hidden layer.
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Given this non-convexity, Algorithm 1 faces serious challenges. Firstly, there may exist multiple suboptimal
local minima. Secondly, the objective may exhibit saddle points, some of which may be of higher order, i.e.,
the Hessian vanishes. Finally, even if no suboptimal local minima exist, there may be extensive areas of the
parameter space where the gradient is very small, so that escaping these regions can take a very long time.

These issues are not mere theoretical possibilities, but will almost certainly arise. For example, [AHW96,
SS18] show the existence of many suboptimal local minima in typical learning tasks. Moreover, for fixed-sized
NNs, it has been shown in [BEG19, PRV20], that with respect to Lp-norms the set of NNs is generally a
very non-convex and non-closed set. Also, the map θ 7→ Φa(·, θ) is not a quotient map, i.e., not continuously
invertible when accounting for its non-injectivity. In addition, in various situations finding the global optimum
of the minimization problem is shown to be NP-hard in general [BR89, Jud90, Š́ım02]. In Figure 1.5 we
show the two-dimensional projection of a loss landscape, i.e., the projection of the graph of the function
θ 7→ R̂s(Φ(·, θ)). It is apparent from the visualization that the problem exhibits more than one minimum.
We also want to add that in practice one neglects that the loss is only almost everywhere differentiable in
case of piecewise smooth activation functions, such as the ReLU, although one could resort to subgradient
methods [KL18].

In view of these considerations, the classical framework presented in Subsection 1.2.1 offers no explanation
as to why deep learning works in practice. Indeed, in the survey [OM98, Section 1.4] the state of the art in
1998 was summarized by the following assessment: “There is no formula to guarantee that (1) the NN will
converge to a good solution, (2) convergence is swift, or (3) convergence even occurs at all.”

Nonetheless, in applications, not only would an explanation of when and why SGD converges be extremely
desirable, convergence is also quite often observed even though there is little theoretical explanation for it in
the classical set-up. In Section 5, we collect modern approaches explaining why and when convergence occurs
and can be guaranteed.

Which aspects of a neural network architecture affect the performance of deep learning? In
the introduction to classical approaches to deep learning above, we have seen that in classical results, such as
in Theorem 1.16, only the effect of few aspects of the NN architectures are considered. In Theorem 1.16 only
the impact of the width of the NN was studied. In further approximation theorems below, e.g., in Theorems 2.1
and 3.2, we will additionally have a variable depth of NNs. However, for deeper architectures, there are
many additional aspects of the architecture that could potentially affect the performance of the model for
the associated learning task. For example, even for a standard FC NN with L layers as in Definition 1.4,
there is a lot of flexibility in choosing the number of neurons (N1, . . . , NL−1) ∈ NL−1 in the hidden layers.
One would expect that certain choices affect the capabilities of the NNs considerably and some choices are
preferable over others. Note that, one aspect of the neural network architecture that can have a profound
effect on the performance, especially regarding approximation theoretical aspects of the performance, is the
choice of the activation function. For example, in [MP99, Yar21] activation functions were found that allow
uniform approximation of continuous functions to arbitrary accuracy with fixed-size neural networks. In the
sequel we will, however, focus on architectural aspects other than the activation function.

In addition, practitioners have invented an immense variety of NN architectures for specific problems. These
include NNs with convolutional blocks [LBBH98], with skip connections [HZRS16], sparse connections [ZAP16,
BBC17], batch normalization blocks [IS15], and many more. In addition, for sequential data, recurrent
connections are used [RHW86] and these often have forget mechanisms [HS97] or other gates [CvMG+14]
included in their architectures.

The choice of an appropriate NN architecture is essential to the success of many deep learning tasks. This
goes so far, that frequently an architecture search is applied to find the most suitable one [ZL17, PGZ+18].
In most cases, though, the design and choice of the architecture is based on the intuition of the practitioner.

Naturally, from a theoretical point of view, this situation is not satisfactory. Instead, it would be highly
desirable to have a mathematical theory guiding the choice of NN architectures. More concretely, one
would wish for mathematical theorems that identify those architectures that work for a specific problem and
those that will yield suboptimal results. In Section 6, we discuss various results that explain theoretically
quantifiable effects of certain aspects or building blocks of NN architectures.
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Which features of data are learned by deep architectures? It is commonly believed that the neurons
of NNs constitute feature extractors in different levels of abstraction that correspond to the layers. This
belief is partially grounded in experimental evidence as well as in drawing connections to the human visual
cortex, see [GBC16, Chapter 9.10].

Understanding the features that are learned can, in a way, be linked to understanding the reasoning
with which a NN-based model ended up with its result. Therefore, analyzing the features that a NN learns
constitutes a data-aware approach to understanding deep learning. Naturally, this falls outside of the scope of
the classical theory, which is formulated in terms of optimization, generalization, and approximation errors.

One central obstacle towards understanding these features theoretically is that, at least for practical
problems, the data distribution is unknown. However, one often has partial knowledge. One example is that
in image classification it appears reasonable to assume that any classifier is translation and rotation invariant
as well as invariant under small deformations. In this context, it is interesting to understand under which
conditions trained NNs admit the same invariances.

Biological NNs such as the visual cortex are believed to be evolved in a way that is based on sparse
multiscale representations of visual information [OF96]. Again, a fascinating question is whether NNs trained
in practice can be shown to favor such multiscale representations based on sparsity or if the architecture
is theoretically linked to sparse representations. We will discuss various approaches studying the features
learned by neural networks in Section 7.

Are neural networks capable of replacing highly specialized numerical algorithms in natural
sciences? Shortly after their successes in various data-driven tasks in data science and AI applications,
NNs have been used also as a numerical ansatz for solving highly complex models from the natural sciences
which may be combined with data driven methods. This per se is not very surprising as many such models
can be formulated as optimization problems where the common deep learning paradigm can be directly
applied. What might be considered surprising is that this approach seems to be applicable to a wide range of
problems which have previously been tackled by highly specialized numerical methods.

Particular successes include the data-driven solution of ill-posed inverse problems [AMÖS19] which have,
for example, led to a fourfold speedup in MRI scantimes [ZKS+18] igniting the research project fastmri.org.
Deep-learning-based approaches have also been very successful in solving a vast array of different partial
differential equation (PDE) models, especially in the high-dimensional regime [EY18, RPK19, HSN20,
PSMF20] where most other methods would suffer from the curse of dimensionality.

Despite these encouraging applications, the foundational mechanisms governing their workings and
limitations are still not well understood. In Subsection 4.3 and Section 8 we discuss some theoretical and
practical aspects of deep learning methods applied to the solution of inverse problems and PDEs.

2 Generalization of large neural networks

In the following, we will shed light on the generalization puzzle of NNs as described in Subsection 1.3. We
focus on four different lines of research which, of course, do not cover the wide range of available results.
In fact, we had to omit a discussion of a multitude of important works, some of which we reference in the
following paragraph.

First, let us mention extensions of the generalization bounds presented in Subsection 1.2.3 making use
of local Rademacher complexities [BBM05] or dropping assumptions on boundedness or rapidly decaying
tails [Men14]. Furthermore, there are approaches to generalization which do not focus on the hypothesis set F ,
i.e., the range of the learning algorithm A, but the way A chooses its model fs. For instance, one can assume
that fs does not depend too strongly on each individual sample (algorithmic stability [BE02, PRMN04]),
only on a subset of the samples (compression bounds [AGNZ18]), or satisfies local properties (algorithmic
robustness [XM12]). Finally, we refer the reader to [JNM+20] and the references mentioned therein for an
empirical study of various measures related to generalization.

Note that many results on generalization capabilities of NNs can still only be proven in simplified settings,
e.g., for deep linear NNs, i.e., %(x) = x, or basic linear models, i.e., one-layer NNs. Thus, we start by
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emphasizing the connection of deep, nonlinear NNs to linear models (operating on features given by a suitable
kernel) in the infinite width limit.

2.1 Kernel regime

We consider a one-dimensional prediction setting where the loss L(f, (x, y)) depends on x ∈ X only through
f(x) ∈ Y, i.e., there exists a function ` : Y × Y → R such that

L(f, (x, y)) = `(f(x), y).

For instance, in case of the quadratic loss we have that `(ŷ, y) = (ŷ − y)2. Further, let Φ be a NN with
architecture (N, %) = ((d,N1, . . . , NL−1, 1), %) and let Θ0 be a RP (N)-valued random variable. For simplicity,
we evolve the parameters of Φ according to the continuous version of gradient descent, so-called gradient flow,
given by

dΘ(t)

dt
= −∇θR̂s(Φ(·,Θ(t))) = − 1

m

m∑
i=1

∇θΦ(x(i),Θ(t))Di(t), Θ(0) = Θ0, (2.1)

where Di(t) := ∂`(ŷ,y(i))
∂ŷ |ŷ=Φ(x(i),Θ(t)) is the derivative of the loss with respect to the prediction at input

feature x(i) at time t ∈ [0,∞). The chain rule implies the following dynamics of the NN realization

dΦ(·,Θ(t))

dt
= − 1

m

m∑
i=1

KΘ(t)(·, x(i))Di(t) (2.2)

and its empirical risk

dR̂s(Φ(·,Θ(t))

dt
= − 1

m2

m∑
i=1

m∑
j=1

Di(t)KΘ(t)(x
(i), x(j))Dj(t), (2.3)

where Kθ, θ ∈ RP (N), is the so-called neural tangent kernel (NTK)

Kθ : Rd × Rd → R, Kθ(x1, x2) =
(
∇θΦ(x1, θ)

)T∇θΦ(x2, θ). (2.4)

Now let σw, σb ∈ (0,∞) and assume that the initialization Θ0 consists of independent entries, where entries
corresponding to the weight matrix and bias vector in the `-th layer follow a normal distribution with
zero mean and variances σ2

w/N` and σ2
b , respectively. Under weak assumptions on the activation function,

the central limit theorem implies that the pre-activations converge to i.i.d. centered Gaussian processes in
the infinite width limit N1, . . . , NL−1 → ∞, see [LBN+18, MHR+18]. Similarly, also KΘ0

converges to a
deterministic kernel K∞ which stays constant in time and only depends on the activation function %, the
depth L, and the initialization parameters σw and σb [JGH18, ADH+19, Yan19, LXS+20]. Thus, within the
infinite width limit, gradient flow on the NN parameters as in (2.1) is equivalent to functional gradient flow
in the reproducing kernel Hilbert space (HK∞ , ‖ · ‖K∞) corresponding to K∞, see (2.2).

By (2.3), the empirical risk converges to a global minimum as long as the kernel evaluated at the input
features, K̄∞ := (K∞(x(i), x(j)))mi,j=1 ∈ Rm×m, is positive definite (see, e.g., [JGH18, DLL+19] for suitable

conditions) and the `(·, y(i)) are convex and lower bounded. For instance, in case of the quadratic loss the
solution of (2.2) is then given by

Φ(·,Θ(t)) = C(t)(y(i))mi=1 +
(
Φ(·,Θ0)− C(t)(Φ(x(i),Θ0))mi=1

)
, (2.5)

where C(t) :=
(
(K∞(·, x(i)))mi=1

)T
(K̄∞)−1(Im − e−

2K̄∞t
m ). As the initial realization Φ(·,Θ0) constitutes a

centered Gaussian process, the second term in (2.5) follows a normal distribution with zero mean at each
input. In the limit t → ∞, its variance vanishes on the input features x(i), i ∈ [m], and the first term
convergences to the minimum kernel-norm interpolator, i.e., to the solution of

min
f∈HK∞

‖f‖K∞ s.t. f(x(i)) = y(i).
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Therefore, within the infinite width limit, the generalization properties of the NN could be described by the
generalization properties of the minimizer in the reproducing kernel Hilbert space corresponding to the kernel
K∞ [BMM18, LR20, LRZ20, GMMM21, Li21].

This so-called lazy training, where a NN essentially behaves like a linear model with respect to the nonlinear
features x 7→ ∇θΦ(x, θ), can already be observed in the non-asymptotic regime, see also Subsection 5.2. For
sufficiently overparametrized (P (N)� m) and suitably initialized models, one can show that Kθ(0) is close
to K∞ at initialization and Kθ(t) stays close to Kθ(0) throughout training, see [DZPS18, ADH+19, COB19,
DLL+19]. The dynamics of the NN under gradient flow in (2.2) and (2.3) can thus be approximated by the
dynamics of the linearization of Φ at initialization Θ0, given by

Φlin(·, θ) := Φ(·,Θ0) + 〈∇θΦ(·,Θ0), θ −Θ0〉,

which motivates to study the behavior of linear models in the overparametrized regime.

2.2 Norm-based bounds and margin theory

For piecewise linear activation functions, one can improve upon the VC-dimension bounds in Theorem 1.18
and show that, up to logarithmic factors, the VC-dimension is asymptotically bounded both above and below
by P (N)L, see [BHLM19]. The lower bound shows that the generalization bound in Theorem 1.19 can only
be non-vacuous if the number of samples m scales at least linearly with the number of NN parameters P (N).
However, heavily overparametrized NNs used in practice seem to generalize well outside of this regime.

One solution is to bound other complexity measures of NNs taking into account various norms on the
parameters and avoid the direct dependence on the number of parameters [Bar98]. For instance, we can
compute bounds on the Rademacher complexity of NNs with positively homogeneous activation function,
where the Frobenius norm of the weight matrices is bounded, see also [NTS15]. Note that, for instance,
the ReLU activation is positively homogeneous, i.e., it satisfies that %R(λx) = λ%R(x) for all x ∈ R and
λ ∈ (0,∞).

Theorem 2.1 (Rademacher complexity of neural networks). Let d ∈ N, assume that X = B1(0) ⊂ Rd, and
let % be a positively homogeneous activation function with Lipschitz constant 1. We define the set of all
biasless NN realizations with depth L ∈ N, output dimension 1, and Frobenius norm of the weight matrices
bounded by C ∈ (0,∞) as

F̃L,C :=
{

Φ(N,%)(·, θ) : N ∈ NL+1, N0 = d, NL = 1, θ = ((W (`), 0))L`=1 ∈ RP (N), ‖W (`)‖F ≤ C
}
.

Then for every m ∈ N it holds that

Rm(F̃L,C) ≤ C(2C)L−1

√
m

.

The term 2L−1 depending exponentially on the depth can be reduced to
√
L or completely omitted

by invoking also the spectral norm of the weight matrices [GRS18]. Further, observe that for L = 1,
i.e., linear classifiers with bounded Euclidean norm, this bound is independent of the input dimension d.
Together with (1.12), this motivates why the regularized linear model in Figure 1.4 did perform well in the
overparametrized regime.

The proof of Theorem 2.1 is based on the contraction property of the Rademacher complexity [LT91]
which establishes that

Rm(% ◦ F̃`,C) ≤ 2Rm(F̃`,C), ` ∈ N.

We can iterate this together with the fact that for every τ ∈ {−1, 1}m, and x ∈ RN`−1 it holds that

sup
‖W (`)‖F≤C

∥∥ m∑
i=1

τi%(W (`)x)
∥∥

2
= C sup

‖w‖2≤1

∣∣ m∑
i=1

τi%(〈w, x〉)
∣∣.
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In summary, one establishes that

Rm(F̃L,C) =
C

m
E
[

sup
f∈F̃L−1,C

∥∥ m∑
i=1

τi%(f(X(i)))
∥∥

2

]
≤ C(2C)L−1

m
E
[∥∥ m∑

i=1

τiX
(i)
∥∥

2

]
,

which by Jensen’s inequality yields the claim.
Recall that for classification problems one typically minimizes a surrogate loss Lsurr, see Remark 1.9.

This suggests that there could be a trade-off happening between complexity of the hypothesis class Fa and
the corresponding regression fit underneath, i.e., the margin M(f, z) := yf(x) by which a training example
z = (x, y) has been classified correctly by f ∈ Fa, see [BFT17, NBS18, JKMB19]. For simplicity, let us focus
on the ramp surrogate loss with confidence γ > 0, i.e., Lsurr

γ (f, z) := `γ(M(f, z)), where

`γ(t) := 1(−∞,γ](t)− t
γ1[0,γ](t), t ∈ R.

Note that the ramp function `γ is 1/γ-Lipschitz continuous. Using McDiarmid’s inequality and a sym-
metrization argument similar to the proof of Theorem 1.19, combined with the contraction property of the
Rademacher complexity, yields the following bound on the probability of misclassification: With probability
1− δ for every f ∈ Fa it holds that

P[sgn(f(X)) 6= Y ] ≤ E
[
Lsurr
γ (f, Z)

]
.

1

m

m∑
i=1

Lsurr
γ (f, Z(i)) + Rm(Lsurr

γ ◦ Fa) +

√
ln(1/δ)

m

.
1

m

m∑
i=1

1(−∞,γ)(Y
(i)f(X(i))) +

Rm(M ◦ Fa)

γ
+

√
ln(1/δ)

m

=
1

m

m∑
i=1

1(−∞,γ)(Y
(i)f(X(i))) +

Rm(Fa)

γ
+

√
ln(1/δ)

m
.

This shows the trade-off between the complexity of Fa measured by Rm(Fa) and the fraction of training
data that has been classified correctly with a margin of at least γ. In particular this suggests, that (even if
we classify the training data correctly with respect to the 0-1 loss) it might be beneficial to further increase
the complexity of Fa to simultaneously increase the margins by which the training data has been classified
correctly and thus obtain a better generalization bound.

2.3 Optimization and implicit regularization

The optimization algorithm, which is usually a variant of SGD, seems to play an important role for the
generalization performance. Potential indicators for good generalization performance are high speed of
convergence [HRS16] or flatness of the local minimum to which SGD converged, which can be characterized
by the magnitude of the eigenvalues of the Hessian (or approximately as the robustness of the minimizer
to adversarial perturbations on the parameter space), see [KMN+17]. In [DR17, NBMS17] generalization
bounds depending on a concept of flatness are established by employing a PAC-Bayesian framework, which
can be viewed as a generalization of Theorem 1.17, see [McA99]. Further, one can also unite flatness and
norm-based bounds by the Fisher–Rao metric of information geometry [LPRS19].

Let us motivate the link between generalization and flatness in the case of simple linear models: We
assume that our model takes the form 〈θ, ·〉, θ ∈ Rd, and we will use the abbreviations

r(θ) := R̂s(〈θ, ·〉) and γ(θ) := min
i∈[m]

M(〈θ, ·〉, z(i)) = min
i∈[m]

y(i)〈θ, x(i)〉

throughout this subsection to denote the empirical risk and the margin for given training data s =
((x(i), y(i)))mi=1. We assume that we are solving a classification task with the 0-1 loss and that our training
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data is linearly separable. This means that there exists a minimizer θ̂ ∈ Rd such that r(θ̂) = 0. We observe
that δ-robustness in the sense that

max
θ∈Bδ(0)

r(θ̂ + θ) = r(θ̂) = 0

implies that

0 < min
i∈[m]

y(i)〈θ̂ − δy(i) x(i)

‖x(i)‖2
, x(i)〉 ≤ γ(θ̂)− δ min

i∈[m]
‖x(i)‖2,

see also [PKL+17]. This lower bound on the margin γ(θ̂) then ensures generalization guarantees as described
in Subsection 2.2.

Even without explicit19 control on the complexity of Fa, there do exist results showing that SGD acts as
implicit regularization [NTS14]. This is motivated by linear models where SGD converges to the minimal
Euclidean norm solution for the quadratic loss and in the direction of the hard margin support vector machine
solution for the logistic loss on linearly separable data [SHN+18]. Note that convergence to minimum norm
or maximum margin solutions in particular decreases the complexity of our hypothesis set and thus improves
generalization bounds, see Subsection 2.2.

While we have seen this behavior of gradient descent for linear regression already in the more general
context of kernel regression in Subsection 2.1, we want to motivate the corresponding result for classification
tasks in the following. We focus on the exponential surrogate loss Lsurr(f, z) = `(M(f, z)) = e−yf(x) with
`(z) = e−z, but similar observations can be made for the logistic loss defined in Remark 1.9. We assume that

the training data is linearly separable, which guarantees the existence of θ̂ 6= 0 with γ(θ̂) > 0. Then for every
linear model 〈θ, ·〉, θ ∈ Rd, it holds that

〈
θ̂,∇θr(θ)〉 =

1

m

m∑
i=1

`′(y(i)〈θ, x(i)〉)︸ ︷︷ ︸
<0

y(i)〈θ̂, x(i)〉︸ ︷︷ ︸
>0

.

A critical point ∇θr(θ) = 0 can therefore be approached if and only if for every i ∈ [m] we have

`′(y(i)〈θ, x(i)〉) = −e−y
(i)〈θ,x(i)〉 → 0,

which is equivalent to ‖θ‖2 →∞ and γ(θ) > 0. Let us now define

rβ(θ) :=
`−1(r(βθ))

β
, θ ∈ Rd, β ∈ (0,∞),

and observe that

rβ(θ) = − log(r(βθ))

β
→ γ(θ), β →∞. (2.6)

Due to this property, rβ is often referred to as the smoothed margin [LL19, JT19b]. We evolve θ according to
gradient flow with respect to the smoothed margin r1, i.e.,

dθ(t)

dt
= ∇θr1(θ(t)) = − 1

r(θ(t))
∇θr(θ(t)),

which produces the same trajectory as gradient flow with respect to the empirical risk r under a rescaling
of the time t. Looking at the evolution of the normalized parameters θ̃(t) = θ(t)/‖θ(t)‖2, the chain rule
establishes that

dθ̃(t)

dt
= Pθ̃(t)

∇θrβ(t)(θ̃(t))

β(t)
with β(t) := ‖θ(t)‖2 and Pθ := Id − θθT , θ ∈ Rd.

19Note that also different architectures can exhibit vastly different inductive biases [ZBH+20] and also within the architecture
different parameters have different importance, see [FC18, ZBS19] and Proposition 6.2.
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This shows that the normalized parameters perform projected gradient ascent with respect to the function
rβ(t), which converges to the margin due to (2.6) and the fact that β(t) = ‖θ(t)‖2 →∞ when approaching a
critical point. This motivates that during gradient flow the normalized parameters implicitly maximize the
margin. See [GLSS18a, GLSS18b, LL19, NLG+19, CB20, JT20] for a precise analysis and various extensions,
e.g., to homogeneous or two-layer NNs and other optimization geometries.

To illustrate one research direction, we present an exemplary result in the following. Let Φ = Φ(N,%) be

a biasless NN with parameters θ = ((W (`), 0))L`=0 and output dimension NL = 1. For given input features
x ∈ RN0 , the gradient ∇W (`)Φ = ∇W (`)Φ(x, θ) ∈ RN`−1×N` with respect to the weight matrix in the `-th
layer satisfies that

∇W (`)Φ = %(Φ(`−1))
∂Φ

∂Φ(`+1)

∂Φ(`+1)

∂Φ(`)
= %(Φ(`−1))

∂Φ

∂Φ(`+1)
W (`+1) diag

(
%′(Φ(`))

)
,

where the pre-activations (Φ(`))L`=1 are given as in (1.1). Evolving the parameters according to gradient flow
as in (2.1) and using an activation function % with %(x) = %′(x)x, such as the ReLU, this implies that

diag
(
%′(Φ(`))

)
W (`)(t)

(dW (`)(t)

dt

)T
=
(dW (`+1)(t)

dt

)T
W (`+1)(t) diag

(
%′(Φ(`))

)
. (2.7)

Note that this ensures the conservation of balancedness between weight matrices of adjacent layers, i.e.,

d

dt

(
‖W (`+1)(t)‖2F − ‖W (`)(t)‖2F

)
= 0,

see [DHL18]. Furthermore, for deep linear NNs, i.e., %(x) = x, the property in (2.7) implies conservation of
alignment of left and right singular spaces of W (`) and W (`+1). This can then be used to show implicit pre-
conditioning and convergence of gradient descent [ACH18, ACGH19] and that, under additional assumptions,
gradient descent converges to a linear predictor that is aligned with the maximum margin solution [JT19a].

2.4 Limits of classical theory and double descent

There is ample evidence that classical tools from statistical learning theory alone, such as Rademacher
averages, uniform convergence, or algorithmic stability may be unable to explain the full generalization
capabilities of NNs [ZBH+17, NK19]. It is especially hard to reconcile the classical bias-variance trade-off with
the observation of good generalization performance when achieving zero empirical risk on noisy data using a
regression loss. On top of that, this behavior of overparametrized models in the interpolation regime turns out
not to be unique to NNs. Empirically, one observes for various methods (decision trees, random features, linear
models) that the test error decreases even below the sweet-spot in the u-shaped bias-variance curve when
further increasing the number of parameters [BHMM19, GJS+20, NKB+20]. This is often referred to as the
double descent curve or benign overfitting, see Figure 2.1. For special cases, e.g., linear regression or random
feature regression, such behavior can even be proven, see [HMRT19, MM19, BLLT20, BHX20, MVSS20].

In the following we analyze this phenomenon in the context of linear regression. Specifically, we focus
on a prediction task with quadratic loss, input features given by a centered Rd-valued random variable
X, and labels given by Y = 〈θ∗, X〉+ ν, where θ∗ ∈ Rd and ν is a centered random variable independent

of X. For training data S = ((X(i), Y (i)))mi=1, we consider the empirical risk minimizer f̂S = 〈θ̂, ·〉 with

minimum Euclidean norm of its parameters θ̂ or, equivalently, the limit of gradient flow with zero initialization.
Using (1.3) and a bias-variance decomposition we can write

E[R(f̂S)|(X(i))mi=1]−R∗ = E[‖f̂S − f∗‖L2(PX)|(X(i))mi=1]

= (θ∗)TPE[XXT ]Pθ∗ +E[ν2]Tr
(
Σ+
E[XXT ]

)
,

where Σ :=
∑m
i=1X

(i)(X(i))T , Σ+ denotes the Moore–Penrose inverse of Σ, and P := Id − Σ+Σ is the
orthogonal projector onto the kernel of Σ. For simplicity, we focus on the variance Tr

(
Σ+
E[XXT ]

)
, which can
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Figure 2.1: This illustration shows the classical, underparametrized regime in green, where the u-shaped curve
depicts the bias-variance trade-off as explained in Section 1.2. Starting with complexity of our algorithm
A larger than the interpolation threshold we can achieve zero empirical risk R̂s(fs) (training error), where
fs = A(s). Within this modern interpolation regime, the risk R(fs) (test error) might be even lower than
at the classical sweet spot. Whereas complexity(A) traditionally refers to the complexity of the hypothesis
set F , there is evidence that also the optimization scheme and the data is influencing the complexity
leading to definitions like complexity(A) := max

{
m ∈ N : E

[
R̂S(A(S))

]
≤ ε with S ∼ PmZ

}
, for suitable

ε > 0 [NKB+20]. This illustration is based on [BHMM19].

be viewed as setting θ∗ = 0 and E[ν2] = 1. Assuming that X has i.i.d. entries with unit variance and bounded
fifth moment, the distribution of the eigenvalues of 1

mΣ+ in the limit d,m→∞ with d
m → κ ∈ (0,∞) can be

described via the Marchenko–Pastur law. Therefore, the asymptotic variance can be computed explicitly as

Tr
(
Σ+
E[XXT ]

)
→ 1−max{1− κ, 0}

|1− κ|
for d,m→∞ with

d

m
→ κ,

almost surely, see [HMRT19]. This shows that despite interpolating the data we can decrease the risk in
the overparametrized regime κ > 1. In the limit d,m→∞, such benign overfitting can also be shown for
more general settings (including lazy training of NNs), some of which even achieve their optimal risk in the
overparametrized regime [MM19, MZ20, LD21].

For normally distributed input features X such that E[XXT ] has rank larger than m, one can also
compute the behavior of the variance in the non-asymptomatic regime [BLLT20]. Define

k∗ := min{k ≥ 0:

∑
i>k λi

λk+1
≥ cm},

where λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0 are the eigenvalues of E[XXT ] in decreasing order and c ∈ (0,∞) is a universal
constant. Assuming that k∗/m is sufficiently small, with high probability it holds that

Tr
(
Σ+
E[XXT ]

)
≈ k∗

m
+
m
∑
i>k∗ λ

2
i

(
∑
i>k∗ λi)

2
.
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Figure 2.2: The expected variance
of linear regression in (2.8) with d ∈
[150] and Xi ∼ U({−1, 1}), i ∈ [150],
where Xi = X1 for i ∈ {10, . . . , 20} ∪
{30, . . . , 50} and all other coordinates
are independent.

This precisely characterizes the regimes for benign overfitting in terms
of the eigenvalues of the covariance matrix E[XXT ]. Furthermore, it
shows that adding new input feature coordinates and thus increasing
the number of parameters d can lead to either an increase or decrease
of the risk.

To motivate this phenomenon, which is considered in much more
depth in [CMBK20], let us focus on a single sample m = 1 and
features X that take values in X = {−1, 1}d. Then it holds that

Σ+ = X(1)(X(1))T

‖X(1)‖4 = X(1)(X(1))T

d2 and thus

E
[
Tr
(
Σ+
E[XXT ]

)]
=

1

d2

∥∥E[XXT
]∥∥2

F
. (2.8)

In particular, this shows that incrementing the input feature dimen-
sions d 7→ d+ 1 one can increase or decrease the risk depending on
the correlation of the coordinate Xd+1 with respect to the previous
coordinates (Xi)

d
i=1, see also Figure 2.2.

Generally speaking, overparametrization and perfectly fitting
noisy data does not exclude good generalization performance, see
also [BRT19]. However, the risk crucially depends on the data
distribution and the chosen algorithm.

3 The role of depth in the expressivity of neural networks

The approximation theoretical aspect of a NN architecture, responsible for the approximation component
εapprox := R(f∗F )−R∗ of the error R(fS)−R∗ in (1.4), is probably one of the most well-studied parts of the
deep learning pipe-line. The achievable approximation error of an architecture most directly describes the
power of the architecture.

As mentioned in Subsection 1.3, many classical approaches only study the approximation theory of NNs
with few layers, whereas modern architectures are typically very deep. A first observation into the effect of
depth is that it can often compensate for insufficient width. For example, in the context of the universal
approximation theorem, it was shown that very narrow NNs are still universal if instead of increasing the
width, the number of layers can be chosen arbitrarily [HS17, Han19, KL20]. However, if the width of a NN
falls below a critical number, then the universality will not hold any longer.

Below, we discuss three additional observations that shed light on the effect of depth on the approximation
capacities or alternative notions of expressivity of NNs.

3.1 Approximation of radial functions

One technique to study the impact of depth relies on the construction of specific functions which can be
well approximated by NNs of a certain depth, but require significantly more parameters when approximated
to the same accuracy by NNs of smaller depth. In the following we present one example for this type of
approach, which can be found in [ES16].

Theorem 3.1 (Power of depth). Let % ∈ {%R, %σ,1(0,∞)} be the ReLU, the logistic, or the Heaviside function.
Then there exist constants c, C ∈ (0,∞) with the following property: For every d ∈ N with d ≥ C there exist a
probability measure µ on Rd, a three-layer NN architecture a = (N, %) = ((d,N1, N2, 1), %) with ‖N‖∞ ≤ Cd5,
and corresponding parameters θ∗ ∈ RP (N) with ‖θ∗‖∞ ≤ CdC and ‖Φa(·, θ∗)‖L∞(Rd) ≤ 2 such that for every

n ≤ cecd it holds that
inf

θ∈RP ((d,n,1))
‖Φ((d,n,1),%)(·, θ)− Φa(·, θ∗)‖L2(µ) ≥ c.
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In fact, the activation function in Theorem 3.1 is only required to satisfy mild conditions and the result
holds, for instance, also for more general sigmoidal functions. The proof of Theorem 3.1 is based on the
construction of a suitable radial function g : Rd → R, i.e., g(x) = g̃(‖x‖22) for some g̃ : [0,∞) → R, which
can be efficiently approximated by three-layer NNs but approximation by only a two-layer NN requires
exponentially large complexity, i.e., the width being exponential in d.

The first observation of [ES16] is that g can typically be well approximated on a bounded domain by
a three-layer NN, if g̃ is Lipschitz continuous. Indeed, for the ReLU activation function it is not difficult
to show that, emulating a linear interpolation, one can approximate a univariate C-Lipschitz function
uniformly on [0, 1] up to precision ε by a two-layer architecture of width O(C/ε). The same holds for smooth,
non-polynomial activation functions due to Theorem 1.16. This implies that the squared Euclidean norm,
as a sum of d univariate functions, i.e., [0, 1]d 3 x 7→

∑d
i=1 x

2
i , can be approximated up to precision ε by a

two-layer architecture of width O(d2/ε). Moreover, this shows that the third layer can efficiently approximate
g̃, establishing approximation of g on a bounded domain up to precision ε using a three-layer architecture
with number of parameters polynomial in d/ε.

The second step in [ES16] is to choose g in such a way that the realization of any two-layer neural network
Φ = Φ((d,n,1),%)(·, θ) with width n not being exponential in d is on average (with respect to the probability
measure µ) a constant distance away from g. Their argument is heavily based on ideas from Fourier analysis

and will be outlined below. In this context, let us recall that we denote by f̂ the Fourier transform of a
suitable function or, more generally, tempered distribution f .

Assuming that the square-root ϕ of the density function associated with the probability measure µ as
well as Φ and g are well-behaved, the Plancherel theorem yields that

‖Φ− g‖2L2(µ) = ‖Φϕ− gϕ‖2L2(Rd) =
∥∥Φ̂ϕ− ĝϕ

∥∥2

L2(Rd)
. (3.1)

Next, the specific structure of two-layer NNs is used, which implies that for every j ∈ [n] there exists
wj ∈ Rd with ‖wj‖2 = 1 and %j : R → R (subsuming the activation function %, the norm of wj , and the
remaining parameters corresponding to the j-th neuron in the hidden layer) such that Φ is of the form

Figure 3.1: This illustration shows
the largest possible support (blue) of

Φ̂ϕ, where ϕ̂ = 1Br(0) and Φ is a
shallow neural network with architec-
ture N = (2, 4, 1) and weight matrix
W (1) = [w1 . . . w4]T in the first layer.
Any radial function with enough of its
L2-mass located at high frequencies
(indicated by the red area) cannot be
well approximated by Φϕ.

Φ =

n∑
j=1

%j(〈wj , ·〉) =

n∑
j=1

(%j ⊗ 1Rd−1) ◦Rwj .

The second equality follows by viewing the action of the j-th neuron
as a tensor product of %j and the indicator function 1Rd−1(x) = 1,
x ∈ Rd−1, composed with a d-dimensional rotation Rwj ∈ SO(d)

which maps wj to the first standard basis vector e(1) ∈ Rd. Noting
that the Fourier transform respects linearity, rotations, and tensor
products, we can compute

Φ̂ =

n∑
j=1

(%̂j ⊗ δRd−1) ◦Rwj ,

where δRd−1 denotes the Dirac distribution on Rd−1. In particular, the
support of Φ̂ has a particular star-like shape, namely

⋃n
j=1 span{wj},

which are in fact lines passing through the origin.
Now we choose ϕ to be the inverse Fourier transform of the

indicator function of a ball Br(0) ⊂ Rd with vol(Br(0)) = 1, ensuring
that ϕ2 is a valid probability density for µ as

µ(Rd) = ‖ϕ2‖L1(Rd) = ‖ϕ‖2L2(Rd) = ‖ϕ̂‖2L2(Rd) = ‖1Br(0)‖2L2(Rd) = 1.

Using the convolution theorem, this choice of ϕ yields that

supp(Φ̂ϕ) = supp(Φ̂ ∗ ϕ̂) ⊂
n⋃
j=1

(span{wj}+Br(0)) .
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Thus the lines passing through the origin are enlarged to tubes. It is this particular shape which allows the
construction of some g so that ‖Φ̂ϕ−ĝϕ‖2L2(Rd) can be suitably lower bounded, see also Figure 3.1. Intriguingly,

the peculiar behavior of high-dimensional sets now comes into play. Due to the well known concentration of
measure principle, the variable n needs to be exponentially large for the set

⋃n
j=1 (span{wj}+Br(0)) to be

not sparse. If it is smaller, one can construct a function g so that the main energy content of ĝϕ has a certain
distance from the origin, yielding a lower bound for ‖Φ̂ϕ− ĝϕ‖2 and hence ‖Φ− g‖2L2(µ), see (3.1). One key

technical problem is the fact that such a behavior for ĝ does not immediately imply a similar behavior of ĝϕ,
requiring a quite delicate construction of g.

3.2 Deep ReLU networks
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Figure 3.2: Interpolation In of [0, 1] 3
x 7→ g(x) := x− x2 on 2n + 1 equidis-
tant points, which can be represented
as a sum In =

∑n
k=1 Ik − Ik−1 =∑n

k=1
hk
22k of n sawtooth functions.

Each sawtooth function hk = hk−1◦h
in turn can be written as a k-fold
composition of a hat function h. This
illustration is based on [EPGB19].

Maybe for no activation function is the effect of depth clearer than
for the ReLU activation function %R(x) = max{0, x}. We refer to
corresponding NN architectures (N, %R) as ReLU (neural) networks
(ReLU NNs). A two-layer ReLU NN with one-dimensional input and
output is a function of the form

Φ(x) =
n∑
i=1

w
(2)
i %R(w

(1)
i x+ b

(1)
i ) + b(2), x ∈ R,

where w
(1)
i , w

(2)
i , b

(1)
i , b(2) ∈ R for i ∈ [n]. It is not hard to see that Φ

is a continuous piecewise affine linear function. Moreover, Φ has at
most n+ 1 affine linear pieces. On the other hand, notice that the
hat function

h : [0, 1]→ [0, 1],

x 7→ 2%R(x)− 4%R(x− 1
2 ) =

{
2x, if 0 ≤ x < 1

2 ,

2(1− x), if 1
2 ≤ x ≤ 1,

is a NN with two layers and two neurons. Telgarsky observed that the
n-fold convolution hn(x) := h ◦ · · · ◦ h produces a sawtooth function
with 2n spikes [Tel15]. In particular, hn admits 2n affine linear pieces
with only 2n many neurons. In this case, we see that deep ReLU NNs
are in some sense exponentially more efficient in generating affine
linear pieces.

Moreover, it was noted in [Yar17] that the difference of interpolations of [0, 1] 3 x 7→ x − x2 at 2n + 1
and 2n−1 + 1 equidistant points equals the scaled sawtooth function hn

22n , see Figure 3.2. This allows to
efficiently implement approximative squaring and, by polarization, also approximative multiplication using
ReLU NNs. Composing these simple functions one can approximate localized Taylor polynomials and thus
smooth functions, see [Yar17]. We state below a generalization [GKP20] of the result of [Yar17] which includes
more general norms, but for p =∞ and s = 0 coincides with the original result of Dmitry Yarotsky.

Theorem 3.2 (Approximation of Sobolev-regular functions). Let d, k ∈ N with k ≥ 2, let p ∈ [1,∞], s ∈ [0, 1],
B ∈ (0,∞), and let % be a piecewise linear activation function with at least one break-point. Then there
exists a constant c ∈ (0,∞) with the following property: For every ε ∈ (0, 1/2) there exists a NN architecture
a = (N, %) with

P (N) ≤ cε−d/(k−s) log(1/ε)

such that for every function g ∈W k,p((0, 1)d) with ‖g‖Wk,p((0,1)d) ≤ B it holds that

inf
θ∈RP (N)

‖Φa(θ, ·)− g‖W s,p((0,1)d) ≤ ε.
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The ability of deep ReLU neural networks to emulate multiplication has also been employed to reap-
proximate wide ranges of high-order finite element spaces. In [OPS20] and [MOPS20] it was shown that
deep ReLU neural networks are capable of achieving the approximation rates of hp-finite element methods.
Concretely, this means that for piecewise analytic functions, which appear, for example, as solutions of elliptic
boundary and eigenvalue problems with analytic data, exponential approximation rates can be achieved. In
other words, the number of parameters of neural networks to approximate such a function in the W 1,2-norm
up to an error of ε is logarithmic in ε.

Theorem 3.2 requires the depth of the NN to grow. In fact, it can be shown that the same approximation
rate cannot be achieved with shallow NNs. Indeed, there exists a certain optimal number of layers and, if
the architecture has fewer layers than optimal, then the NNs need to have significantly more parameters, to
achieve the same approximation fidelity. This has been observed in many different settings in [LS17, SS17,
Yar17, PV18, EPGB19]. We state here the result of [Yar17]:

Theorem 3.3 (Depth-width approximation trade-off). Let d, L ∈ N with L ≥ 2 and let g ∈ C2([0, 1]d) be a
function which is not affine linear. Then there exists a constant c ∈ (0,∞) with the following property: For
every ε ∈ (0, 1) and every ReLU NN architecture a = (N, %R) = ((d,N1, . . . , NL−1, 1), %R) with L layers and
‖N‖1 ≤ cε−1/(2(L−1)) neurons it holds that

inf
θ∈RP (N)

‖Φa(·, θ)− g‖L∞([0,1]d) ≥ ε.

depth

w
id

th

Figure 3.3: Standard feed-forward neural network. For
certain approximation results, depth and width need
to be in a fixed relationship to achieve optimal results.

This results is based on the observation that
ReLU NNs are piecewise affine linear. The number
of pieces they admit is linked to their capacity of
approximating functions that have non-vanishing
curvature. Using a construction similar to the ex-
ample at the beginning of this subsection, it can be
shown that the number of pieces that can be gener-
ated using an architecture ((1, N1, . . . , NL−1, 1), %R)

scales roughly like
∏L−1
`=1 N`.

In the framework of the aforementioned results,
we can speak of a depth-width trade-off, see also Fig-
ure 3.3. A fine-grained estimate of achievable rates
for freely varying depths has also been established
in [She20].

3.3 Alternative notions of expressivity

Conceptual approaches to study the approximation power of deep NNs besides the classical approximation
framework usually aim to relate structural properties of the NN to the “richness” of the set of possibly
expressed functions. One early result in this direction is [MPCB14] which describes bounds on the number of
affine linear regions of a ReLU NN Φ(N,%R)(·, θ). In a simplified setting, we have seen estimates on the number
of affine linear pieces already at the beginning of Subsection 3.2. Affine linear regions can be defined as the
connected components of RN0 \H, where H is the set of non-differentiability of the realization20 Φ(N,%R)(·, θ).
A refined analysis on the number of such regions was, for example, conducted by [HvdG19]. It is found that
deep ReLU neural networks can exhibit significantly more regions than their shallow counterparts.

20One can also study the potentially larger set of activation regions given by the connected components of RN0 \
(
∪L−1
`=1

∪N`i=1Hi,`
)
, where

Hi,` := {x ∈ RN0 : Φ
(`)
i (x, θ) = 0},

with Φ
(`)
i as in (1.1), is the set of non-differentiability of the activation of the i-th neuron in the `-th layer. In contrast to the

linear regions, the activation regions are necessarily convex [RPK+17, HR19].
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Figure 3.4: Shape of the trajectory t 7→ Φ((2,n,...,n,2),%R)(γ(t), θ) of the output of a randomly initialized
network with 0, 3, 10 hidden layers. The input curve γ is the circle given in the leftmost image. The hidden
layers have n = 20 neurons and the variance of the initialization is taken as 4/n.

The reason for this effectiveness of depth is described by the following analogy: Through the ReLU each
neuron Rd 3 x 7→ %R(〈x,w〉+ b), w ∈ Rd, b ∈ R, splits the space into two affine linear regions separated by
the hyperplane

{x ∈ Rd : 〈x,w〉+ b = 0}.

A shallow ReLU NN Φ((d,n,1),%R)(·, θ) with n neurons in the hidden layer therefore produces a number of
regions defined through n hyperplanes. Using classical bounds on the number of regions defined through
hyperplane arrangements [Zas75], one can bound the number of affine linear regions by

∑d
j=0

(
n
j

)
. Deepening

neural networks then corresponds to a certain folding of the input space. Through this interpretation it can
be seen that composing NNs can lead to a multiplication of the number of regions of the individual NNs
resulting in an exponential efficiency of deep neural networks in generating affine linear regions21.

This approach was further developed in [RPK+17] to a framework to study expressivity that to some extent
allows to include the training phase. One central object studied in [RPK+17] are so-called trajectory lengths.
In this context, one analyzes how the length of a non-constant curve in the input space changes in expectation
through the layers of a NN. The authors find an exponential dependence of the expected curve length on the
depth. Let us motivate this in the special case of a ReLU NN with architecture a = ((N0, n, . . . , n,NL), %R)
and depth L ∈ N.

Given a non-constant continuous curve γ : [0, 1]→ RN0 in the input space, the length of the trajectory in
the `-th layer of the NN Φa(·, θ) is then given by

Length(Φ̄(`)(γ(·), θ)), ` ∈ [L− 1],

where Φ̄(`)(·, θ) is the activation in the `-th layer, see (1.1). Here the length of the curve is well-defined since
Φ̄(`)(·, θ)) is continuous and therefore Φ̄(`)(γ(·), θ) is continuous. Now, let the parameters Θ1 of the NN Φa
be initialized independently so that the entries corresponding to the weight matrices and bias vectors follow
a normal distribution with zero mean and variances 1/n and 1, respectively. It is not hard to see, e.g., by
Proposition 1.1, that the probability that Φ̄(`)(·,Θ1) will map γ to a non-constant curve is positive and hence,
for fixed ` ∈ [L− 1],

E
[

Length(Φ̄(`)(γ(·),Θ1))
]

= c > 0.

Let σ ∈ (0,∞) and consider a second initialization Θσ, where we change the variances of the entries
corresponding to the weight matrices and bias vectors to σ2/n and σ2, respectively. Recall that the ReLU is
positively homogeneous, i.e., we have that %R(λx) = λ%R(x) for all λ ∈ (0,∞). Then it is clear that

Φ̄(`)(·,Θσ) ∼ σ`Φ̄(`)(·,Θ1),

21However, to exploit this efficiency with respect to the depth, one requires highly oscillating pre-activations which in turn can
only be achieved with a delicate selection of parameters. In fact, it can be shown that through random initialization the expected
number of activation regions per unit cube depends mainly on the number of neurons in the NN, rather than its depth [HR19].
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i.e., the activations corresponding to the two initialization strategies are identically distributed up to the
factor σ`. Therefore, we immediately conclude that

E
[

Length(Φ̄(`)(γ(·),Θσ))
]

= σ`c.

This shows that the expected trajectory length depends exponentially on the depth of the NN, which is in
line with the behavior of other notions of expressivity [PLR+16]. In [RPK+17] this result is also extended to
the tanh activation function and the constant c is more carefully resolved. Empirically one also finds that the
shapes of the trajectories become more complex in addition to becoming longer on average, see Figure 3.4.

4 Deep neural networks overcome the curse of dimensionality

M

Figure 4.1: Illustration of a one-
dimensional manifold M embedded
in R3. For every point x ∈ M there
exists a neighborhood in which the
manifold can be linearly projected
onto its tangent space at x such that
the corresponding inverse function is
differentiable.

In Subsection 1.3, one of the main puzzles of deep learning that we
identified was the surprising performance of deep architectures on
problems where the input dimensions are very high. This perfor-
mance cannot be explained in the framework of classical approx-
imation theory, since such results always suffer from the curse of
dimensionality [Bel52, DeV98, NW09].

In this section, we present three approaches that offer explana-
tions of this phenomenon. As before, we had to omit certain ideas
which have been very influential in the literature to keep the length
of this section under control. In particular, an important line of
reasoning is that functions to be approximated often have composi-
tional structures which NNs may approximate very well as reviewed
in [PMR+17]. Note that also a suitable feature descriptor, factor-
ing out invariances, might lead to a significantly reduced effective
dimension, see Subsection 7.1.

4.1 Manifold assumption

A first remedy to the high-dimensional curse of dimensionality is
what we call the manifold assumption. Here it is assumed that we
are trying to approximate a function

g : Rd ⊃ X → R,

where d is very large. However, we are not seeking to optimize with respect to the uniform norm or a regular
Lp space, but instead consider a measure µ which is supported on a d′-dimensional manifold M⊂ X . Then
the error is measured in the Lp(µ)-norm. Here we consider the case where d′ � d. This setting is appropriate
if the data z = (x, y) of a prediction task is generated from a measure supported on M× R.

This set-up or generalizations thereof have been fundamental in [CM18, SCC18, CJLZ19, SH19, CK20,
NI20]. Let us describe an exemplary approach, where we consider locally Ck-regular functions and NNs with
ReLU activation functions below:

1. Describe the regularity of g on the manifold: Naturally, we need to quantify the regularity of the
function g restricted to M in an adequate way. The typical approach would be to make a definition
via local coordinate charts. If we assume that M is an embedded submanifold of X , then locally,
i.e., in a neighborhood of a point x ∈ M, the orthogonal projection of M onto the d′-dimensional
tangent space TxM is a diffeomorphism. The situation is depicted in Figure 4.1. Assuming M to
be compact, we can choose a finite set of open balls (Ui)

p
i=1 that cover M and on which the local

projections γi onto the respective tangent spaces as described above exists and are diffeomorphisms.
Now we can define the regularity of g via classical regularity. In this example, we say that g ∈ Ck(M)
if g ◦ γ−1

i ∈ Ck(γi(M∩ Ui)) for all i ∈ [p].
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2. Construct localization and charts via neural networks: According to the construction of local coordinate
charts in Step 1, we can write g as follows:

g(x) =

p∑
i=1

φi(x)
(
g ◦ γ−1

i (γi(x))
)

=:

p∑
i=1

g̃i(γi(x), φi(x)), x ∈M, (4.1)

where φi is a partition of unity such that supp(φi) ⊂ Ui. Note that γi is a linear map, hence
representable by a one-layer NN. Since multiplication is a smooth operation, we have that if g ∈ Ck(M)
then g̃i ∈ Ck(γi(M∩ Ui)× [0, 1]).

The partition of unity φi needs to be emulated by NNs. For example, if the activation function is the
ReLU, then such a partition can be efficiently constructed. Indeed, in [HLXZ20] it was shown that
such NNs can represent linear finite elements exactly with fixed-size NNs and hence a partition of unity
subordinate to any given covering of M can be constructed.

3. Use a classical approximation result on the localized functions: By some form of Whitney’s extension
theorem [Whi34], we can extend each g̃i to a function ḡi ∈ Ck(X × [0, 1]) which by classical results can be
approximated up to an error of ε > 0 by NNs of size O(ε−(d′+1)/k) for ε→ 0, see [Mha96, Yar17, SCC18].

4. Use the compositionality of neural networks to build the final network: We have seen that every
component in the representation (4.1), i.e., g̃i, γi, and φi can be efficiently represented by NNs. In
addition, composition and summation are operations which can directly be implemented by NNs through
increasing their depth and widening their layers. Hence (4.1) is efficiently—i.e., with a rate depending
only on d′ instead of the potentially much larger d—approximated by a NN.

Overall, we see that NNs are capable of learning local coordinate transformations and therefore reduce
the complexity of a high-dimensional problem to the underlying low-dimensional problem given by the data
distribution.

4.2 Random sampling

Already in 1992, Andrew Barron showed that under certain seemingly very natural assumptions on the
function to approximate, a dimension-independent approximation rate by NNs can be achieved [Bar92, Bar93].
Specifically, the assumption is formulated as a condition on the Fourier transform of a function and the result
is as follows.

Theorem 4.1 (Approximation of Barron-regular functions). Let % : R → R be the ReLU or a sigmoidal
function. Then there exists a constant c ∈ (0,∞) with the following property: For every d, n ∈ N, every
probability measure µ supported on B1(0) ⊂ Rd, and every g ∈ L1(Rd) with Cg :=

∫
Rd ‖ξ‖2|ĝ(ξ)|dξ <∞ it

holds that
inf

θ∈RP ((d,n,1))
‖Φ((d,n,1),%)(·, θ)− g‖L2(µ) ≤

c√
n
Cg,

Note that the L2-approximation error can be replaced by an L∞-estimate over the unit ball at the expense
of a factor of the order of

√
d on the right-hand side.

The key idea behind Theorem 4.1 is the following application of the law of large numbers: First, we
observe that, per assumption, g can be represented via the inverse Fourier transform, as

g − g(0) =

∫
Rd
ĝ(ξ)(e2πi〈·,ξ〉 − 1) dξ

= Cg

∫
Rd

1

‖ξ‖2
(e2πi〈·,ξ〉 − 1)

1

Cg
‖ξ‖2ĝ(ξ) dξ

= Cg

∫
Rd

1

‖ξ‖2
(e2πi〈·,ξ〉 − 1) dµg(ξ),

(4.2)
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where µg is a probability measure. Then it is further shown in [Bar92] that there exist (Rd × R)-valued

random variables (Ξ, Ξ̃) such that (4.2) can be written as

g(x)− g(0) = Cg

∫
Rd

1

‖ξ‖2
(e2πi〈x,ξ〉 − 1) dµg(ξ) = CgE

[
Γ(Ξ, Ξ̃)(x)

]
, x ∈ Rd, (4.3)

where for every ξ ∈ Rd, ξ̃ ∈ R the function Γ(ξ, ξ̃) : Rd → R is given by

Γ(ξ, ξ̃) := s(ξ, ξ̃)(1(0,∞)(−〈ξ/‖ξ‖2, ·〉 − ξ̃)− 1(0,∞)(〈ξ/‖ξ‖2, ·〉 − ξ̃)) with s(ξ, ξ̃) ∈ {−1, 1}.

Now, let ((Ξ(i), Ξ̃(i)))i∈N be i.i.d. random variables with (Ξ(1), Ξ̃(1)) ∼ (Ξ, Ξ̃). Then, Bienaymé’s identity and
Fubini’s theorem establish that

E

[∥∥∥g − g(0)− Cg
n

n∑
i=1

Γ(Ξ(i), Ξ̃(i))
∥∥∥2

L2(µ)

]
=

∫
B1(0)

V

[
Cg
n

n∑
i=1

Γ(Ξ(i), Ξ̃(i))(x)

]
dµ(x)

=
C2
g

∫
B1(0)

V
[
Γ(Ξ, Ξ̃)(x)

]
dµ(x)

n
≤ (2πCg)

2

n
,

(4.4)

where the last inequality follows from combining (4.3) with the fact that |e2πi〈x,ξ〉 − 1|/‖ξ‖2 ≤ 2π, x ∈ B1(0).

This implies that there exists a realization ((ξ(i), ξ̃(i)))i∈N of the random variables ((Ξ(i), Ξ̃(i)))i∈N that
achieves L2-approximation error of n−1/2. Therefore, it remains to show that NNs can well approximate
the functions ((Γ(ξ(i), ξ̃(i)))i∈N. Now it is not hard to see that the function 1(0,∞) and hence functions of

the form Γ(ξ, ξ̃), ξ ∈ Rd, ξ̃ ∈ R, can be arbitrarily well approximated with a fixed-size, two-layer NN with a
sigmoidal or ReLU activation function. Thus, we obtain an approximation rate of n−1/2 when approximating
functions with one finite Fourier moment by two-layer NNs with n hidden neurons.

It was pointed out already in the dissertation of Emmanuel Candès [Can98] that the approximation rate
of NNs for Barron-regular functions is also achievable by n-term approximation with complex exponentials, as
is apparent by considering (4.2). However, for deeper NNs, the results also extend to high-dimensional non-
smooth functions, where Fourier-based methods are certain to suffer from the curse of dimensionality [CPV20].

In addition, the random sampling idea above was extended in [EMW19b, EMWW20, EW20b, EW20c]
to facilitate dimension-independent approximation of vastly more general function spaces. Basically, the
idea is to use (4.3) as an inspiration and define the generalized Barron space as all functions that may be
represented as

E
[
1(0,∞)(〈Ξ, ·〉 − Ξ̃)

]
for any random variable (Ξ, Ξ̃). In this context, deep and compositional versions of Barron spaces were
introduced and studied in [BK18, EMW19a, EW20a], which considerably extend the original theory.

4.3 PDE assumption

Another structural assumption that leads to the absence of the curse of dimensionality in some cases is that
the function we are trying to approximate is given as the solution to a partial differential equation. It is by
no means clear that this assumption leads to approximation without the curse of dimensionality, since most
standard methods, such as finite elements, sparse grids, or spectral methods typically suffer from the curse of
dimensionality.

This is not merely an abstract theoretical problem: Very recently, in [AHNB+20] it was shown that two
different gold standard methods for solving the multi-electron Schrödinger equation produce completely
different interaction energy predictions when applied to large delocalized molecules. Classical numerical
representations are simply not expressive enough to accurately represent complicated high-dimensional
structures such as wave functions with long-range interactions.

Interestingly, there exists an emerging body of work that shows that NNs do not suffer from these
shortcomings and enjoy superior expressivity properties as compared to standard numerical representations.
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Such results include, for example, [GHJVW20, GS20, HJKN20] for (linear and semilinear) parabolic evolution
equations, [GH22] for stationary elliptic PDEs, [GH21] for nonlinear Hamilton–Jacobi–Bellman equations,
or [KPRS19] for parametric PDEs. In all these cases, the absence of the curse of dimensionality in terms of
the theoretical approximation power of NNs could be rigorously established.

One way to prove such results is via stochastic representations of the PDE solutions, as well as associated
sampling methods. We illustrate the idea for the simple case of linear Kolmogorov PDEs, that is the problem
of representing the function g : Rd × [0,∞)→ R satisfying22

∂g

∂t
(x, t) =

1

2
Tr
(
σ(x, t)[σ(x, t)]∗∇2

xg(x, t)
)

+ 〈µ(x, t),∇xg(x, t)〉, g(x, 0) = ϕ(x), (4.5)

where the functions

ϕ : Rd → R (initial condition) and σ : Rd → Rd×d, µ : Rd → Rd (coefficient functions)

are continuous and satisfy suitable growth conditions. A stochastic representation of g is given via the Ito
processes (Sx,t)t≥0 satisfying

dSx,t = µ(Sx,t)dt+ σ(Sx,t)dBt, Sx,0 = x, (4.6)

where (Bt)t≥0 is a d-dimensional Brownian motion. Then g is described via the Feynman–Kac formula which
states that

g(x, t) = E[ϕ(Sx,t)], x ∈ Rd, t ∈ [0,∞). (4.7)

Roughly speaking, a NN approximation result can be proven by first approximating, via the law of large
numbers,

g(x, t) = E[ϕ(Sx,t)] ≈
1

n

n∑
i=1

ϕ(S(i)
x,t), (4.8)

where (S(i)
x,t)

n
i=1 are i.i.d. random variables with S(1)

x,t ∼ Sx,t. Care has to be taken to establish such
an approximation uniformly in the computational domain, for example, for every (x, t) in the unit cube
[0, 1]d × [0, 1], see (4.4) for a similar estimate and [GHJVW20, GS20] for two general approaches to ensure
this property. Aside from this issue, (4.8) represents a standard Monte Carlo estimator which can be shown
to be free of the curse of dimensionality.

As a next step, one needs to establish that realizations of the processes (x, t) 7→ Sx,t can be efficiently
approximated by NNs. This can be achieved by emulating a suitable time-stepping scheme for the SDE (4.6)
by NNs which, roughly speaking, can be done without incurring the curse of dimensionality whenever the
coefficient functions µ, σ can be approximated by NNs without incurring the curse of dimensionality and some
growth conditions hold true. In a last step one assumes that the initial condition ϕ can be approximated by
NNs without incurring the curse of dimensionality which, by the compositionality of NNs and the previous
step, directly implies that realizations of the processes (x, t) 7→ ϕ(Sx,t) can be approximated by NNs without
incurring the curse of dimensionality. By (4.8) this implies a corresponding approximation result for the
solution of the Kolmogorov PDE g in (4.5).

Informally, we have discovered a regularity result for linear Kolmogorov equations, namely that (modulo
some technical conditions on µ, σ), the solution g of (4.5) can be approximated by NNs without incurring the
curse of dimensionality whenever the same holds true for the initial condition ϕ, as well as the coefficient
functions µ, σ. In other words, the property of being approximable by NNs without curse of dimensionality is
preserved under the flow induced by the PDE (4.5). Some comments are in order:

22The natural solution concept to this type of PDEs is the viscosity solution concept, a thorough study of which can be found
in [HHJ15].
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Assumption on the initial condition: One may wonder if the assumption that the initial condition
ϕ can be approximated by NNs without incurring the curse of dimensionality is justified. This is at least
the case in many applications in computational finance where the function ϕ typically represents an option
pricing formula and (4.5) represents the famous Black–Scholes model. It turns out that nearly all common
option pricing formulas are constructed from iterative applications of linear maps and maximum/minimum
functions—in other words, in many applications in computational finance, the initial condition ϕ can be
exactly represented by a small ReLU NN.
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Figure 4.2: Computational complexity as number of
neural network parameters times number of SGD steps
to solve heat equations of varying dimensions up to
a specified precision. According to the fit above, the
scaling is polynomial in the dimension [BDG20].

Generalization and optimization error: The
Feynman–Kac representation (4.7) directly implies
that g(·, t) can be computed as the Bayes opti-
mal function of a regression task with input fea-
tures X ∼ U([0, 1]d) and labels Y = ϕ(SX,t), which
allows for an analysis of the generalization error
as well as implementations based on ERM algo-
rithms [BGJ20, BBG+21].

While it is in principle possible to analyze the
approximation and generalization error, the analysis
of the computational cost and/or convergence of
corresponding SGD algorithms is completely open.
Some promising numerical results exist, see, for
instance, Figure 4.2, but the stable training of NNs
approximating PDEs to very high accuracy (that
is needed in several applications such as quantum
chemistry) remains very challenging. The recent
work [GV21] has even proven several impossibility
results in that direction.

Extensions and abstract idea: Similar techniques may be used to prove expressivity results for nonlinear
PDEs, for example, using nonlinear Feynman–Kac-type representations of [PP92] in place of (4.7) and
multilevel Picard sampling algorithms of [EHJK19] in place of (4.8).

We can also formulate the underlying idea in an abstract setting (a version of which has also been used in
Subsection 4.2). Assume that a high-dimensional function g : Rd → R admits a probabilistic representation of
the form

g(x) = E[Yx], x ∈ Rd, (4.9)

for some random variable Yx which can be approximated by an iterative scheme

Y(L)
x ≈ Yx and Y(`)

x = T`(Y(`−1)
x ), ` = 1, . . . , L,

with dimension-independent convergence rate. If we can approximate realizations of the initial mapping
x 7→ Y0

x and the maps T`, ` ∈ [L], by NNs and the numerical scheme is stable enough, then we can also

approximate Y(L)
x using compositionality. Emulating a uniform Monte-Carlo approximator of (4.9) then

leads to approximation results for g without curse of dimensionality. In addition, one can choose a Rd-valued
random variable X as input features and define the corresponding labels by YX to obtain a prediction task,
which can be solved by means of ERM.

Other methods: There exist a number of additional works related to the approximation capacities of
NNs for high-dimensional PDEs, for example, [EGJS18, LTY19, SZ19]. In most of these works, the proof
technique consists of emulating an existing method that does not suffer from the curse of dimensionality. For
instance, in the case of first-order transport equations, one can show in some cases that NNs are capable of
emulating the method of characteristics, which then also yields approximation results that are free of the
curse of dimensionality [LP21].
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5 Optimization of deep neural networks

We recall from Subsections 1.3 and 1.2.1 that the standard algorithm to solve the empirical risk minimization
problem over the hypothesis set of NNs is stochastic gradient descent. This method would be guaranteed
to converge to a global minimum of the objective if the empirical risk were convex, viewed as a function of
the NN parameters. However, this function is severely nonconvex, may exhibit (higher-order) saddle points,
seriously suboptimal local minima, and wide flat areas where the gradient is very small.

On the other hand, in applications, excellent performance of SGD is observed. This indicates that the
trajectory of the optimization routine somehow misses suboptimal critical points and other areas that may
lead to slow convergence. Clearly, the classical theory does not explain this performance. Below we describe
some exemplary novel approaches that give partial explanations of this success.

In the flavor of this article, the aim of this section is to present some selected ideas rather than giving an
overview of the literature. To give at least some detail about the underlying ideas and to keep the length of
this section reasonable, a selection of results had to be made and some ground-breaking results had to be
omitted.

5.1 Loss landscape analysis

Given a NN Φ(·, θ) and training data s ∈ Zm the function θ 7→ r(θ) := R̂s(Φ(·, θ)) describes, in a natural
way, through its graph, a high-dimensional surface. This surface may have regions associated with lower
values of R̂s which resemble valleys of a landscape if they are surrounded by regions of higher values. The
analysis of the topography of this surface is called loss landscape analysis. Below we shall discuss a couple of
approaches that yield deep insights into the shape of this landscape.

Index
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risk.

Critical points
with high risk
are unstable.
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Figure 5.1: Sketch of the distribution
of critical points of the Hamiltonian
of a spin glass model.

Spin glass interpretation: One of the first discoveries about the
shape of the loss landscape comes from deep results in statistical
physics. The Hamiltonian of the spin glass model is a random function
on the (n − 1)-dimensional sphere of radius

√
n. Making certain

simplifying assumptions, it was shown in [CHM+15] that the loss of
a NN with random inputs can be considered as the Hamiltonian of a
spin glass model, where the inputs of the model are the parameters
of the NN.

This connection has far-reaching implications for the loss land-
scape of NNs because of the following surprising property of the
Hamiltonian of spin glass models: Consider the set of critical points
of this set, and associate to each point an index that denotes the
percentage of the eigenvalues of the Hessian at that point which are
negative. This index corresponds to the relative number of directions
in which the loss landscape has negative curvature. Then with high
probability, a picture like we see in Figure 5.1 emerges [AAČ13].
More precisely, the further away from the optimal loss we are, the more unstable the critical points become.
Conversely, if one finds oneself in a local minimum, it is reasonable to assume that the loss is close to the
global minimum.

While some of the assumptions establishing the connection between the spin glass model and NNs are
unrealistic in practice [CLA15], the theoretical distribution of critical points as in Figure 5.1 is visible in
many practical applications [DPG+14].

Paths and level sets: Another line of research is to understand the loss landscape by analyzing paths
through the parameter space. In particular, the existence of paths in parameter space, such that the associated
empirical risks are monotone along the path. Surely, should there exist a path of nonincreasing empirical risk
from every point to the global minimum, then we can be certain that no non-global minima exist, since no
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such path can escape a minimum. An even stronger result holds. In fact, the existence of such paths shows
that the loss landscape has connected level sets [FB17, VBB19].

A crucial ingredient of the analysis of such paths are linear substructures. Consider a biasless two-layer
NN Φ of the form

Rd 3 x 7→ Φ(x, θ) :=

n∑
j=1

θ
(2)
j %

(
〈θ(1)
j ,

[
x
1

]
〉
)
, (5.1)

where θ
(1)
j ∈ Rd+1 for j ∈ [n], θ(2) ∈ Rn, % is a Lipschitz continuous activation function, and we augment the

vector x by a constant 1 in the last coordinate as outlined in Remark 1.5. If we consider θ(1) to be fixed,
then it is clear that the space

F̃θ(1) := {Φ(·, θ) : θ = (θ(1), θ(2)), θ(2) ∈ Rn}

is a linear space. If the risk23 is convex, as is the case for the widely used quadratic or logistic loss, then
this implies that θ(2) 7→ r

(
(θ(1), θ(2))

)
is a convex map and hence, for every parameter set P ⊂ Rn this map

assumes its maximum on ∂P. Therefore, within the vast parameter space, there are many paths traveling
along which does not increase the risk above the risk of the start and end points.

This idea was, for example, used in [FB17] in a way similar to the following simple sketch: Assume

that, for two parameters θ and θmin there exists a linear subspace of NNs F̃θ̂(1) such that there are paths γ1

and γ2 connecting Φ(·, θ) and Φ(·, θmin) to F̃θ̂(1) respectively. Further assume that the paths are such that
along γ1 and γ2 the risk does not significantly exceed max{r(θ), r(θmin)}. Figure 5.2 shows a visualization of
these paths. In this case, a path from θ to θmin not significantly exceeding r(θ) along the way is found by

concatenating the paths γ1, a path along F̃θ̂(1) , and γ2. By the previous discussion, we know that only γ1

and γ2 determine the extent to which the combined path exceeds r(θ) along its way. Hence, we need to ask

about the existence of F̃θ̂(1) that facilitates the construction of appropriate γ1 and γ2.

Φ(·, θmin)

Φ(·, θ)

F̃θ̂(1)

Φ(·, θ∗)γ1

Figure 5.2: Construction of a path
from an initial point θ to the global
minimum θmin that does not have sig-
nificantly higher risk than the initial
point along the way. We depict here
the landscape as a function of the
neural network realizations instead
of their parametrizations so that this
landscape is convex.

To understand why a good choice of F̃θ̂(1) , so that the risk along
γ1 and γ2 will not rise much higher than r(θ), is likely possible, we
set24

θ̂
(1)
j :=

{
θ

(1)
j for j ∈ [n/2],

(θ
(1)
min)j for j ∈ [n] \ [n/2].

In other words, the first half of θ̂(1) is made from θ(1) and the

second from θ
(1)
min. If θ

(1)
j , j ∈ [N ], are realizations of random variables

distributed uniformly on the d-dimensional unit sphere, then by
invoking standard covering bounds of spheres (e.g., [Ver18, Corollary
4.2.13]), we expect that, for ε > 0 and a sufficiently large number

of neurons n, the vectors (θ
(1)
j )

n/2
j=1 already ε-approximate all vectors

(θ
(1)
j )nj=1. Replacing all vectors (θ

(1)
j )nj=1 by their nearest neighbor in

(θ
(1)
j )

n/2
j=1 can be done with a linear path in the parameter space, and,

given that r is locally Lipschitz continuous and ‖θ(2)‖1 is bounded,
this operation will not increase the risk by more than O(ε). We

denote the vector resulting from this replacement procedure by θ
(1)
∗ .

Since for all j ∈ [n] \ [n/2] we now have that

%
(
〈(θ(1)
∗ )j ,

[
·
1

]
〉
)
∈
{
%
(
〈(θ(1)
∗ )k,

[
·
1

]
〉
)

: k ∈ [n/2]

}
,

23As most statements in this subsection are valid for the empirical risk r(θ) = R̂s(Φ(·, θ)) as well as the risk r(θ) = R(Φ(·, θ)),
given a suitable distribution of Z, we will just call r the risk.

24We assume w.l.o.g. that n is a multiple of 2.
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there exists a vector θ
(2)
∗ with (θ

(2)
∗ )j = 0, j ∈ [n] \ [n/2], so that

Φ(·, (θ(1)
∗ , θ(2))) = Φ(·, (θ(1)

∗ , λθ
(2)
∗ + (1− λ)θ(2))), λ ∈ [0, 1].

In particular, this path does not change the risk between (θ
(1)
∗ , θ(2)) and (θ

(1)
∗ , θ

(2)
∗ ). Now, since (θ

(2)
∗ )j = 0

for j ∈ [n] \ [n/2], the realization Φ(·, (θ(1)
∗ , θ

(2)
∗ )) is computed by a sub-network consisting of the first n/2

hidden neurons and we can replace the parameters corresponding to the other neurons without any effect on
the realization function. Specifically, it holds that

Φ(·, (θ(1)
∗ , θ

(2)
∗ )) = Φ(·, (λθ̂(1) + (1− λ)θ

(1)
∗ , θ

(2)
∗ )), λ ∈ [0, 1],

yielding a path of constant risk between (θ
(1)
∗ , θ

(2)
∗ ) and (θ̂(1), θ

(2)
∗ ). Connecting these paths completes the

construction of γ1 and shows that the risk along γ1 does not exceed that at θ by more than O(ε). Of course,
γ2 can be constructed in the same way. The entire construction is depicted in Figure 5.2.

Overall, this derivation shows that for sufficiently wide NNs (appropriately randomly initialized) it is very
likely possible to almost connect a random parameter value to the global minimum with a path which along
the way does not need to climb much higher than the initial risk.

In [VBB19], a similar approach is taken and the convexity in the last layer is used. However, the authors
invoke the concept of intrinsic dimension to elegantly solve the non-linearity of r((θ(1), θ(2))) with respect to
θ(1). Additionally, [SS16] constructs a path of decreasing risk from random initializations. The idea here is
that if one starts at a point of sufficiently high risk, one can always find a path to the global optimum with
strictly decreasing risk. The intriguing insight behind this result is that if the initialization is sufficiently
bad, i.e., worse than that of a NN outputting only zero, then there exist two operations that influence the
risk directly. Multiplying the last layer with a number smaller than one will decrease the risk, whereas the
opposite will increase it. Using this tuning mechanism, any given potentially non-monotone path from the
initialization to the global minimum can be modified so that it is strictly monotonically decreasing. In a
similar spirit, [NH17] shows that if a deep NN has a layer with more neurons than training data points, then
under certain assumptions the training data will typically be mapped to linearly independent points in that
layer. Of course, this layer could then be composed with a linear map that maps the linearly independent
points to any desirable output, in particular one that achieves vanishing empirical risk, see also Proposition 1.1.
As for two-layer NNs, the previous discussion on linear paths immediately shows that in this situation a
monotone path to the global minimum exists.

5.2 Lazy training and provable convergence of stochastic gradient descent

When training highly overparametrized NNs, one often observes that the parameters of the NNs barely
change during training. In Figure 5.3, we show the relative distance that the parameters travel through the
parameter space during the training of NNs of varying numbers of neurons per layer.

The effect described above has been observed repeatedly and theoretically explained, see, e.g., [DZPS18,
LL18, AZLS19, DLL+19, ZCZG20]. In Subsection 2.1, we have already seen a high-level overview and, in
particular, the function space perspective of this phenomenon in the infinite width limit. Below we present a
short and highly simplified derivation of this effect and show how it leads to provable convergence of gradient
descent for sufficiently overparametrized deep NNs.

A simple learning model: We consider again the simple NN model of (5.1) with a smooth activation
function % which is not affine linear. For the quadratic loss and training data s = ((x(i), y(i)))mi=1 ∈ (Rd×R)m,
where xi 6= xj for all i 6= j, the empirical risk is given by

r(θ) = R̂s(θ) =
1

m

m∑
i=1

(Φ(x(i), θ)− y(i))2.

Let us further assume that Θ
(1)
j ∼ N (0, 1/n)d+1, j ∈ [n], and Θ

(2)
j ∼ N (0, 1/n), j ∈ [n], are independent

random variables.
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Figure 5.3: Four networks with architecture ((1, n, n, 1), %R) and n ∈ {20, 100, 500, 2500} neurons per hidden
layer were trained by gradient descent to fit four points that are shown in the middle figure as black dots.
We depict on the left the relative Euclidean distance of the parameters from the initialization through the
training process. In the middle, we show the final trained NNs. On the right we show the behavior of the
training error.

A peculiar kernel: Next, we would like to understand how the gradient ∇θr(Θ) looks like with high
probability over the initialization Θ = (Θ(1),Θ(2)). Similar to (2.3), we have by restricting the gradient to
θ(2) and applying the chain rule that

‖∇θr(Θ)‖22 ≥
4

m2

∥∥∥ m∑
i=1

∇θ(2)Φ(x(i),Θ)(Φ(x(i),Θ)− y(i))
∥∥∥2

2

=
4

m2

(
(Φ(x(i),Θ)− y(i))mi=1

)T
K̄Θ(Φ(x(j),Θ)− y(j))mj=1,

(5.2)

where K̄Θ is a random Rm×m-valued kernel given by

(K̄Θ)i,j :=
(
∇θ(2)Φ(x(i),Θ)

)T∇θ(2)Φ(x(j),Θ), i, j ∈ [m].

This kernel is closely related to the neural tangent kernel in (2.4) evaluated at the features (x(i))mi=1 and the
random initialization Θ. It is a slightly simplified version thereof, as in (2.4) the gradient is taken with respect
to the full vector θ. This can also be regarded as the kernel associated with a random features model [RR+07].

Note that for our two-layer NN we have that(
∇θ(2)Φ(x,Θ)

)
k

= %

(〈
Θ

(1)
k ,

[
x
1

]〉)
, x ∈ Rd, k ∈ [n].

Thus, we can write K̄Θ as the following sum of (random) rank one matrices:

K̄Θ =
n∑
k=1

vkv
T
k with vk =

(
%

(〈
Θ

(1)
k ,

[
x(i)

1

]〉))m
i=1

∈ Rm, k ∈ [n]. (5.3)

The kernel K̄Θ are symmetric and positive semi-definite by construction. It is positive definite if it is
non-singular, i.e., if at least m of the n vectors vk, k ∈ [n], are linearly independent. Proposition 1.1 shows
that for n = m the probability of that event is not zero, say δ, and is therefore at least 1− (1− δ)bn/mc for
arbitrary n. In other words, the probability increases rapidly with n. It is also clear from (5.3) that E[K̄Θ]
scales linearly with n.

From this intuitive derivation, we conclude that for sufficiently large n, with high probability K̄Θ is
a positive definite kernel with smallest eigenvalue λmin(K̄Θ) scaling linearly with n. The properties of
K̄Θ, in particular its positive definiteness, have been studied much more rigorously as already described in
Subsection 2.1.
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Control of the gradient: Applying the expected behavior of the smallest eigenvalue λmin(K̄Θ) of K̄Θ

to (5.2), we conclude that with high probability

‖∇θr(Θ)‖22 ≥
4

m2
λmin(K̄Θ)‖(Φ(x(i),Θ)− y(i))mi=1‖22 &

n

m
r(Θ). (5.4)

To understand what will happen when applying gradient descent, we first need to understand how the
situation changes in a neighborhood of Θ. We fix x ∈ Rd and observe that by the mean value theorem for all
θ̄ ∈ B1(0) we have ∥∥∇θΦ(x,Θ)−∇θΦ(x,Θ + θ̄)

∥∥2

2
. sup
θ̂∈B1(0)

∥∥∇2
θΦ(x,Θ + θ̂)

∥∥2

op
, (5.5)

where ‖∇2
θΦ(x,Θ + θ̂)‖op denotes the operator norm of the Hessian of Φ(x, ·) at Θ + θ̂. From inspection

of (5.1), it is not hard to see that for all i, j ∈ [n] and k, ` ∈ [d+ 1]

E

[(∂2Φ(x,Θ)

∂θ
(2)
i ∂θ

(2)
j

)2
]

= 0, E

[( ∂2Φ(x,Θ)

∂θ
(2)
i ∂(θ

(1)
j )k

)2
]
. δi,j , and E

[( ∂2Φ(x,Θ)

∂(θ
(1)
i )k∂(θ

(1)
j )`

)2
]
.
δi,j
n
,

where δi,j = 0 if i 6= j and δi,i = 1 for all i, j ∈ [n]. For sufficiently large n, we have that ∇2
θΦ(x,Θ) is

in expectation approximately a block band matrix with band-width d + 1. Therefore, we conclude that
E
[
‖∇2

θΦ(x,Θ)‖2op

]
. 1. Hence, we obtain by concentration of Gaussian random variables that with high

probability ‖∇2
θΦ(x,Θ)‖2op . 1. By the block-banded form of ∇2

θΦ(x,Θ) we have that, even after perturbation

of Θ by a vector θ̂ with norm bounded by 1, the term ‖∇2
θΦ(x,Θ + θ̂)‖2op is bounded, which yields that the

right-hand side of (5.5) is bounded with high probability.
Using (5.5), we can extend (5.4), which holds with high probability, to a neighborhood of Θ by the

following argument: Let θ̄ ∈ B1(0), then

‖∇θr(Θ + θ̄)‖22 ≥
4

m2

∥∥∥ m∑
i=1

∇θ(2)Φ(x(i),Θ + θ̄)(Φ(x(i),Θ + θ̄)− y(i))
∥∥∥2

2

=
(5.5)

4

m2

∥∥∥ m∑
i=1

(∇θ(2)Φ(x(i),Θ) +O(1))(Φ(x(i),Θ + θ̄)− y(i))
∥∥∥2

2

&
(∗)

1

m2
(λmin(K̄Θ) +O(1))‖(Φ(x(i),Θ + θ̄)− y(i))mi=1‖22

&
n

m
r(Θ + θ̄),

(5.6)

where the estimate marked by (∗) uses the positive definiteness of K̄Θ again and only holds for sufficiently
large n, so that the O(1) term is negligible.

We conclude that, with high probability over the initialization Θ, on a ball of fixed radius around Θ the
squared Euclidean norm of the gradient of the empirical risk is lower bounded by n

m times the empirical risk.

Exponential convergence of gradient descent: For sufficiently small step sizes η, the observation
in the previous paragraph yields the following convergence rate for gradient descent as in Algorithm 1,
specifically (1.5), with m′ = m and Θ(0) = Θ: If ‖Θ(k) −Θ‖ ≤ 1 for all k ∈ [K + 1], then25

r(Θ(K+1)) ≈ r(Θ(K))− η‖∇θr(Θ(K))‖22 ≤
(

1− cηn

m

)
r(Θ(K)) .

(
1− cηn

m

)K
, (5.7)

for c ∈ (0,∞) so that ‖∇θr(Θ(k))‖22 ≥ cn
m r(Θ

(k)) for all k ∈ [K].

25Note that the step-size η needs to be small enough to facilitate the approximation step in (5.7). Hence, we cannot simply
put η = m/(cn) in (5.7) and have convergence after one step.
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Let us assume without proof that the estimate (5.6) could be extended to an equivalence. In other words,
we assume that we additionally have that ‖∇θr(Θ + θ̄)‖22 . n

mr(Θ + θ̄). This, of course, could be shown with

similar tools as were used for the lower bound. Then we have that ‖Θ(k) −Θ‖2 ≤ 1 for all k .
√
m/(η2n).

Setting t =
√
m/(η2n) and using the limit definition of the exponential function, i.e., limt→∞(1−x/t)t = e−x,

yields for sufficiently small η that (5.7) is bounded by e−c
√
n/m.

We conclude that, with high probability over the initialization, gradient descent converges with an
exponential rate to an arbitrary small empirical risk if the width n is sufficiently large. In addition, the iterates
of the descent algorithm even stay in a small fixed neighborhood of the initialization during training. Because
the parameters only move very little, this type of training has also been coined lazy training [COB19].

Similar ideas as above, have led to groundbreaking convergence results of SGD for overparametrized NNs
in much more complex and general settings, see, e.g., [DZPS18, LL18, AZLS19].

In the infinite width limit, NN training is practically equivalent to kernel regression, see Subsection 2.1. If
we look at Figure 5.3 we see that the most overparametrized NN interpolates the data like a kernel-based
interpolator would. In a sense, which was also highlighted in [COB19], this shows that, while overparametrized
NNs in the lazy training regime have very nice properties, they essentially act like linear methods.

6 Tangible effects of special architectures

In this section, we describe results that isolate the effects of certain aspects of NN architectures. As we have
discussed in Subsection 1.3, typically only either the depth or the number of parameters are used to study
theoretical aspects of NNs. We have seen instances of this throughout Sections 3 and 4. Moreover, also in
Section 5, we saw that wider NNs enjoy certain very favorable properties from an optimization point of view.

Below, we introduce certain specialized NN architectures. We start with one of the most widely used
types of NNs, the convolutional neural network (CNN). In Subsection 6.2 we introduce skip connections and
in Subsection 6.3 we discuss a specific class of CNNs equipped with an encoder-decoder structure that are
frequently used in image processing techniques. We introduce the batch normalization block in Subsection 6.4.
Then, we discuss sparsely connected NNs that typically result as an extraction from fully connected NNs in
Subsection 6.5. Finally, we briefly comment on recurrent neural networks in Subsection 6.6.

As we have noted repeatedly throughout this manuscript, it is impossible to give a full account of the
literature in a short introductory article. In this section, this issue is especially severe since the number of
special architectures studied in practice is enormous. Therefore, we had to omit many very influential and
widely used neural network architectures. Among those are graph neural networks, which handle data from non-
Euclidean input spaces. We refer to the survey articles [BBL+17, WPC+21] for a discussion. Another highly
successful type of architectures are (variational) autoencoders [AHS85, HZ94]. These are neural networks
with a bottleneck that enforce a more efficient representation of the data. Similarly, generative adversarial
networks [GPAM+14] which are composed of two neural networks, one generator and one discriminator,
could not be discussed here. Another widely used component of architectures used in practice is the so-called
dropout layer. This layer functions through removing some neurons randomly during training. This procedure
empirically prevents overfitting. An in-detail discussion of the mathematical analysis behind this effect is
beyond the scope of this manuscript. We refer to [WZZ+13, SHK+14, HV17, MAV18] instead. Finally, the
very successful attention mechanism [BCB15, VSP+17], that is the basis of transformer neural networks, had
to be omitted.

Before we start describing certain effects of special NN architectures, a word of warning is required. The
special building blocks, which will be presented below, have been developed based on a specific need in
applications and are used and combined in a very flexible way. To describe these tools theoretically without
completely inflating the notational load, some simplifying assumptions need to be made. It is very likely that
the simplified building blocks do not accurately reflect the practical applications of these tools in all use cases.
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6.1 Convolutional neural networks

Especially for very high-dimensional inputs where the input dimensions are spatially related, fully connected
NNs seem to require unnecessarily many parameters. For example, in image classification problems, neigh-
boring pixels very often share information and the spatial proximity should be reflected in the architecture.
Based on this observation, it appears reasonable to have NNs that have local receptive fields in the sense
that they collect information jointly from spatially close inputs. In addition, in image processing, we are not
necessarily interested in a universal hypothesis set. A good classifier is invariant under many operations, such
as translation or rotation of images. It seems reasonable to hard-code such invariances into the architecture.

These two principles suggest that the receptive field of a NN should be the same on different translated
patches of the input. In this sense, parameters of the architecture can be reused. Together, these arguments
make up the three fundamental principles of convolutional NNs: local receptive fields, parameter sharing,
and equivariant representations, as introduced in [LBD+89]. We will provide a mathematical formulation of
convolutional NNs below and then revisit these concepts.

A convolutional NN corresponds to multiple convolutional blocks, which are special types of layers. For
a group G, which typically is either [d] ∼= Z/(dZ) or [d]2 ∼= (Z/(dZ))2 for d ∈ N, depending on whether we
are performing one-dimensional or two-dimensional convolutions, the convolution of two vectors a, b ∈ RG is
defined as

(a ∗ b)i =
∑
j∈G

ajbj−1i, i ∈ G.

Now we can define a convolutional block as follows: Let G̃ be a subgroup of G, let p : G→ G̃ be a so-called
pooling-operator, and let C ∈ N denote the number of channels. Then, for a series of kernels κi ∈ RG, i ∈ [C],
the output of a convolutional block is given by

RG 3 x 7→ x′ := (p(x ∗ κi))Ci=1 ∈ (RG̃)C . (6.1)

A typical example of a pooling operator is for G = (Z/(2dZ))2 and G̃ = (Z/(dZ))2 the 2× 2 subsampling
operator

p : RG → RG̃, x 7→ (x2i−1,2j−1)di,j=1.

Popular alternatives are average pooling or max pooling. These operations then either pass the average or the
maximum over patches of similar size. The convolutional kernels correspond to the aforementioned receptive
fields. They can be thought of as local if they have small supports, i.e., few nonzero entries.

As explained earlier, a convolutional NN is built by stacking multiple convolutional blocks after another26.
At some point, the output can be flattened, i.e., mapped to a vector and is then fed into a FC NN (see
Definition 1.4). We depict this setup in Figure 6.1.

Owing to the fact that convolution is a linear operation, depending on the pooling operation, one may
write a convolutional block (6.1) as a FC NN. For example, if G = (Z/(2dZ))2 and the 2× 2 subsampling
pooling operator is used, then the convolutional block could be written as x 7→ Wx for a block circulant
matrix W ∈ R(Cd2)×(2d)2

. Since we require W to have a special structure, we can interpret a convolutional
block as a special, restricted feed-forward architecture.

After these considerations, it is natural to ask how the restriction of a NN to a pure convolutional
structure, i.e., consisting only of convolutional blocks, will affect the resulting hypothesis set. The first
natural question is whether the set of such NNs is still universal in the sense of Theorem 1.15. The answer to
this question depends strongly on the type of pooling and convolution that is allowed. If the convolution is
performed with padding, then the answer is yes [OS19, Zho20b]. On the other hand, for circular convolutions
and without pooling, universality does not hold, but the set of translation equivariant functions can be
universally approximated [Yar18b, PV20]. Furthermore, [Yar18b] illuminates the effect of subsample pooling
by showing that, if no pooling is applied, then universality cannot be achieved, whereas if pooling is applied

26We assume that the definition of a convolutional block is suitably extended to input data in the Cartesian product (RG)C .
For instance, one can take an affine linear combination of C mappings as in (6.1) acting on each coordinate. Moreover, one may
also interject an activation function between the blocks.
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Convolution Pooling Convolution Pooling Fully connected NN

Figure 6.1: Illustration of a convolutional neural network with two-dimensional convolutional blocks and
2× 2 subsampling as pooling operation.

then universality is possible. The effect of subsampling in CNNs from the viewpoint of approximation theory
is further discussed in [Zho20a]. The role of other types of pooling in enhancing invariances of the hypothesis
set will be discussed in Subsection 7.1 below.

6.2 Residual neural networks

Let us first illustrate a potential obstacle when training deep NNs. Consider for L ∈ N the product operation

RL 3 x 7→ π(x) =
L∏
`=1

x`.

It is clear that

∂

∂xk
π(x) =

L∏
6̀=k

x`, x ∈ RL.

Therefore, for sufficiently large L, we expect that
∣∣ ∂π
∂xk

∣∣ will be exponentially small, if |x`| < λ < 1 for all

` ∈ [L] or exponentially large, if |x`| > λ > 1 for all ` ∈ [L]. The output of a general NN, considered as a
directed graph, is found by repeatedly multiplying the input with parameters in every layer along the paths
that lead from the input to the output neuron. Due to the aforementioned phenomenon, it is often observed
that training NNs suffers from either the exploding or the vanishing gradient problem, which may prevent
lower layers from training at all. The presence of an activation function is likely to exacerbate this effect. The
exploding or vanishing gradient problem seems to be a serious obstacle towards efficient training of deep NNs.

In addition to the vanishing and exploding gradient problems, there is an empirically observed degradation
problem [HZRS16]. This phrase describes the phenomenon that FC NNs seem to achieve lower accuracy on
both the training and test data when increasing their depth.

From an approximation theoretic perspective, deep NNs should always be superior to shallow NNs. The
reason for this is that NNs with two layers can either exactly represent the identity map or approximate it
arbitrarily well. Concretely, for the ReLU activation function %R we have that x = %R(x+ b)− b for x ∈ Rd
with xi > −bi, where b ∈ Rd. In addition, for any activation function % which is continuously differentiable on
a neighborhood of some point λ ∈ R with %′(λ) 6= 0 one can approximate the identity arbitrary well, see (1.8).
Because of this, extending a NN architecture by one layer can only enlarge the associated hypothesis set.

Therefore, one may expect that the degradation problem is more associated with the optimization aspect
of learning. This problem is addressed by a small change to the architecture of a feed-forward NN in [HZRS16].
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Figure 6.2: Illustration of a neural network with residual blocks.

Instead of defining a FC NN Φ as in (1.1), one can insert a residual block in the `-th layer by redefining27

Φ̄(`)(x, θ) = %(Φ(`)(x, θ)) + Φ̄(`−1)(x, θ), (6.2)

where we assume that N` = N`−1. Such a block can be viewed as the sum of a regular FC NN and the
identity which is referred to as skip connection or residual connection. A sketch of a NN with residual blocks
is shown in Figure 6.2. Inserting a residual block in all layers leads to a so-called residual NN.

A prominent approach to analyze residual NNs is by establishing a connection with optimal control
problems and dynamical systems [E17, TvG18, EHL19, LLS19, RH19, LML+20]. Concretely, if each layer of
a NN Φ is of the form (6.2), then we have that

Φ̄(`) − Φ̄(`−1) = %(Φ(`)) =: h(`,Φ(`)),

where we abbreviate Φ̄(`) = Φ̄(`)(x, θ) and set Φ̄(0) = x. Hence, (Φ̄(`))L−1
`=0 corresponds to an Euler discretization

of the ODE
φ̇(t) = h(t, φ(t)), φ(0) = x,

where t ∈ [0, L− 1] and h is an appropriate function.
Using this relationship, deep residual NNs can be studied in the framework of the well-established theory

of dynamical systems, where strong mathematical guarantees can be derived.

6.3 Framelets and U-Nets

One of the most prominent application areas of deep NNs are inverse problems, particularly those in the field
of imaging science, see also Subsection 8.1. A specific architectural design of CNNs, namely so-called U-nets
introduced in [RFB15], seems to perform best for this range of problems. We depict a sketch of a U-net in
Figure 6.3. However, a theoretical understanding of the success of this architecture was lacking.

Recently, an innovative approach called deep convolutional framelets was suggested in [YHC18], which we
now briefly explain. The core idea is to take a frame-theoretic viewpoint, see, e.g., [CKP12], and regard the
forward pass of a CNN as a decomposition in terms of a frame (in the sense of a generalized basis). A similar
approach will be taken in Subsection 7.2 for understanding the learned kernels using sparse coding. However,
based on the analysis and synthesis operators of the corresponding frame, the usage of deep convolutional
framelets naturally leads to a theoretical understanding of encoder-decoder architectures, such as U-nets.

Let us describe this approach for one-dimensional convolutions on the group G := Z/(dZ) with kernels
defined on the subgroup H := Z/(nZ), where d, n ∈ N with n < d, see also Subsection 6.1. We define
the convolution between u ∈ RG and v ∈ RH by zero-padding v, i.e., g ∗◦ v := g ∗ v̄, where v̄ ∈ RG is
defined by v̄i = vi for i ∈ H and v̄i = 0 else. As an important tool, we consider the Hankel matrix
Hn(x) = (xi+j)i∈G,j∈H ∈ Rd×n associated with x ∈ RG. As one key property, matrix-vector multiplications
with Hankel matrices are translated to convolutions via28

〈e(i),Hn(x)v〉 =
∑
j∈H

xi+jvj = 〈x, e(i) ∗◦ v〉, i ∈ G, (6.3)

27One can also skip multiple layers, e.g., in [HZRS16] two or three layers skipped, use a simple transformation instead of the
identity [SGS15], or randomly drop layers [HSL+16].

28Here and in the following we naturally identify elements in RG and RH with the corresponding vectors in Rd and Rn.
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Figure 6.3: Illustration of a simplified U-net neural network. Down-arrows stand for pooling, up arrows for
deconvolution or upsampling, right arrows for convolution or fully connected steps. Dashed lines are skip
connections.

where e(i) := 1{i} ∈ RG and v ∈ RH , see [YGLD17]. Further, we can recover the k-th coordinate of x by the

Frobenius inner product between Hn(x) and the Hankel matrix associated with e(k), i.e.,

1

n
Tr
(
Hn(e(k))THn(x)

)
=

1

n

∑
j∈H

∑
i∈G

e
(k)
i+jxi+j =

1

n
|H|xk = xk. (6.4)

This allows us to construct global and local bases as follows: Let p, q ∈ N, let U =
[
u1 · · ·up

]
∈ Rd×p,

V =
[
v1 · · · vq

]
∈ Rn×q, Ũ =

[
ũ1 · · · ũp

]
∈ Rd×p, and Ṽ =

[
ṽ1 · · · ṽq

]
∈ Rn×q, and assume that

Hn(x) = ŨUTHn(x)V Ṽ T . (6.5)

For p ≥ d and q ≥ n, this is, for instance, satisfied if U and V constitute frames with Ũ and Ṽ being their
respective dual frames, i.e., ŨUT = Id and V Ṽ T = In. As a special case, one can consider orthonormal bases
U = Ũ and V = Ṽ with p = d and q = n. In the case p = q = r ≤ n, where r is the rank of Hn(x), one can

establish (6.5) by choosing the left and right singular vectors of Hn(x) as U = Ũ and V = Ṽ , respectively.
The identity in (6.5), in turn, ensures the following decomposition:

x =
1

n

p∑
i=1

q∑
j=1

〈x, ui ∗◦ vj〉ũi ∗◦ ṽj . (6.6)

Observing that the vector vj ∈ RH interacts locally with x ∈ RG due to the fact that H ⊂ G, whereas
ui ∈ RG acts on the entire vector x, we refer to (vj)

q
j=1 as local and (ui)

p
i=1 as global bases. In the context of

CNNs, vi can be interpreted as local convolutional kernel and ui as pooling operation29. The proof of (6.6)

29Note that 〈x, ui ∗◦ vj〉 can also be interpreted as 〈ui, vj ? x〉, where ? denotes the cross-correlation between the zero-padded
vj and x. This is in line with software implementations for deep learning applications, e.g., TensorFlow and PyTorch, where
typically cross-correlations are used instead of convolutions.
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follows directly from properties (6.3), (6.4), and (6.5) as

xk =
1

n
Tr
(
Hn(e(k))THn(x)

)
=

1

n
Tr
(
Hn(e(k))T ŨUTHn(x)V Ṽ T

)
=

1

n

p∑
i=1

q∑
j=1

〈ui,Hn(x)vj〉〈ũi,Hn(e(k))ṽj〉.

The decomposition in (6.6) can now be interpreted as a composition of an encoder and a decoder,

x 7→ C = (〈x, ui ∗◦ vj〉)i∈[p],j∈[q] and C 7→ 1

n

p∑
i=1

q∑
j=1

Ci,j ũi ∗◦ ṽj , (6.7)

which relates it to CNNs equipped with an encoder-decoder structure such as U-nets, see Figure 6.3.
Generalizing this approach to multiple channels, it is possible to stack such encoders and decoders which
leads to a layered version of (6.6). In [YHC18] it is shown that one can make an informed decision on the
number of layers based on the rank of Hn(x), i.e., the complexity of the input features x. Moreover, also an
activation function such as the ReLU or bias vectors can be included. The key question one can then ask is
how the kernels can be chosen to obtain sparse coefficients C in (6.7) and a decomposition such as (6.6), i.e.,
perfect reconstruction. If U and V are chosen as the left and right singular vectors of Hn(x), one obtains a
very sparse, however input-dependent, representation in (6.6) due to the fact that

Ci,j = 〈x, ui ∗◦ vj〉 = 〈ui,Hn(x)vj〉 = 0, i 6= j.

Finally, using the framework of deep convolutional framelets, theoretical reasons for including skip connections
can be derived, since they aid to obtain a perfect reconstruction.

6.4 Batch normalization

Batch normalization is a building block of NNs that was invented in [IS15] with the goal to reduce so-called
internal covariance shift. In essence, this phrase describes the (undesirable) situation where during training
each layer receives inputs with different distribution. A batch normalization block is defined as follows: For
points b = (y(i))mi=1 ∈ (Rn)m and β, γ ∈ R, we define

BN
(β,γ)
b (y) := γ

y − µb
σb

+ β, y ∈ Rn, with µb =
1

m

m∑
i=1

y(i) and σ2
b =

1

m

m∑
i=1

(y(i) − µb)2, (6.8)

where all operations are to be understood componentwise, see Figure 6.4.
Such a batch normalization block can be added into a NN architecture. Then b is the output of the

previous layer over a batch or the whole training data30. Furthermore, the parameters β, γ are variable and

can be learned during training. Note that, if one sets β = µb and γ = σb, then BN
(β,γ)
b (y) = y for all y ∈ Rn.

Therefore, a batch normalization block does not negatively affect the expressivity of the architecture. On the
other hand, batch normalization does have a tangible effect on the optimization aspects of deep learning.
Indeed, in [STIM18, Theorem 4.1], the following observation was made:

30In practice, one typically uses a moving average to estimate the mean µ and the standard deviation σ of the output of the
previous layer over the whole training data by only using batches.
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µb σb

β γ

ŷ = y−µb
σb

z = γŷ + β

Figure 6.4: A batch normalization block after a fully connected neural network. The parameters µb, σb are
the mean and the standard deviation of the output of the fully connected network computed over a batch s,
i.e., a set of inputs. The parameters β, γ are learnable parts of the batch normalization block.

Proposition 6.1 (Smoothening effect of batch normalization). Let m ∈ N with m ≥ 2 and for every β, γ ∈ R
define B(β,γ) : Rm → Rm by

B(β,γ)(b) = (BN
(β,γ)
b (y(1)), . . . ,BN

(β,γ)
b (y(m))), b = (y(i))mi=1 ∈ Rm,

where BN
(β,γ)
b is given as in (6.8). Let β, γ ∈ R and let r : Rm → R be a differentiable function. Then it

holds for every b ∈ Rm that

‖∇(r ◦ B(β,γ))(b)‖22 =
γ2

σ2
b

(
‖∇r(b)‖2 − 1

m
〈1,∇r(b)〉2 − 1

m
〈B(0,1)(b),∇r(b)〉2

)
,

where 1 = (1, . . . , 1) ∈ Rm and σ2
b is given as in (6.8).

For multi-dimensional y(i) ∈ Rn, i ∈ [m], the same statement holds for all components as, by definition,
the batch normalization block acts componentwise. Proposition 6.1 follows from a convenient representation
of the Jacobian of the mapping B(β,γ), given by

∂B(β,γ)(b)

∂b
=

γ

σb

(
Im −

1

m
11T − 1

m
B(0,1)(b)(B(0,1)(b))T

)
, b ∈ Rm,

and the fact that { 1√
m
, 1√

m
B(0,1)(b)} constitutes an orthonormal set.

Choosing r to mimic the empirical risk of a learning task, Proposition 6.1 shows that, in certain situations—
for instance, if γ is smaller than σb or if m is not too large—a batch normalization block can considerably
reduce the magnitude of the derivative of the empirical risk with respect to the input of the batch normalization
block. By the chain rule, this implies that also the derivative of the empirical risk with respect to NN
parameters influencing the input of the batch normalization block is reduced.

Interestingly, a similar result holds for second derivatives [STIM18, Theorem 4.2] if r is twice differentiable.
One can conclude that adding a batch normalization block increases the smoothness of the optimization
problem. Since the parameters β and γ were introduced, including a batch normalization block also increases
the dimension of the optimization problem by two.

6.5 Sparse neural networks and pruning

For deep FC NNs, the number of trainable parameters usually scales like the square of the number of neurons.
For reasons of computational complexity and memory efficiency, it appears sensible to seek for techniques to
reduce the number of parameters or extract sparse subnetworks (see Figure 6.5) without affecting the output
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Figure 6.5: A neural network with
sparse connections.

of a NN much. One way to do this is by pruning [LDS89, HMD16].
Here, certain parameters of a NN are removed after training. This
is done, for example, by setting these parameters to zero.

In this context, the lottery ticket hypothesis was formulated
in [FC18]. It states: “A randomly-initialized, dense NN contains a
subnetwork that is initialized such that—when trained in isolation—it
can match the test accuracy of the original NN after training for at
most the same number of iterations”. In [RWK+20] a similar hy-
pothesis was made and empirically studied. There, it is claimed that,
for a sufficiently overparametrized NN, there exists a subnetwork
that matches the performance of the large NN after training without
being trained itself, i.e., already at initialization.

Under certain simplifying assumptions, the existence of favorable subnetworks is quite easy to prove. We
can use a technique that was previously indirectly used in Subsection 4.2—the Carathéodory Lemma. This
result states the following: Let n ∈ N, C ∈ (0,∞), and let (H, ‖ · ‖) be a Hilbert space. Let F ⊂ H with
supf∈F ‖f‖ ≤ C and let g ∈ H be in the convex hull of F . Then there exist fi ∈ F , i ∈ [n], and c ∈ [0, 1]n

with ‖c‖1 = 1 such that ∥∥∥∥∥g −
n∑
i=1

cifi

∥∥∥∥∥ ≤ C√
n
,

see, e.g., [Ver18, Theorem 0.0.2].

Proposition 6.2 (Carathéodory pruning). Let d, n ∈ N, with n ≥ 100 and let µ be a probability measure
on the unit ball B1(0) ⊂ Rd. Let a = ((d, n, 1), %R) be the architecture of a two-layer ReLU network and let
θ ∈ RP ((d,n,1)) be corresponding parameters such that

Φa(·, θ) =

n∑
i=1

w
(2)
i %R(〈(w(1)

i , ·〉+ b
(1)
i )),

where (w
(1)
i , b

(1)
i ) ∈ Rd ×R, i ∈ [n], and w(2) ∈ Rn. Assume that for every i ∈ [n] it holds that ‖w(1)

i ‖2 ≤ 1/2

and b
(1)
i ≤ 1/2. Then there exists a parameter θ̃ ∈ RP ((d,n,1)) with at least 99% of its entries being zero such

that

‖Φa(·, θ)− Φa(·, θ̃)‖L2(µ) ≤
15‖w(2)‖1√

n
.

Specifically, there exists an index set I ⊂ [n] with |I| ≤ n/100 such that θ̃ satisfies that

w̃
(2)
i = 0, if i /∈ I, and (w̃

(1)
i , b̃

(1)
i ) =

{
(w

(1)
i , b

(1)
i ), if i ∈ I,

(0, 0), if i /∈ I.

The result is clear if w(2) = 0. Otherwise, define

fi := ‖w(2)‖1%R(〈w(1)
i , ·〉+ b

(1)
i ), i ∈ [n],

and observe that Φa(·, θ) is in the convex hull of {fi}ni=1 ∪ {−fi}ni=1. Moreover, by the Cauchy–Schwarz
inequality, it holds that

‖fi‖L2(µ) ≤ ‖w(2)‖1‖fi‖L∞(B1(0)) ≤ ‖w(2)‖1.
We conclude with the Carathéodory Lemma that there exists I ⊂ [n] with |I| = bn/100c ≥ n/200 and
ci ∈ [−1, 1], i ∈ I, such that∥∥∥∥∥Φa(·, θ)−

∑
i∈I

cifi

∥∥∥∥∥
L2(µ)

≤ ‖w
(2)‖1√
|I|

≤
√

200‖w(2)‖1√
n

,
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which yields the result.
Proposition 6.2 shows that certain, very wide NNs can be approximated very well by sparse subnetworks

where only the output weight matrix needs to be changed. The argument of Proposition 6.2 is inspired
by [BK18], where a much more refined result is shown for deep NNs.

6.6 Recurrent neural networks

Figure 6.6: Sketch of a recurrent neu-
ral network. Cycles in the computa-
tional graph incorporate the sequen-
tial structure of the input and output.

Recurrent NNs are NNs where the underlying graph is allowed to
exhibit cycles as in Figure 6.6, see [Hop82, RHW86, Elm90, Jor90].
Previously, we had excluded cyclic computational graphs. For a feed-
forward NN, the computation of internal states is naturally performed
step by step through the layers. Since the output of a layer does
not affect previous layers, the order in which the computations of
the NN are performed corresponds to the order of the layers. For
recurrent NNs, the concept of layers does not exist, and the order
of operations is much more delicate. Therefore, one considers time
steps. In each time step, all possible computations of the graph are
applied to the current state of the NN. This yields a new internal
state. Given that time steps arise naturally from the definition of
recurrent NNs, this NN type is typically used for sequential data.

If the input to a recurrent NN is a sequence, then every input determines the internal state of the recurrent
NN for the following inputs. Therefore, one can claim that these NNs exhibit a memory. This fact is extremely
desirable in natural language processing, which is why recurrent NNs are widely used in this application.

Recurrent NNs can be trained similarly to regular feed-forward NNs by an algorithm called backpropagation
through time [MP69, Wer88, WZ95]. This procedure essentially unfolds the recurrent structure yielding a
classical NN structure. However, the algorithm may lead to very deep structures. Due to the vanishing
and exploding gradient problem discussed earlier, very deep NNs are often hard to train. Because of this,
special recurrent structures were introduced that include gates which prohibit too many recurrent steps; these
include the widely used LSTMs [HS97].

The application area of recurrent NNs is typically quite different from that of regular NNs since they
are specialized on sequential data. Therefore, it is hard to quantify the effect of a recurrent connection on
a fully connected NN. However, it is certainly true that with recurrent connections certain computations
can be performed much more efficiently than with feed-forward NN structures. A particularly interesting
construction can be found in [BF19, Theorem 4.4], where it is shown that a fixed size, recurrent NN with
ReLU activation function, can approximate the function x 7→ x2 to any desired accuracy. The reason for
this efficient representation can be seen when considering the self-referential definition of the approximant to
x− x2 shown in Figure 3.2.

On the other hand, with feed-forward NNs, it transpires from Theorem 3.3 that the approximation error
of fixed-sized ReLU NNs for any non-affine function is greater than a positive lower bound.

7 Describing the features a deep neural network learns

This section presents two viewpoints which help in understanding the nature of features that can be described
by NNs. Section 7.1 summarizes aspects of the so-called scattering transform which constitutes a specific NN
architecture that can be shown to satisfy desirable properties, such as translation and deformation invariance.
Section 7.2 relates NN features to the current paradigm of sparse coding.

7.1 Invariances and the scattering transform

One of the first theoretical contributions to the understanding of the mathematical properties of CNNs
is [Mal12]. The approach taken in that work is to consider specific CNN architectures with fixed parameters
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that result in a stand-alone feature descriptor whose output may be fed into a subsequent classifier (for example,
a kernel support vector machine or a trainable FC NN). From an abstract point of view, a feature descriptor
is a function Ψ mapping from a signal space, such as L2(Rd) or the space of piecewise smooth functions, to
a feature space. In an ideal world, such a classifier should “factor” out invariances that are irrelevant to a
subsequent classification problem while preserving all other information of the signal. A very simple example
of a classifier which is invariant under translations is the Fourier modulus Ψ: L2(Rd) → L2(Rd), u 7→ |û|.
This follows from the fact that a translation of a signal u results in a modulation of its Fourier transform, i.e.,
̂u(· − τ)(ω) = e−2πi〈τ,ω〉û(ω), τ, ω ∈ Rd. Furthermore, in most cases (for example, if u is a generic compactly

supported function [GKR20]), u can be reconstructed up to a translation from its Fourier modulus [GKR20]
and an energy conservation property of the form ‖Ψ(u)‖L2 = ‖u‖L2 holds true. Translation invariance is,
for example, typically exhibited by image classifiers, where the label of an image does not change if it is
translated.

In practical problems many more invariances arise. Providing an analogous representation that factors
out general invariances would lead to a significant reduction in the problem dimensionality and constitutes an
extremely promising route towards dealing with the very high dimensionality that is commonly encountered
in practical problems [Mal16]. This program is carried out in [Mal12] for additional invariances with respect
to deformations u 7→ uτ := u(· − τ(·)), where τ : Rd → Rd is a smooth mapping. Such transformations may
occur in practice, for instance, as image warpings. In particular, a feature descriptor Ψ is designed that, with
a suitable norm ‖ · ‖ on the image of Ψ,

(a) is Lipschitz continuous with respect to deformations in the sense that ‖Ψ(u)−Ψ(uτ )‖ . K(τ,∇τ,∇2τ)
holds for some K that only mildly depends on τ and essentially grows linearly in ∇τ and ∇2τ ,

(b) is almost (i.e., up to a small and controllable error) invariant under translations of the input data, and

(c) contains all relevant information on the input data in the sense that an energy conservation property

‖Ψ(u)‖ ≈ ‖u‖L2

holds true.

Observe that, while the action of translations only represents a d-parameter group, the action of deforma-
tions/warpings represents an infinite-dimensional group. Hence, a deformation invariant feature descriptor
represents a big potential for dimensionality reduction. Roughly speaking, the feature descriptor Ψ of [Mal12]
(also coined the scattering transform) is defined by collecting features that are computed by iteratively
applying a wavelet transform followed by a pointwise modulus non-linearity and a subsequent low-pass
filtering step, i.e.,

|||u ∗ ψj1 | ∗ ψj2 ∗ . . . | ∗ ψj` | ∗ ϕJ ,

where ψj refers to a wavelet at scale j and ϕJ refers to a scaling function at scale J . The collection of all
these so-called scattering coefficients can then be shown to satisfy the properties in (a)–(c) above in a suitable
(asymptotic) sense. The proof of this result relies on a subtle interplay between a “deformation covariance”
property of the wavelet transform and a “regularizing” property of the operation of convolution with the
modulus of a wavelet. We remark that similar results can be shown also for different systems, such as Gabor
frames [WGB17, CL19].

7.2 Hierarchical sparse representations

The previous approach modeled the learned features by a specific dictionary, namely wavelets. It is well known
that one of the striking properties of wavelets is to provide sparse representations for functions belonging to
certain function classes. More generally, we speak of sparse representations with respect to a representation
system. For a vector x ∈ Rd, a sparsifying representation system D ∈ Rd×p—also called dictionary—is such
that x = Dφ with the coefficients φ ∈ Rp being sparse in the sense that ‖φ‖0 := | supp(φ)| = |{i ∈ [p] : φi 6= 0}|
is small compared to p. A similar definition can be made for signals in infinite-dimensional spaces. Taking
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sparse representations into account, the theory of sparse coding provides an approach to a theoretical
understanding of the features a deep NN learns.

One common method in image processing is the utilization of not the entire image but overlapping patches
of it, coined patch-based image processing. Thus of particular interest are local dictionaries which sparsify
those patches, but presumably not the global image. This led to the introduction of the convolutional sparse
coding model (CSC model), which links such local and global behaviors. Let us describe this model for
one-dimensional convolutions on the group G := Z/(dZ) with kernels supported on the subgroup H := Z/(nZ),
where d, n ∈ N with n < d, see also Subsection 6.1. The corresponding CSC model is based on a decomposition
of a global signal x ∈ (RG)c with c ∈ N channels as

xi =

C∑
j=1

κi,j ∗ φj , i ∈ [c], (7.1)

where φ ∈ (RG)C is supposed to be a sparse representation with C ∈ N channels and κi,j ∈ RG, i ∈ [c],
j ∈ [C], are local kernels with supp(κi,j) ⊂ H. Let us consider a patch ((xi)g+h)i∈[c],h∈H of n adjacent entries,
starting at position g ∈ G, in each channel of x. The condition on the support of the kernels κi,j and the
representation in (7.1) imply that this patch is only affected by a stripe of at most (2n− 1) entries in each
channel of φ. The local, patch-based sparsity of the representation φ can thus be appropriately measured via

‖φ‖(n)
0,∞ := max

g∈G
‖((φj)g+k)j∈[C],k∈[2n−1]‖0,

see [PSE17]. Furthermore, note that we can naturally identify x and φ with vectors in Rdc and RdC and write
x = Dφ, where D ∈ Rdc×dC is a matrix consisting of circulant blocks, typically referred to as a convolutional
dictionary.

The relation between the CSC model and deep NNs is revealed by applying the CSC model in a layer-wise
fashion [PRE17, SPRE18, PRSE18]. To see this, let C0 ∈ N and for every ` ∈ [L] let C`, k` ∈ N and let
D(`) ∈ RdC`−1×dC` be a convolutional dictionary with kernels supported on Z/(n`Z). A signal x = φ(0) ∈ RdC0

is said to belong to the corresponding multi-layered CSC model (ML-CSC model) if there exist coefficients
φ(`) ∈ RdC` with

φ(`−1) = D(`)φ(`) and ‖φ(`)‖(n`)0,∞ ≤ k`, ` ∈ [L]. (7.2)

We now consider the problem of reconstructing the sparse coefficients (φ(`))L`=1 from a noisy signal x̃ := x+ ν,
where the noise ν ∈ RdC0 is assumed to have small `2-norm and x is assumed to follow the ML-CSC model
in (7.2). In general, this problem is NP-hard. However, under suitable conditions on the ML-CSC model, it
can be approximately solved, for instance, by a layered thresholding algorithm.

More precisely, for D ∈ Rdc×dC and b ∈ RdC , we define a soft-thresholding operator by

TD,b(x) := %R(DTx− b)− %R(−DTx− b), x ∈ Rdc, (7.3)

where %R(x) = max{0, x} is applied componentwise. If x = Dφ as in (7.1), we obtain φ ≈ TD,b(x) roughly
under the following conditions: The distance of φ and ψ := DTx = DTDφ can be bounded using the local
sparsity of φ and the mutual coherence and locality of the kernels of the convolutional dictionary D. For a
suitable threshold b, the mapping ψ 7→ %R(ψ− b)− %R(−ψ− b) further recovers the support of φ by nullifying
entries of ψ with ψi ≤ |bi|. Utilizing the soft-thresholding operator (7.3) iteratively for corresponding vectors
b(`) ∈ RdC` , ` ∈ [L], then suggests the following approximations:

φ(`) ≈ (TD(`),b(`) ◦ · · · ◦ TD(1),b(1))(x̃), ` ∈ [L].

The resemblance with the realization of a CNN with ReLU activation function is evident. The transposed
dictionary (D(`))T can be regarded as modeling the learned convolutional kernels, the threshold b(`) models
the bias vector, and the soft-thresholding operator TD(`),b(`) mimics the application of a convolutional block
with a ReLU non-linearity in the `-th layer.
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Using this model, a theoretical understanding of CNNs from the perspective of sparse coding is now at
hand. This novel perspective gives a precise mathematical meaning of the kernels in a CNN as sparsifying
dictionaries of an ML-CSC model. Moreover, the forward pass of a CNN can be understood as a layered
thresholding algorithm for decomposing a noisy signal x̃. The results derived are then of the following flavor:
Given a suitable reconstruction procedure such as thresholding or `1-minimization, the sparse coefficients
(φ(`))L`=1 of a signal x following a ML-CSC model can be stably recovered from the noisy signal x̃ under
certain hypotheses on the ingredients of the ML-CSC model.

8 Effectiveness in natural sciences

The theoretical insights of the previous sections do not always accurately describe the performance of NNs in
applications. Indeed, there often exists a considerable gap between the predictions of approximation theory
and the practical performance of NNs [AD20].

In this section, we consider concrete applications which have been very successfully solved with deep-
learning-based methods. In Section 8.1 we present an overview of deep-learning-based algorithms applied to
inverse problems. Section 8.2 then continues by describing how NNs can be used as a numerical ansatz for
solving PDEs, highlighting their use in the solution of the multi-electron Schrödinger equation.

8.1 Deep neural networks meet inverse problems

The area of inverse problems, predominantly in imaging, was presumably the first class of mathematical
methods embracing deep learning with overwhelming success. Let us consider a forward operator K : Y → X
with X ,Y being Hilbert spaces and the associated inverse problem of finding y ∈ Y such that Ky = x for
given features x ∈ X . The classical model-based approach to regularization aims to approximate K by
invertible operators, and is hence strongly based on functional analytic principles. Today, such approaches
take well-posedness of the approximation, convergence properties, as well as the structure of regularized
solutions into account. The last item allows to incorporate prior information of the original solution such as
regularity, sharpness of edges, or—in the case of sparse regularization [JMS17]—a sparse coefficient sequence
with respect to a prescribed representation system. Such approaches are typically realized in a variational
setting and hence aim to minimize functionals of the form

‖Ky − x‖2 + αR(y),

where α ∈ (0,∞) is a regularization parameter, R : Y → [0,∞) a regularization term, and ‖ · ‖ denotes the
norm on Y . As said, the regularization term aims to model structural information about the desired solution.
However, one main hurdle in this approach is the problem that typically solution classes such as images from
computed tomography cannot be modeled accurately enough to, for instance, allow reconstruction under the
constraint of a significant amount of missing features.

This has opened the door to data-driven approaches, and recently, deep NNs. Solvers of inverse problems
which are based on deep learning techniques can be roughly categorized into three classes:

1. Supervised approaches: The most straightforward approach is to train a NN Φ(·, θ) : X → Y end-to-end,
i.e., to completely learn the map from data x to the solution y. More advanced approaches in this
direction incorporate information about the operator K into the NN such as in [AÖ17, GOW19, MLE21].
Yet another type of approaches aims to combine deep NNs with classical model-based approaches.
The first suggestion in this realm was to start by applying a standard solver, followed by a deep NN
Φ(·, θ) : Y → Y which serves as a denoiser for specific reconstruction artifacts, e.g., [JMFU17]. This
was followed by more sophisticated methods such as plug-and-play frameworks for coupling inversion
and denoising [REM17].

2. Semi-supervised approaches: These type of approaches aim to encode the regularization by a deep NN
Φ(·, θ) : Y → [0,∞). The underlying idea is often to require stronger regularization on solutions y(i)
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that are more prone to artifacts or other effects of the instability of the problem. On solutions where
typically few artifacts are observed less regularization can be used. Therefore, the learning algorithm
only requires a set of labels (y(i))mi=1 as well as a method to assess how hard the inverse problem for this
label would be. In this sense, the algorithm can be considered semi-supervised. This idea was followed,
for example, in [LÖS18, LSAH20]. Taking a Bayesian viewpoint, one can also learn prior distributions
as deep NNs, which was done in [BZAJ20].

3. Unsupervised approaches: One highlight of what we might coin unsupervised approaches in our problem
setting is the introduction of deep image priors in [DKMB20, UVL18]. The key idea is to parametrize
the solutions y as the output of a NN Φ(ξ, ·) : P → Y with parameters in a suitable space P , applied to
a fixed input ξ. Then, for given features x, one tries to solve minθ∈P ‖KΦ(ξ, θ)− x‖2 in order to obtain

parameters θ̂ ∈ P that yield a solution candidate y = Φ(ξ, θ̂). Here often early stopping is applied in
the training of the network parameters.

As can be seen, one key conceptual question is how to “take the best out of both worlds”, in the sense
of optimally combining classical (model-based) methods—in particular the forward operator K—with deep
learning. This is certainly sensitively linked to all characteristics of the particular application at hand, such
as availability and accuracy of training data, properties of the forward operator, or requirements for the
solution. And each of the three classes of hybrid solvers follows a different strategy.

Let us now discuss advantages and disadvantages of methods from the three categories with a particular
focus on a mathematical foundation. Supervised approaches suffer on the one hand from the problem that
often ground-truth data is not available or only in a very distorted form, leading to the fact that synthetic
data constitutes a significant part of the training data. Thus the learned NN will mainly perform as well as
the algorithm which generated the data, but not significantly improve it—only from an efficiency viewpoint.
On the other hand, the inversion is often highly ill-posed, i.e., the inversion map has a large Lipschitz constant,
which negatively affects the generalization ability of the NN. Improved approaches incorporate knowledge
about the forward operator K as discussed, which helps to circumvent this issue.

One significant advantage of semi-supervised approaches is that the underlying mathematical model of
the inverse problem is merely augmented by the neural network-based regularization. Assuming that the
learned regularizer satisfies natural assumptions, convergence proofs or stability estimates for the resulting
regularized methods are still available.

Finally, unsupervised approaches have the advantage that the regularization is then fully due to the
specific architecture of the deep NN. This makes these methods slightly easier to understand theoretically,
although, for instance, the deep prior approach in its full generality is still lacking a profound mathematical
analysis.

8.2 PDE-based models

Besides applications in image processing and artificial intelligence, deep learning methods have recently
strongly impacted the field of numerical analysis. In particular, regarding the numerical solution of high-
dimensional PDEs. These PDEs are widely used as a model for complex processes and their numerical
solution presents one of the biggest challenges in scientific computing. We mention three exemplary problem
classes:

1. Black–Scholes model: The Nobel award-winning theory of Fischer Black, Robert Merton, and Myron
Scholes proposes a linear PDE model for the determination of a fair price of a (complex) financial
derivative. The dimensionality of the model corresponds to the number of financial assets which is
typically quite large. The classical linear model, which can be solved efficiently via Monte Carlo methods
is quite limited. In order to take into account more realistic phenomena such as default risk, the PDE
that models a fair price becomes nonlinear, and much more challenging to solve. In particular (with the
notable exception of Multilevel Picard algorithms [EHJK19]) no general algorithm exists that provably
scales well with the dimension.
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2. Schrödinger equation: The electronic Schrödinger equation describes the stationary nonrelativistic
behavior of a quantum mechanical electron system in the electric field generated by the nuclei of
a molecule. Its numerical solution is required to obtain stable molecular configurations, compute
vibrational spectra, or obtain forces governing molecular dynamics. If the number of electrons is large,
this is again a high-dimensional problem and to date there exist no satisfactory algorithms for its
solution: It is well known that different gold standard methods may produce completely different energy
predictions, for example, when applied to large delocalized molecules, rendering these methods useless
for those problems.

3. Hamilton–Jacobi–Bellman equation: The Hamilton–Jacobi–Bellman (HJB) equation models the value
function of (deterministic or stochastic) optimal control problems. The underlying dimensionality of the
model corresponds to the dimension of the space of states to be controlled and tends to be rather high
in realistic applications. The high dimensionality, together with the fact that HJB equations typically
tend to be fully nonlinear with non-smooth solutions, renders the numerical solution of HJB equations
extremely challenging and no general algorithms exist for this problem.

Due to the favorable approximation results of NNs for high-dimensional functions (see especially Subsec-
tion 4.3), it might not come as a surprise that a NN ansatz has proven to be quite successful in solving the
aforementioned PDE models. A pioneering work in this direction is [HJE18] which uses the backwards SDE
reformulation of semilinear parabolic PDEs to reformulate the evaluation of such a PDE at a specific point as
an optimization problem that can be solved by the deep learning paradigm. The resulting algorithm proves
quite successful in the high-dimensional regime and, for instance, enables the efficient modeling of complex
financial derivatives including nonlinear effects such as default risk. Another approach specifically tailored to
the numerical solution of HJB equations is [NZGK21]. In this work, one uses the Pontryagin principle to
generate samples of the PDE solution along solutions of the corresponding boundary value problem. Other
numerical approaches include the Deep Ritz Method [EY18], where a Dirichlet energy is minimized over a
set of NNs, or so-called Physics Informed Neural Networks [RPK19], where typically the PDE residual is
minimized along with some natural constraints, for instance, to enforce boundary conditions.

Deep-learning-based methods arguably work best if they are combined with domain knowledge to inspire
NN architecture choices. We would like to illustrate this interplay at the hand of a specific and extremely
relevant example: the electronic Schrödinger equation (under the Born–Oppenheimer approximation) which
amounts to finding the smallest nonzero eigenvalue of the eigenvalue problem

HRψ = λψψ, (8.1)

for ψ : R3×n → R, where the Hamiltonian

(HRψ)(r) = −
n∑
i=1

1

2
(∆riψ)(r)−

 n∑
i=1

p∑
j=1

Zj
‖ri −Rj‖2

−
p−1∑
i=1

p∑
j=i+1

ZiZj
‖Ri −Rj‖2

−
n−1∑
i=1

n∑
j=i+1

1

‖ri − rj‖2

ψ(r)

describes the kinetic energy (first term) as well as Coulomb attraction force between electrons and nuclei
(second and third term) and the Coulomb repulsion force between different electrons (third term). Here,
the coordinates R =

[
R1 . . . Rp

]
∈ R3×p refer to the positions of the nuclei, (Zi)

p
i=1 ∈ Np denote the atomic

numbers of the nuclei, and the coordinates r =
[
r1, . . . , rn

]
∈ R3×n refer to the positions of the electrons.

The associated eigenfunction ψ describes the so-called wavefunction which can be interpreted in the sense
that |ψ(r)|2/‖ψ‖2L2 describes the joint probability density of the n electrons to be located at r. The smallest
solution λψ of (8.1) describes the ground state energy associated with the nuclear coordinates R. It is
of particular interest to know the ground state energy for all nuclear coordinates, the so-called potential
energy surface whose gradient determines the forces governing the dynamic motions of the nuclei. The
numerical solution of (8.1) is complicated by the Pauli principle which states that the wave function ψ must
be antisymmetric in all coordinates representing electrons of equal spin. To state it, we need to clarify that
every electron is not only defined by its location but also by its spin which may be positive or negative.
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Depending on whether two electrons have the same spin or not, their interaction changes massively. This is
reflected by the Pauli principle that we already mentioned: Suppose that electrons i and j have equal spin,
then the wave function must satisfy

Pi,jψ = −ψ, (8.2)

where Pi,j denotes the operator that swaps ri and rj , i.e., (Pi,jψ)(r) = ψ(r1, . . . , rj , . . . , ri, . . . , rn). In
particular, no two electrons with the same spin can occupy the same location. The challenges associated with
solving the Schrödinger equation inspired the following famous quote by Paul Dirac [Dir29]:

“The fundamental laws necessary for the mathematical treatment of a large part of physics and
the whole of chemistry are thus completely known, and the difficulty lies only in the fact that
application of these laws leads to equations that are too complex to be solved.”

We now describe how deep learning methods might help to mitigate this claim to a certain extent. Let X
be a random variable with density |ψ(r)|2/‖ψ‖2L2 . Using the Rayleigh–Ritz principle, finding the minimal
nonzero eigenvalue of (8.1) can be reformulated as minimizing the Rayleigh quotient∫

R3×n ψ(r)(HRψ)(r) dr

‖ψ‖2L2

= E

[
(HRψ)(X)

ψ(X)

]
(8.3)

over all ψ’s satisfying the Pauli principle, see [SO12]. Since this represents a minimization problem it can in
principle be solved via a NN ansatz by generating training data distributed according to X using MCMC
sampling31. Since the wave function ψ will be parametrized as a NN, the minimization of (8.3) will require
the computation of the gradient of (8.3) with respect to the NN parameters (the method in [PSMF20] even
requires second order derivatives) which, at first sight, might seem to require the computation of third order
derivatives. However, due to the Hermitian structure of the Hamiltonian one does not need to compute the
derivative of the Laplacian of ψ, see, for example, [HSN20, Equation (8)].

Compared to the other PDE problems we have discussed, an additional complication arises from the
need to incorporate structural properties and invariances such as the Pauli principle. Furthermore, empirical
evidence shows that it is also necessary to hard code the so-called cusp conditions which describe the
asymptotic behavior of nearby electrons and electrons close to a nucleus into the NN architecture. A first
attempt in this direction has been made in [HZE19] and significantly improved NN architectures have been
developed in [HSN20, PSMF20, SRG+21] opening the possibility of accurate ab initio computations for
previously intractable molecules. The mathematical properties of this exciting line of work remain largely
unexplored. We briefly describe the main ideas behind the NN architecture of [HSN20, SRG+21]. Standard
numerical approaches (notably the Multireference Hartree Fock Method, see [SO12]) use a low rank approach
to minimize (8.3). Such a low rank approach would approximate ψ by sums of products of one electron
orbitals

∏n
i=1 ϕi(ri) but clearly this does not satisfy the Pauli principle (8.2). In order to ensure the Pauli

principle, one constructs so-called Slater determinants from one electron orbitals with equal spin. More
precisely, suppose that the first n+ electrons with coordinates r1, . . . , rn+ have positive spin and the last
n− n+ electrons have negative spin. Then any function of the form

det
(

(ϕi(rj))
n+

i,j=1

)
· det

(
(ϕi(rj))

n
i,j=n++1

)
(8.4)

satisfies (8.2) and is typically called a Slater determinant. While the Pauli principle establishes an (non-
classical) interaction between electrons of equal spin, the so-called exchange correlation, electrons with
opposite spins are uncorrelated in the representation (8.4). In particular, (8.4) ignores interactions between
electrons that arise through Coulomb forces, implying that no nontrivial wavefunction can be accurately
represented by a single Slater determinant. To capture physical interactions between different electrons,
one needs to use sums of Slater determinants as an ansatz. However, it turns out that the number of such
determinants that are needed to guarantee a given accuracy scales very badly with the system size n (to the

31Observe that for such sampling methods one can just use the unnormalized density |ψ(r)|2 and thus avoid the computation
of the normalization ‖ψ‖2

L2 .
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best of our knowledge the best currently known approximation results are contained in [Yse10], where an
n-independent error rate is shown, however the implicit constant in this rate depends at least exponentially
on the system size n).

We would like to highlight the approach of [HSN20] whose main idea is to use NNs to incorporate
interactions into Slater determinants of the form (8.4) using what is called the backflow trick [RMD+06].
The basic building blocks would now consist of functions of the form

det
(

(ϕi(rj)Ψj(r, θj))
n+

i,j=1

)
· det

(
(ϕi(rj)Ψj(r, θj))

n
i,j=n++1

)
, (8.5)

where Ψk(·, θk), k ∈ [n], are NNs. If these are arbitrary NNs, it is easy to see that the Pauli principle (8.2)
will not be satisfied. However, if we require the NNs to be symmetric, for example, in the sense that for
i, j, s ∈ [n+] it holds that

Pi,jΨk(·, θk) =


Ψk(·, θk), if k /∈ {i, j},
Ψi(·, θi), if k = j,

Ψj(·, θj), if k = i,

(8.6)

and analogous conditions hold for i, j, k ∈ [n] \ [n+], the expression (8.5) does actually satisfy (8.2). The
construction of such symmetric NNs can be achieved by using a modification of the so-called SchNet
Architecture [SKS+17] which can be considered as a specific residual NN.

We describe a simplified construction which is inspired by [HZE19] and used in a slightly more complex
form in [SRG+21]. We restrict ourselves to the case of positive spin (e.g., the first n+ coordinates), the case
of negative spin being handled in the same way. Let Υ(·, θ+

emb) be a univariate NN (with possibly multivariate
output) and denote

Embk(r, θ+
emb) :=

n+∑
i=1

Υ(‖rk − ri‖2, θ+
emb), k ∈ [n+],

the k-th embedding layer. For k ∈ [n+], we can now define

Ψk (r, θk) = Ψk

(
r, (θk,fc, θ

+
emb)

)
= Γk

((
Embk(r, θ+

emb), (rn++1, . . . , rn)
)
, θk,fc

)
,

where Γk(·, θk,fc) denotes a standard FC NN with input dimension equal to the output dimension of Ψ+

plus the dimension of negative spin electrons. The networks Ψk, k ∈ [n] \ [n+], are defined analogously
using different parameters θ−emb for the embeddings. It is straightforward to check that the NNs Ψk, k ∈ [n],
satisfy (8.6) so that the backflow determinants (8.5) satisfy the Pauli principle (8.2).

In [HSN20] the backflow determinants (8.5) are further augmented by a multiplicative correction term,
the so-called Jastrow factor which is also represented by a specific symmetric NN, as well as a correction
term that ensures the validity of the cusp conditions. The results of [HSN20] show that this ansatz (namely
using linear combinations of backflow determinants (8.5) instead of plain Slater determinants (8.4)) is vastly
more efficient in terms of number of determinants needed to obtain chemical accuracy. The full architecture
provides a general purpose NN architecture to represent complicated wave functions. A distinct advantage
of this approach is that some parameters (for example, embedding layers) may be shared across different
nuclear geometries R ∈ R3×p which allows for the efficient computation of potential energy surfaces [SRG+21],
see Figure 8.1. Finally, we would like to highlight the customized NN design that incorporates physical
invariances, domain knowledge (for example, in the form of cusp conditions), and existing numerical methods,
all of which are required for the method to reach its full potential.
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computing forces between nuclei which allows for molecular dynamics simulations from first principles.
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[RMD+06] P López Ŕıos, Ao Ma, Neil D Drummond, Michael D Towler, and Richard J Needs, Inhomoge-
neous backflow transformations in quantum Monte Carlo calculations, Physical Review E 74
(2006), no. 6, 066701.

[Ros58] Frank Rosenblatt, The perceptron: a probabilistic model for information storage and organization
in the brain, Psychological review 65 (1958), no. 6, 386.

[RPK+17] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein, On the
expressive power of deep neural networks, International Conference on Machine Learning, 2017,
pp. 2847–2854.

[RPK19] Maziar Raissi, Paris Perdikaris, and George E Karniadakis, Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations, Journal of Computational Physics 378 (2019), 686–707.

[RR+07] Ali Rahimi, Benjamin Recht, et al., Random features for large-scale kernel machines, Advances
in Neural Information Processing Systems, 2007, pp. 1177–1184.

[Rud06] Walter Rudin, Real and complex analysis, McGraw-Hill Series in Higher Mathematics, Tata
McGraw-Hill, 2006.

[RWK+20] Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad
Rastegari, What’s hidden in a randomly weighted neural network?, Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2020, pp. 11893–11902.

[Sak99] Akito Sakurai, Tight bounds for the VC-dimension of piecewise polynomial networks, Advances
in Neural Information Processing Systems, 1999, pp. 323–329.

74



[SCC18] Uri Shaham, Alexander Cloninger, and Ronald R Coifman, Provable approximation properties
for deep neural networks, Applied and Computational Harmonic Analysis 44 (2018), no. 3,
537–557.

[Sch15] Jürgen Schmidhuber, Deep learning in neural networks: An overview, Neural Networks 61
(2015), 85–117.

[SDR14] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczyński, Lectures on stochastic pro-
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Abstract—Although for neural networks with locally Lipschitz
continuous activation functions the classical derivative exists
almost everywhere, the standard chain rule is in general not
applicable. We will consider a way of introducing a derivative for
neural networks that admits a chain rule, which is both rigorous
and easy to work with. In addition we will present a method of
converting approximation results on bounded domains to global
(pointwise) estimates. This can be used to extend known neural
network approximation theory to include the study of regularity
properties. Of particular interest is the application to neural
networks with ReLU activation function, where it contributes to
the understanding of the success of deep learning methods for
high-dimensional partial differential equations.

I. INTRODUCTION

It has been observed that deep neural networks exhibit the
remarkable capability of overcoming the curse of dimension-
ality in a number of different scenarios. In particular, for
certain types of high-dimensional partial differential equations
(PDEs) there are promising empirical observations [1], [2],
[3], [4], [5], [6], [7] backed by theoretical results for both
the approximation error [8], [9], [10], [11] as well as the
generalization error [12]. In this context it becomes relevant
to not only show how well a given function of interest can
be approximated by neural networks but also to extend the
study to the derivative of this function. A number of recent
publications [13], [14], [15] have investigated the required
size of a network which is sufficient to approximate certain
interesting (classes of) functions within a given accuracy.
This is achieved, first, by considering the approximation of
basic functions by very simple networks and, subsequently,
by combining those networks in order to approximate more
difficult structures. To extend this approach to include the
regularity of the approximation, one requires some kind of
chain rule for the composition of neural networks. For neural
networks with differentiable activation function the standard
chain rule is sufficient. It, however, fails when considering
neural networks with an activation function, which is not ev-
erywhere differentiable. Although locally Lipschitz continuous
functions are w.r.t the Lebesgue measure almost everywhere
(a.e.) differentiable, the standard chain rule is not applicable,
as, in general, it does not hold even in an ’almost everywhere’
sense. We will introduce derivatives of neural networks in

a way that admits a chain rule which is both rigorous as
well as easy to work with. Chain rules for functions which
are not everywhere differentiable have been considered in a
more general setting in e.g. [16], [17]. We employ the specific
structure of neural networks to get stronger results using
simpler arguments. In particular it allows for a stability result,
i.e. Lemma III.3, the application of which will be discussed in
Section V. We would also like to mention a very recent work
[18] about approximation in Sobolev norms, where they deal
with the issue by using a general bound for the Sobolev norm
of the composition of functions from the Sobolev space W 1,∞.
Note however that this approach leads to a certain factor
depending on the dimensions of the domains of the functions,
which can be avoided with our method. For ease of exposition,
we formulate our results for neural networks with the ReLU
activation function. We, however, consider in Section IV how
such a chain rule can be obtained for any activation function
which is locally Lipschitz continuous (with at most countably
many points at which it is not differentiable). In Section V we
briefly sketch how the results from Section III can be utilized
to get approximation results for certain classes of functions.
Subsequently, in Section VI, we present a general method
of deriving global error estimates from such approximation
results, which are naturally obtained for bounded domains.
Ultimately, we discuss how our results can be used to extend
known theory, enabling the further study of the approximation
of PDE solutions by neural networks.

II. SETTING

As in [14], we consider a neural network Φ to be a finite
sequence of matrix-vector pairs, i.e.

Φ = ((Ak, bk))Lk=1, (1)

where Ak ∈ RNk×Nk−1 and bk ∈ RNk for some depth L ∈ N
and layer dimensions N0, N1, . . . , NL ∈ N. The realization of
the neural network Φ is the function RΦ: RN0 → RNL given
by

RΦ = WL ◦ ReLU ◦WL−1 ◦ . . . ◦ ReLU ◦W1, (2)

where Wk(x) = Akx+ bk for every x ∈ RNk and where

ReLU(x) := (max{0, x1}, . . . ,max{0, xN}) (3)



for every x ∈ RN . We distinguish between a neural network
and its realization, since Φ uniquely induces RΦ, while in
general there can be multiple non-trivially different neural
networks with the same realization. The representation of a
neural network as a structured set of weights as in (1) allows
the introduction of notions of network sizes. While there are
slight differences between various publications, commonly
considered quantities are the depth (i.e. number of affine
transformations), the connectivity (i.e. number of non-zero
entries of the Ak and bk), and the weight bound (i.e. maximum
of the absolute values of the entries of the Ak and bk). In [15]
it has been shown that these three quantities determine the
length of a bit string which is sufficient to encode the network
with a prescribed quantization error. In the following let

Φ=((Ak, bk))Lk=1, Ψ=((Ãk, b̃k))L̃k=1 (4)

be neural networks with matching dimensions in the sense
thatRΦ: Rd → Rm andRΨ: Rm → Rn. We then define their
composition as

Ψ� Φ :=(
((Ak, bk))L−1

k=1 , (Ã1AL, Ã1bL + b̃1), ((Ãk, b̃k))L̃k=2

)
.

(5)

Direct computation shows

R(Ψ� Φ) = RΨ ◦ RΦ. (6)

Note that the realization RΦ of a neural network Φ is continu-
ous piecewise linear (CPL) as a composition of CPL functions.
Consequently, it is Lipschitz continuous and the realization
RΦ is almost everywhere differentiable by Rademacher’s
theorem. In particular all three functions in (6) are a.e. differ-
entiable. This, however, is not sufficient to get the derivative
of R(Ψ�Φ) from the derivatives of RΨ and RΦ by use of the
classical chain rule. Consider the very simple counterexample
of u(x) := ReLU(x) and v(x) := 0 and formally apply the
chain rule, i.e.

(D(u ◦ v))(x) = (Du)(v(x)) · (Dv)(x). (7)

Even though (Du)(y) is well-defined for every y ∈ R\{0},
the expression (Du)(v(x)) is defined for no x ∈ R. In general
this problem occurs when the inner function maps a set of
positive measure into a set where the derivative of the outer
function does not exist. Now in this case, one can directly see
that setting (Du)(0) to any arbitrary value would cause (7) to
provide the correct result since (Dv)(x) = 0.

III. RELU NETWORK DERIVATIVE

We proceed by defining the derivative of an arbitrary neural
network in a way such that it not only coincides a.e. with the
derivative of the realization, but also admits a chain rule. To
this end let H : RN → RN×N be the function given by

H(x) := diag(1(0,∞)(x1), . . . ,1(0,∞)(xN )) (8)

for every x = (x1, . . . , xN ) ∈ RN and let RKΦ :=
R((Ak, bk))Kk=1. We then define the neural network derivative
of Φ as the function DΦ: RN0 → RNL×N0 given by

DΦ := AL ·H(RL−1Φ) ·AL−1 · . . . ·H(R1Φ) ·A1. (9)

Note that this definition is motivated by formally applying the
chain rule with the convention that the derivative of max{0, · }
is zero at the origin. Now we need to verify that this is justified.

Theorem III.1. It holds for almost every x ∈ Rd that

(DΦ)(x) = (D(RΦ))(x). (10)

Proof. Let v : Rd → RN be a locally Lipschitz continuous
function, define w := ReLU ◦ v, and

Li := {x ∈ Rd : wi(x) = 0} = {x ∈ Rd : vi(x) ≤ 0}. (11)

We now use an observation about differentiability on level sets
(see e.g. [19, Thm 3.3(i)]), which states that

(Dwi)(x) = 0 for almost every x ∈ Li. (12)

As wi(x) = vi(x) for every x ∈ Rd\Li, we get a.e.

Dwi = 1Rd\Li
·Dvi = 1(0,∞)(vi) ·Dvi (13)

and consequently

D(ReLU ◦ v) = H(v) ·Dv. (14)

The claim follows by induction over the layers K = 1, . . . , L
of Φ, using (14) with v = RKΦ for the induction step.

Note that even for convex RΦ the values of DΦ on the
nullset do not necessarily lie in the respective subdifferentials
of RΦ, as can be seen in Figure 1. Although Theorem III.1
holds regardless of which value is chosen for the derivative
of max{0, · } at the origin, no choice will guarantee that all
values of DΦ lie in the respective subdifferentials of RΦ. Here
we have set the derivative at the origin to zero, following
the convention of software implementations for deep learning
applications, e.g. TensorFlow and PyTorch. Using (5) and (9)
one can verify by direct computation that D obeys the chain
rule.

Corollary III.2. It holds for every x ∈ Rd that

(D(Ψ� Φ))(x) = (DΨ)(RΦ(x)) · (DΦ)(x). (15)

Note that (15) is well-defined as DΨ exists everywhere,
although it only coincides with D(RΨ) almost everywhere.
Theorem III.1 however guarantees that we still have a.e.

D(Ψ� Φ) = D(R(Ψ� Φ)) = D(RΨ ◦ RΦ). (16)

Next we provide a technical result dealing with the stability
of our chain rule, which will prove to be useful in Section V.

Lemma III.3. It holds for almost every x ∈ Rd that

lim
y→RΦ(x)

[
(DΨ)(y)− (DΨ)(RΦ(x))

]
· (DΦ)(x) = 0. (17)

Proof. We first show for every locally Lipschitz continuous
function u : Rm → RN and for almost every x ∈ Rd that

lim
y→RΦ(x)

[H(u(y))−H(u(RΦ(x)))] · (D(u ◦ RΦ))(x) = 0. (18)

If ui(RΦ(x)) 6= 0 we have

lim
y→RΦ(x)

1(0,∞)(ui(y)) = 1(0,∞)(ui(RΦ(x))) (19)



as ui is continuous and 1(0,∞) is continuous on R\{0}.
Furthermore, [19, Thm 3.3(i)] implies that

(D(ui ◦ RΦ))(x) = 0 (20)

for almost every x ∈ Rd with ui(RΦ(x)) = 0. Since a finite
union of nullsets is again a nullset, this proves the claim (18).
The lemma follows by induction over the layers K = 1, . . . , L̃
of Ψ and applying (18) with u = RKΨ.

IV. GENERAL ACTIVATION FUNCTIONS

As mentioned in the introduction, it is possible to replace
the ReLU activation function in (2) by some locally Lipschitz
continuous, component-wise applied function % : R→ R with
an at most countably large set S of points where % is not
differentiable. Specifically, one can define the neural network
derivative (with activation function %) as in (9) with 1(0,∞)(xi)
in (8) replaced by

(D̄%)(xi) :=

{
0, xi ∈ S
(D%)(xi), else

. (21)

The chain rule can, again, be checked by direct computation
and it is straightforward to adapt Theorem III.1 to this more
general setting by considering the level sets

{x ∈ Rd : wi(x) = s}, s ∈ S. (22)

If additionally D̄% is continuous on R \ S, the proof of
Lemma III.3 translates without any modifications.

V. UTILIZATION IN APPROXIMATION THEORY

These results can now be employed to bound the L∞-norm
of D(Ψ ◦ Φ) − D(u ◦ v), given corresponding estimates for
the approximation of u and v by Ψ and Φ, respectively. Here,
one has to take some care when bounding the term

‖[DΨ ◦ RΦ−Du ◦ RΦ]DΦ‖L∞ (23)

by
‖DΨ−Du‖L∞‖DΦ‖L∞ . (24)

Again it can happen that RΦ maps a set of positive measure
into a nullset where the estimate for the approximation of Du
by DΨ in the essential supremum norm is not valid. However,
using the stability result in Lemma III.3 one can for almost
every x ∈ Rd shift to a sufficiently close point y ≈ RΦ(x)
where the estimate holds. In [13] Yarotsky explicitly constructs
networks whose realization is a linear interpolation1 of the
squaring function (see Fig. 1 for illustration), which directly
gives an estimate on the approximation rate for the derivatives.
These simple networks can then be combined to get networks
approximating multiplication, polynomials and eventually, by
means of e.g. local Taylor approximation, functions f whose
first n ≥ 1 (weak) derivatives are bounded. This leads to
estimates of the form

‖f −RΦε,B‖L∞(IB) ≤ ε, (25)

1The interpolation points are uniformly distributed over the domain of
approximation and their number grows exponentially with the size of the
networks.

Fig. 1. Approximation of the function x 7→ x2 and its derivative on the
interval [−4, 4] by a neural network Φ with depth 6, connectivity 52 and
weight bound 4. Note that not all values of DΦ at the points of non-
differentiablity of RΦ lie between the values at either side, i.e. in the
subdifferential.

with IB = [−B,B]d, including estimates for the scaling
of the size of the network Φε,B w.r.t. B and ε. As these
constructions are based on composing simpler functions with
known estimates one can now employ Theorem III.1 and
Corollary III.2 to show that the derivatives of those networks
also approximate the derivative of the function, i.e.

‖Df −DΦε,B‖L∞(IB) ≤ c εr. (26)

Such constructive approaches can further be found in [8],
in [14] for β-cartoon-like functions, in [20] for (b, ε)-
holomorphic maps, and in [15] for high-frequent sinusoidal
functions.

VI. GLOBAL ERROR ESTIMATES

The error estimates above are usually only sensible for
bounded domains, as the realization of a neural network is
always CPL with a finite number of pieces. We briefly discuss
a general way of transforming them into global pointwise error
estimates, which can be useful in the context of PDEs (see e.g.



x

= RΦε/2,Bε+1(x)

≈ 1
[−Bε,Bε]d

(x)

Φmult
ε/2,bε

≈ 1
[−Bε,Bε]d
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Φchar
Bε

Φε/2,Bε+1

Fig. 2. The neural networks Φε approximating f globally.

[9], [10]). In the following assume that we have a function f
with an at most polynomially growing derivative, i.e.

‖(Df)(x)‖2 ≤ c(1 + ‖x‖κ2 ). (27)

Denote by Φchar
B a neural network which represents the d-

dimensional approximate characteristic function of IB , i.e.
RΦchar

B (x) ∈ [0, 1] and

RΦchar
B (x) = 1, x ∈ IB ,

RΦchar
B (x) = 0, x /∈ IB+1.

(28)

See [15, Proof of Thm. VIII.3] for such a construction.
Further let Φmult

ε,b be the neural network approximating the
multiplication function on [−b, b]2 with error ε (see e.g. [20,
Prop. 3.1]).
Now we define the global approximation networks Φε as the
composition of Φmult

ε/2,bε
with the parallelization of Φchar

Bε
and

Φε/2,Bε+1 for suitable

Bε ∈ O(ε−1) and bε ∈ O(ε−κ−1). (29)

See Figure 2 for an illustration and e.g. [14, Def. 2.7] for a
formal definition of parallelization. Considering the errors on
IB , IB+1\IB and Rd\IB+1 leads to global estimates, i.e. for
every x ∈ Rd

|f(x)−RΦε(x)| ≤ ε(1 + ‖x‖κ+2
2 ) (30)

and, by use of the chain rule III.2, for almost every x ∈ Rd

‖(Df)(x)− (DΦε)(x)‖2 ≤ Cεr(1 + ‖x‖κ+2
2 ). (31)

Due to the logarithmic size scaling of the multiplication
network, the size of Φε can be bounded by the size of
Φε/2,Bε+1 plus an additional term in O(d+ κ log ε−1).

VII. APPLICATION TO PDES

Analyzing the regularity properties of neural networks was
motivated by the recent successful application of deep learning
methods to PDEs [2], [3], [4], [5], [6], [7], [11]. Initiated by
empirical experiments [1] it has been proven that neural net-
works are capable of overcoming the curse of dimensionality
for solving so-called Kolmogorov PDEs [12]. More precisely,
the solution to the empirical risk minimization problem over
a class of neural networks approximates the solution of the
PDE up to error ε with high probability and with size of the
networks and number of samples scaling only polynomially
in the dimension d and ε−1. The above requires a suitable
learning problem and a sufficiently good approximation of the
solution function by neural networks. For Kolmogorov PDEs,

this boils down to calculating global Lipschitz coefficients
and error estimates for neural networks approximating the
initial condition and coefficient functions (see e.g. [9], [10]).
Employing estimates of the form (26) one can bound the
derivative on IB , i.e.

LB := ‖DΦε,B‖L∞(IB) ≤ ‖Df‖L∞(IB) + cεr. (32)

Using mollification and the mean value theorem we can
establish local Lipschitz estimates, i.e. for all x, y ∈ (−B,B)d

that
|RΦε,B(x)−RΦε,B(y)| ≤ LB‖x− y‖2, (33)

and corresponding linear growth bounds

|RΦε,B(x)| ≤
(
|RΦε,B(0)|+ LB

)
(1 + ‖x‖2). (34)

Similarly, one can use (31) to obtain estimates of the form

|RΦε(x)−RΦε(y)| ≤ C(1+‖x‖κ+2
2 +‖y‖κ+2

2 )‖x−y‖2 (35)

for all x, y ∈ Rd (which are demanded in [10, Theorem 1.1]).
Moreover, note that the capability to produce approximation
results which include error estimates for the derivative is of
significant independent interest. Various numerical methods
(for instance Galerkin methods) rely on bounding the error
in some Sobolev norm ‖ · ‖W 1,p , which requires estimates
of the derivative differences. We believe that the possibility
to obtain regularity estimates significantly contributes to the
mathematical theory of neural networks and allows for further
advances in the numerical approximation of high dimensional
partial differential equations.

VIII. RELATION TO BACKPROPAGATION IN TRAINING

The approach discussed here could further be applied to the
training of neural networks by (stochastic) gradient descent.
Note, however, that this is a slightly different setting. From
the approximation theory perspective we were interested in
the derivative of x 7→ RΦ(x), while in training one requires
the derivative of Φ 7→ RΦ(x∗) for some fixed sample x∗.
In particular this function is no longer CPL but rather con-
tinuous piecewise polynomial. While this would necessitate
some technical modifications, we believe that it should be
possible to employ the method used here in order to show
that the gradient of Φ 7→ RΦ(x∗) coincides a.e. with what is
computed by backpropagation using the convention of setting
the derivative of max{0, ·} to zero at the origin (as well as
similar conventions for e.g. max-pooling).
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Analysis of the Generalization Error: Empirical Risk Minimization over
Deep Artificial Neural Networks Overcomes the Curse of Dimensionality in the

Numerical Approximation of Black–Scholes Partial Differential Equations

Julius Berner∗ , Philipp Grohs† , and Arnulf Jentzen‡

Abstract. The development of new classification and regression algorithms based on empirical risk minimization
(ERM) over deep neural network hypothesis classes, coined deep learning, revolutionized the area
of artificial intelligence, machine learning, and data analysis. In particular, these methods have
been applied to the numerical solution of high-dimensional partial differential equations with great
success. Recent simulations indicate that deep learning–based algorithms are capable of overcoming
the curse of dimensionality for the numerical solution of Kolmogorov equations, which are widely
used in models from engineering, finance, and the natural sciences. The present paper considers
under which conditions ERM over a deep neural network hypothesis class approximates the solution
of a d-dimensional Kolmogorov equation with affine drift and diffusion coefficients and typical initial
values arising from problems in computational finance up to error ε. We establish that, with high
probability over draws of training samples, such an approximation can be achieved with both the
size of the hypothesis class and the number of training samples scaling only polynomially in d and
ε−1. It can be concluded that ERM over deep neural network hypothesis classes overcomes the curse
of dimensionality for the numerical solution of linear Kolmogorov equations with affine coefficients.

Key words. deep learning, curse of dimensionality, Kolmogorov equation, generalization error, empirical risk
minimization

AMS subject classifications. 60H30, 65C30, 62M45, 68T05

1. Introduction. In this introductory section we want to present and motivate our prob-
lem, provide the reader with background knowledge and references to previous research on
the topic, and outline the important steps, as well as possible extensions, of our contribution.

1.1. Problem statement. Suppose we need to numerically approximate the end value1

Fd(T, ·) at time T ∈ (0,∞) of the solution Fd ∈ C([0, T ] × Rd,R) of a linear Kolmogorov
equation which for an initial value ϕd ∈ C(Rd,R), drift coefficient µd ∈ C(Rd,Rd), and diffusion
coefficient σd ∈ C(Rd,Rd×d) is defined as2

(1.1)

{
∂Fd
∂t (t, x) = 1

2Trace
(
σd(x)[σd(x)]∗(HessxFd)(t, x)

)
+ µd(x) · (∇xFd)(t, x)

Fd(0, x) = ϕd(x)
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1We write the subscript d as we are interested in approximation rates w.r.t. to the dimension d ∈ N.
2For x ∈ Rd, y ∈ Rd we denote by x · y :=

∑d
i=1 xiyi the standard scalar product of x and y.
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for every (t, x) ∈ [0, T ]×Rd. Important special cases include the heat equation or the Black–
Scholes equation from computational finance. For the latter partial differential equation
(PDE) typically the coefficients σd and µd are affine and the initial value ϕd can be rep-
resented as a composition of minima, maxima, and linear combinations such as

(1.2) ϕd(x) = min
{

max {D − cd · x, 0} , D
}

with suitable coefficients D ∈ (0,∞), cd ∈ Rd in the case of a European put option pricing
problem. It is well known that standard numerical methods for solving PDEs, in particular
those based on a discretization of the domain, suffer from the curse of dimensionality, meaning
that their computational complexity grows exponentially in the dimension d [3, 57].

If the goal is simply to evaluate Fd(T, ·) at a single value ξ ∈ Rd, then under suitable
assumptions Monte Carlo sampling methods are capable of overcoming the curse of dimen-
sionality. These methods are based on the integral representation (Feynman–Kac formula)

(1.3) Fd(T, ξ) = E
[
ϕd(S

ξ
T )
]
,

where (Sξt )t∈[0,T ] is a stochastic process satisfying the stochastic differential equation (SDE)

dSξt = σd(S
ξ
t )dB

d
t + µd(S

ξ
t )dt and Sξ0 = ξ

for a d-dimensional (Gt)-Brownian motion Bd on some filtered probability space (Ω,G,P, (Gt)).
The evaluation of Fd(T, ξ) can then be computed by approximating the expectation in (1.3)
by Monte Carlo integration, that is, by simulating i.i.d. samples (S(i))mi=1 drawn from the

distribution of SξT and by approximating Fd(T, ξ) with the empirical average 1
m

∑m
i=1 ϕd(S

(i)).
It is a standard result that the number of samples m needed to obtain a desired accuracy ε
depends only polynomially on the dimension d and ε−1 [28].

If the goal, however, is to approximate Fd(T, ·) not only at a single value but, for example,
on a full hypercube [u, v]d, there has been no known method which does not suffer from
the curse of dimensionality. In particular, it has been completely out of range to provably
approximate Fd(T, ·) on [u, v]d in high dimensions, say, d� 100.

The present paper introduces and analyzes deep learning–based algorithms for the numer-
ical approximation of Fd(T, ·) on a full hypercube [u, v]d. We will prove that the resulting
algorithms overcome the curse of dimensionality and can consequently be efficiently applied
even in high dimensions. Our proofs will be based on tools from statistical learning theory
and the following key properties of linear Kolmogorov equations:

P.1 The fact that one can reformulate (1.1) as a learning problem (see Lemma 3.2).

P.2 The fact that typical initial values arising from problems in computational finance,
such as, for example, (1.2), are either exactly representable as neural networks with
ReLU activation function (ReLU networks) or can be approximated by such neural
networks without incurring the curse of dimensionality (see [29, Section 4]).

P.3 The fact that Property P.2 is preserved under the evolution of linear Kolmogorov
equations (1.1) with affine diffusion and drift coefficients, which implies that Fd(T, ·)
can be approximated by ReLU networks without incurring the curse of dimensionality
(see Theorem 3.3).
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1.2. Deep learning and statistical learning theory. In their most basic incarnation, deep
learning–based algorithms start with training data

((X
(i)
d , Y

(i)
d ))mi=1 : Ω→ ([u, v]d × [−D,D])m.

To give a concrete example, X
(i)
d may consist of different 28 × 28 pixel grayscale images of

handwritten digits and Y
(i)
d may consist of corresponding probabilities describing the likeli-

hood of a certain digit to be shown in image X
(i)
d [44]. The goal is then to find a functional

relation between images and labels and use it for predictive purposes on unseen images.
Empirical risk minimization (ERM) attempts to solve this prediction problem by mini-

mizing the empirical risk

(1.4) f 7→ Êd,m(f) := 1
m

m∑
i=1

(
f(X

(i)
d )− Y (i)

d

)2
over a compact3 hypothesis class H ⊆ C([u, v]d,R), resulting in a predictor

f̂d,m,H ∈ argmin
f∈H

Êd,m(f)

that is hoped to provide a good approximation of the desired functional relation in the
training data. In deep learning, these hypothesis classes consist of deep neural networks
with fixed activation function ρ ∈ C(R,R), parameter bound R ∈ (0,∞), and architecture4

a = (a0, a1, . . . , aL) ∈ NL+1, where a0 = d and aL = 1. We define the corresponding set of
neural network parametrizations

Pa,R :=
L

×
l=1

(
[−R,R]al×al−1 × [−R,R]al

)
,

and for a parametrization θ = ((Wl, Bl))
L
l=1 ∈ Pa,R we define its realization function5

Fρ(θ) := AWL,BL ◦ ρ∗ ◦ AWL−1,BL−1
◦ ρ∗ ◦ · · · ◦ ρ∗ ◦ AW1,B1 ∈ C(Rd,R),

where AW,B(x) := Wx + B and ρ∗(x) = (ρ(xi))
n
i=1, i.e., ρ is applied componentwise. Then,

neural network hypothesis classes are typically of the form

(1.5) N u,v
ρ,a,R :=

{(
[u, v]d 3 x 7→ Fρ(θ)(x)

)
: θ ∈ Pa,R

}
.

3Note that we equip C([u, v]d,R) with the uniform norm ‖·‖L∞ which for f ∈ C([u, v]d,R) is given by
‖f‖L∞ = ‖f‖L∞([u,v]d) := maxx∈[u,v]d |f(x)|.

4Typically one calls a neural network “deep” if the architecture satisfies L > 2.
5If there is no possibility of ambiguity, we use the term “neural network” interchangeably for the

parametrization and the realization function. However, note that θ ∈ Pa,R uniquely induces Fρ(θ) ∈ C(Rd,R),
while in general there can be multiple nontrivially different parametrizations with the same realization function;
see [13].
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Despite the great practical success of the “deep learning paradigm,” for generic real world
training data it is far out of reach to specify network architectures which guarantee a desired
performance on unseen data; see also [63].

This type of problem can be theoretically studied using tools developed within the field

of statistical learning theory. There it is typically postulated that ((X
(i)
d , Y

(i)
d ))mi=1 are i.i.d.

samples drawn from the distribution of some (unknown) data (Xd, Yd) and that the optimal
functional relation between Xd and Yd is given by the regression function

f∗d :

{
[u, v]d → R
x 7→ E

[
Yd
∣∣Xd = x

]
,

which minimizes the risk f 7→ Ed(f) := E

[(
f(Xd)− Yd

)2]
(see Lemma 2.2). The minimization

of functionals of the form Ed is commonly referred to as a

statistical learning problem with data (Xd, Yd) and quadratic loss function.

Under strong regularity assumptions on the regression function f∗d and the distribution of
(Xd, Yd) it is possible to obtain bounds on the sample size m and the “complexity” of the
hypothesis class H in order to guarantee, with high probability, an error

(1.6) E

[(
f̂d,m,H(Xd)− f∗d (Xd)

)2] ≤ ε;
see, for example, [4, 7, 18, 19, 31, 41, 47, 61]. In the above, the regularity of the regression
function f∗d quantifies how well f∗d can be approximated by the hypothesis class H.

In the case of the neural network hypothesis classes H = N u,v
ρ,a,R these regularity assump-

tions are met if f∗d satisfies certain smoothness assumptions; see [15, 16, 26, 52, 54, 58, 62].
Moreover, the complexity of N u,v

ρ,a,R can mainly be described by the size of the neural network
parametrizations, i.e., the number of network parameters

P (a) :=
∑L

l=1 alal−1 + al.

We will show in Subsection 1.3 below that our specific deep learning–based method for nu-
merically solving Kolmogorov equations allows us to rigorously apply tools from statistical
learning theory, as we can overcome the following potential problems:

R.1 The crucial assumption that the training data consists of i.i.d. samples drawn from an
underlying probability distribution is usually debatable or at least hard to verify.

R.2 Even if this assumption were satisfied, the underlying distribution of (Xd, Yd) is typ-
ically unknown. Thus, it is hard to ensure a priori the regularity assumptions on f∗d ,
which are needed to apply tools from statistical learning theory.

R.3 Since the distribution of Xd is typically unknown, it is not clear how the quantity
E
[(
f̂d,m,H(Xd)− f∗d (Xd)

)2]
of (1.6) can be interpreted.

R.4 Most of the classical techniques operate in an asymptotic regime where the number of
training samples m exceeds the network size P (a). However, in many applications the
number of training samples is fixed, and it is not possible to generate more training
data at will.
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1.3. Kolmogorov equations as learning problem. We will reformulate the numerical
approximation of Fd(T, ·) on [u, v]d as a statistical learning problem and demonstrate that in
this specific case none of the aforementioned Problems R.1–R.4 appears. Let Xd ∼ U([u, v]d)
be uniformly distributed on [u, v]d and define Yd := ϕd(S

Xd
T ), where (SXdt )t∈[0,T ] is a stochastic

process satisfying the SDE

(1.7) dSXdt = σd(S
Xd
t )dBd

t + µd(S
Xd
t )dt and SXd0 = Xd.

Under suitable conditions it then follows from the Feynman–Kac formula (1.3) that Fd(T, ·)
is the minimizer of the risk functional Ed, that is, f∗d (x) = Fd(T, x) for a.e. x ∈ [u, v]d; see
Lemma 3.2. As outlined in Subsection 1.2, we thus have that

the end value of the Kolmogorov equation Fd(T, ·) is the solution to the statis-
tical learning problem with data (Xd, ϕd(S

Xd
T )) and quadratic loss function.

A natural next step is to apply the deep learning paradigm, that is, for m i.i.d. samples

((X
(i)
d , Y

(i)
d ))mi=1 drawn from the distribution of (Xd, Yd) to minimize the empirical risk (1.4)

over a hypothesis class of neural networks N u,v
ρ,a,R.

In [10] this idea has been implemented with suitable classes of deep neural networks
of a given architecture as hypothesis class H. In extensive numerical simulations it was
observed that the proposed algorithm is efficient even in very high dimensions, suggesting
that it does not suffer from the curse of dimensionality. Similar conclusions can be found in
related work [11, 12, 21, 22, 25, 33, 34, 60], which covers topics ranging from American option
pricing problems to fully nonlinear PDEs. Note that in [60] a nonquantitative analysis of
the approximation error is given; all the other works are purely empirical. To the best of our
knowledge, this is the first joint quantitative analysis of approximation and generalization error
confirming the efficiency of deep learning–based methods applied to the numerical solution of
high-dimensional PDEs.

Two main parameters influence the complexity of the algorithm described above: the
number P (ad,ε) of network parameters that need to be optimized as well as the number of
training samples md,ε needed to guarantee that, with high probability, the estimate

(1.8) 1
(v−u)d

∥∥f̂d,md,ε,Hd,ε − Fd(T, ·)∥∥2L2([u,v]d) = E
[(
f̂d,md,ε,Hd,ε(Xd)− Fd(T,Xd)

)2] ≤ ε
holds true. We are interested in the scaling of md,ε and P (ad,ε) with respect to the precision
ε and dimension d.

Observe that the data distribution (Xd, ϕd(S
Xd
T )) is now explicitly known and i.i.d. sam-

ples of this distribution can be simulated as needed (Xd is uniformly distributed and can
be simulated using a suitable random number generator, and SXdT can be simulated by any
numerical solver for the SDE (1.7); see [28]). Moreover, the uniform distribution of the input
data Xd gives rise to typical L2-error estimates (1.8) and, in the case of affine coefficients
and suitable initial values, we can establish bounds on how well the regression function can
be approximated by neural network hypothesis classes; see Theorem 3.3. In particular, con-
trary to conventional learning problems, in the statistical learning problem that arises from
our reformulation of the Kolmogorov equation, none of the Problems R.1–R.4 described in
Subsection 1.2 occurs. We will therefore be able to rigorously invoke tools from statistical
learning theory to obtain bounds on the quantities md,ε and P (ad,ε) above.
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1.4. Contribution. We show that whenever (σd)d∈N and (µd)d∈N are affine functions (this
includes the important case of the Black–Scholes equation in option pricing) and the initial
values (ϕd)d∈N can be approximated by deep neural networks without the curse of dimension-
ality (this can easily shown to be true for a large number of relevant options such as basket
call, basket put, call on max, and call on min options), there exists a polynomial p : R2 → R
such that for every d ∈ N, ε ∈ (0, 1) it holds that

max{md,ε, P (ad,ε)} ≤ p(ε−1, d);

see Corollary 3.5. We conclude that the aforementioned deep learning–based algorithm does
not suffer from the curse of dimensionality.

We briefly describe our proof strategy for bounding the error between the empirical risk
minimizer and the end value of the Kolmogorov equation

1
(v−u)d

∥∥f̂d,m,H − Fd(T, ·)∥∥2L2([u,v]d)
as in (1.8). By the so-called bias-variance decomposition we can represent this error as the
sum of a generalization error and an approximation error, i.e.,

Ed(f̂d,m,H)−min
f∈H
Ed(f)︸ ︷︷ ︸

generalization error

+ min
f∈H

1
(v−u)d

∥∥f − Fd(T, ·)∥∥2L2([u,v]d)︸ ︷︷ ︸
approximation error

;

see Lemma 2.2. Bounds on the size of neural networks with ReLU activation function

ρ(x) = ReLU(x) := max{x, 0}

needed to approximate Fd(T, ·) up to a desired error have been analyzed in [29]. In Theo-
rem 3.3 we notably extend these approximation results by proving corresponding bounds on
the parameter magnitudes. This is done by analyzing the special structure of the solution
to the SDE (1.7) in the case of affine coefficients σd and µd, employing the Feynman–Kac
formula (1.3), and constructing a neural network simulating Monte Carlo sampling. Together
with the results of [29], we achieve that neural network hypothesis classes with ReLU activa-
tion function are capable of approximating the end values (Fd(T, ·))d∈N without incurring the
curse of dimensionality whenever the same is true for the initial values (ϕd)d∈N.

We then leverage the approximation results as well as tools from [4, 18, 19] to obtain prob-
abilistic estimates of the generalization error; see Theorem 3.4. These tools require bounds
on the covering numbers6 Cov(H, r) of hypothesis classes consisting of neural networks. To
this end, we compute the Lipschitz constant of the operator Fρ which maps neural network
parametrizations to the corresponding realization functions; see Theorem 2.6. Using a stan-
dard result on the covering number of balls in a Euclidean space we obtain that7

ln Cov
(
N u,v

ReLU,a,R, r
)
≤ P (a)

[
ln
(4L2 max{1, |u|, |v|}

r

)
+ L ln

(
R‖a‖∞

)]
;

6The covering number Cov(H, r) is the minimal number of balls of radius r covering H; see Setting 2.3.
7For p ≥ 1, a finite index set I, and M ∈ RI we define ‖M‖∞ := maxi∈I |Mi| and ‖M‖p :=

(∑
i∈I |Mi|p

)1/p
.
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see Proposition 2.8. In conjunction with Hoeffding’s inequality this allows us to uniformly
(over the hypothesis class of neural networks) bound the error between the risk and the
empirical risk. However, this requires that the regression function f∗d as well as all functions
in H are uniformly bounded. To that end we assume the initial value ϕd to be bounded, which
by the Feynman–Kac formula (1.3) implies that also the function f∗d = Fd(T, ·) is bounded.
Moreover, we introduce hypothesis classes of “clipped” neural networks

N u,v
ρ,a,R,D :=

{
clipD ◦ g : g ∈ N u,v

ρ,a,R

}
,

where clipD := min{|·|, D} sgn(·) denotes a clipping function with clipping amplitude D.
This can be interpreted as incorporating the prior knowledge about the boundedness of the
regression function into our hypothesis class. In Appendix A.4 we show that the clipping
function can be represented as a small ReLU network so that clipped ReLU networks are in
fact standard neural networks.

Note that there exist different concepts and known results in order to bound the gener-
alization error (see, for instance, [4, 6, 8, 9, 27, 50]). The present paper intends to stress the
interplay between the approximation and generalization error and gives a complete proof in
order to rigorously show the absence of the curse of dimensionality for our particular problem.

We are now ready to formulate a first specific result of this paper as an appetizer. It
demonstrates that deep learning–based ERM succeeds in solving the option pricing problem
for European put options without incurring the curse of dimensionality.

Theorem 1.1 (pricing of options without curse of dimensionality). Let T,K,D ∈ [1,∞),
u ∈ R, and v ∈ (u,∞), and let (Ω,G,P, (Gt)) be a filtered probability space. For every
dimension d ∈ N let cd ∈ [−D,D]d, let the initial value ϕd ∈ C(Rd,R) satisfy for every x ∈ Rd
that

ϕd(x) = min
{

max {D − cd · x, 0} , D
}
,

let the drift and diffusion coefficients µd ∈ C(Rd,Rd), σd ∈ C(Rd,Rd×d) be affine functions
satisfying for every x ∈ Rd that

‖σd(x)‖2 + ‖µd(x)‖2 ≤ K(1 + ‖x‖2),

and let Fd ∈ C([0, T ] × Rd,R) be the unique at most polynomially growing viscosity solution8

of the corresponding d-dimensional Kolmogorov equation{
∂Fd
∂t (t, x) = 1

2Trace
(
σd(x)[σd(x)]∗(HessxFd)(t, x)

)
+ µd(x) · (∇xFd)(t, x)

Fd(0, x) = ϕd(x).

For every d ∈ N let the input data Xd ∼ U([u, v]d) be uniformly distributed on [u, v]d and G0-
measurable, let Bd be a d-dimensional (Gt)-Brownian motion, let (SXdt )t∈[0,T ] be a (Gt)-adapted
stochastic process with continuous sample paths satisfying the SDE

dSXdt = σd(S
Xd
t )dBd

t + µd(S
Xd
t )dt and SXd0 = Xd

8We refer the interested reader to [32] for the definition and properties of viscosity solutions.
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P-a.s. for every t ∈ [0, T ], define the label Yd := ϕd(S
Xd
T ), and let ((X

(i)
d , Y

(i)
d ))i∈N be i.i.d.

random variables (training data) with (X
(1)
d , Y

(1)
d ) ∼ (Xd, Yd). Then there exists a constant

C ∈ (0,∞) such that the following holds: For every d,m ∈ N, ε, % ∈ (0, 1) with

m ≥ Cdε−4
(
1 + ln(dε−1%−1)

)
(number of samples)

there exist a = (d, a1, a2, 1) ∈ N4 and R ∈ [1,∞) such that it holds that

(i) P
[

1
(v−u)d

∥∥f̂d,m,H − Fd(T, ·)∥∥2L2([u,v]d) ≤ ε] ≥ 1− %,

(ii) P (a) ≤ Cdε−2 (number of parameters),

(iii) R ≤ Cd3/2ε−1 (parameter bound), and

(iv) max{a1, a2} ≤ Cdε−1 (size of the architecture),

where f̂d,m,H ∈ argminf∈H
1
m

∑m
i=1

(
f(X

(i)
d )−Y (i)

d

)2
is a measurable empirical risk minimizer

in the corresponding hypothesis class of clipped ReLU networks H := N u,v
ReLU,a,R,D.

A proof will be given in Subsection 3.3. In a more general context, Theorem 3.4 states that
a result analogous to Theorem 1.1 holds true whenever the initial values (ϕd)d∈N can be
approximated by ReLU networks without the curse of dimensionality.

Note that our analysis does not consider the computational cost of solving the nonsmooth,
nonconvex ERM problem (1.4). This is typically achieved by stochastic first order optimization
methods whose theoretical analysis is still an open problem. While there are many interesting
approaches to the latter question, they tend to require very strong assumptions (e.g., (almost)
linearity, convexity, extreme overparametrization, or inverse stability of Fρ [2, 13, 17, 20, 39,
45, 46, 48, 59]), which we want to avoid in our analysis.

1.5. Extensions. Our results in Section 3, in conjunction with the results of [29], can be
applied to prove the absence of the curse of dimensionality in the pricing of (capped) basket
call, basket put, call on max, and call on min options. Moreover, the results of Section 2 hold
for a general statistical learning problem within Setting 2.1. That is, ReLU network approxi-
mation results for the regression function translate directly into generalization results without
incurring the curse of dimensionality. If suitable learning problems can be established, this
work can extend various neural network approximation results for PDEs (see, e.g., [30, 42, 56])
to also consider the generalization error and get one step closer to a full error analysis. For
instance, there are stronger approximation results for more restricted option pricing prob-
lems [23], and there are very recent approximation results for semilinear heat equations [37]
and Kolmogorov equations with (time-inhomogeneous) nonlinear coefficients [38, 55] where
the dependence on the dimension is polynomial. Using a generalized version of Lemma 3.2,
the findings of this paper can be used to prove that the corresponding ERM problem achieves,
with high probability, a desired accuracy ε with the number of samples and the size of the
hypothesis class scaling only polynomially in d and ε−1. In particular this means that the
presented methods are not restricted to the case of linear Kolmogorov equations with affine
drift and diffusion coefficients. Finally, note that one obtains similar results for any continu-
ous piecewise linear activation function with a finite number of breakpoints; see the comment
after Theorem 2.6 and [62, Proposition 1].
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1.6. Outline. The outline is as follows. In Section 2 we present our main result related
to the generalization of neural networks in a rather general setting. Whenever the regression
functions (f∗d )d∈N can be approximated without the curse of dimensionality by clipped ReLU
networks, we show that also the number m of required training samples to achieve a desired
accuracy ε with high probability does not suffer from the curse of dimensionality. This result
is proven using tools from statistical learning theory and covering number estimates of neural
network hypothesis classes. In Section 3 we reformulate the numerical approximation of
Fd(T, ·) on [u, v]d as a statistical learning problem and extend a result of [29] claiming that
the end values (Fd(T, ·))d∈N can be approximated by clipped ReLU networks without the curse
of dimensionality. Therefore our results from Section 2 apply and give rise to quantitative
polynomial bounds on the number of samples and the size of the network in Theorem 3.4.

2. Results in statistical learning theory. The present section develops generalization
bounds for ERM problems in the spirit of [4, 18, 19].

2.1. A generalization result based on covering numbers. Setting 2.1 describes a stan-
dard statistical learning problem.

Setting 2.1 (statistical learning problem). Let u ∈ R, v ∈ (u,∞), and D ∈ [1,∞), and let
(Ω,G,P) be a probability space. For every d ∈ N let

Xd : Ω→ [u, v]d (input data) and Yd : Ω→ [−D,D] (label)

be random variables, let PXd be the image measure of Xd on the hypercube [u, v]d, let

(X
(i)
d , Y

(i)
d ) : Ω→ [u, v]d × [−D,D], i ∈ N, (training data)

be i.i.d. random variables with (X
(1)
d , Y

(1)
d ) ∼ (Xd, Yd), and let f∗d ∈ L2 (PXd) satisfy9 for

PXd-a.s. x ∈ [u, v]d that

f∗d (x) = E
[
Yd
∣∣Xd = x

]
(regression function).

For every d,m ∈ N and Borel measurable function f : [u, v]d → R define the risk Ed(f) ∈ [0,∞]
and the empirical risk Êd,m(f) : Ω→ [0,∞) by

Ed(f) := E

[(
f(Xd)− Yd

)2]
and Êd,m(f) := 1

m

m∑
i=1

(
f(X

(i)
d )− Y (i)

d

)2
.

For every d,m ∈ N and every compact H ⊆ C([u, v]d,R) (hypothesis class) let

(2.1) fd,H ∈ argmin
f∈H

Ed(f) (best approximation),

and for every d,m ∈ N, ω ∈ Ω and every compact H ⊆ C([u, v]d,R) let

(2.2) f̂d,m,H(ω) ∈ argmin
f∈H

Êd,m(f)(ω) (empirical regression function)

9We define the Hilbert space L2 (PXd) as the space of all Borel measurable functions f : [u, v]d → R with

finite norm ‖f‖L2(PXd
) =

( ∫
[u,v]d

f2 dPXd

)1/2
<∞ where functions coinciding PXd -a.s. are identified as usual.
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such that the mapping Ω 3 ω 7→ f̂d,m,H(ω) is measurable.

We want to emphasize that the minima in (2.1) and (2.2) will be attained due to the
compactness of our hypothesis class, but they need not be unique. We require the mapping
Ω 3 ω 7→ f̂d,m,H(ω) to be measurable in order to view the risk of the empirical regression

function as a random variable Ω 3 ω 7→ Ed
(
f̂d,m,H(ω)

)
. This ensures that the probability in

the generalization error bound (Theorem 2.4) is well-defined. While this technical assumption
is often not explicitly stated in the literature on statistical learning theory it is actually crucial
for analyzing the generalization error. In our setting (by choosing a suitable minimizer)
measurability can indeed be satisfied; see Appendix A.1.

The following lemma states that the regression function f∗d indeed minimizes the risk and
the function fd,H is a best approximation of f∗d in H with respect to the L2(PXd)-norm.
Moreover, it offers a decomposition of the error between the empirical regression function
f̂d,m,H and the regression function f∗d , often referred to as the bias-variance decomposition.

Lemma 2.2 (bias-variance decomposition). Assume Setting 2.1. Let d,m ∈ N and let
H ⊆ C([u, v]d,R) be compact. Then it holds that

(i) Ed
(
f∗d
)

= minf∈L2(PXd )
Ed
(
f
)
,

(ii)
∥∥fd,H − f∗d∥∥L2(PXd ) = minf∈H

∥∥f − f∗d∥∥L2(PXd ), and

(iii)
∥∥f̂d,m,H − f∗d∥∥2L2(PXd ) = Ed

(
f̂d,m,H

)
− Ed

(
fd,H

)
︸ ︷︷ ︸
generalization error (variance)

+
∥∥fd,H − f∗d∥∥2L2(PXd ).︸ ︷︷ ︸
approximation error (bias)

For a corresponding result see also [18]. The proof in Appendix A.2 is based on the fact that
we consider the square loss, and thus the risk of f ∈ L2(PXd) can be represented as

Ed(f) =
∥∥f − f∗d∥∥2L2(PXd ) + Ed(f∗d ).

We now introduce the concept of covering numbers in order to bound the generalization error.

Setting 2.3 (covering number). For every r ∈ (0, 1), every normed vector space (Z, ‖·‖),
and every compact subset H ⊆ Z we define the r-covering number of H w.r.t. ‖·‖ by

Cov(H, ‖·‖, r) := min
{
n ∈ N : There exists (fi)

n
i=1 ⊆ H with H ⊆

n⋃
i=1

Ballr(fi)
}
,

where Ballr(f) := {g ∈ H : ‖f − g‖ ≤ r} denotes the ball of radius r around f ∈ H. If the
norm is clear from the context, we will use the abbreviation Cov(H, r) := Cov(H, ‖·‖, r).
Assume that the functions in our hypothesis class H are uniformly bounded and that balls
of radius r around the functions (fi)

n
i=1 cover H. We can then use the (uniform) Lipschitz

continuity of the (empirical) risk to bound the generalization error by

Ed
(
f̂d,m,H

)
− Ed

(
fd,H

)
≤ Ed

(
f̂d,m,H

)
− Êd,m

(
f̂d,m,H

)
+ Êd,m

(
fd,H

)
− Ed

(
fd,H

)
≤ 2r

[
Lip(Ed) + Lip(Êd,m)

]
+ 2

n
max
i=1

∣∣∣Ed(fi)− Êd,m(fi)
∣∣∣
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and employ Hoeffding’s inequality and a union bound to obtain the following estimate.

Theorem 2.4 (generalization error bound). Assume Settings 2.1 and 2.3. Let ε ∈ (0, 1),
d,m ∈ N and let H ⊆ C([u, v]d,R) be compact with supf∈H ‖f‖L∞ ≤ D. Then it holds that

P

[
Ed
(
f̂d,m,H

)
− Ed

(
fd,H

)
≤ ε
]
≥ 1− 2Cov

(
H, ε

32D

)
exp

(
− mε2

128D4

)
.

This result is adapted from [4, Theorem 17.1], [19, Theorem 3.14], and [49, Example 3.31],
and for the sake of completeness we present a detailed proof in Appendix A.3.

2.2. Covering numbers of neural network hypothesis classes. As a natural next step
we prove estimates on the covering numbers of neural network hypothesis classes in order to
leverage the result of Theorem 2.4. Note that for different assumptions (i.e., boundedness
assumptions on the activation function, different norms on the parameters, or evaluation of
the neural networks on input data) similar approaches can be found in [4, 8].

The following setting describes suitable hypothesis classes based on neural networks. From
now on we only consider neural networks with ReLU activation function and therefore omit
writing the index ρ = ReLU in our notation.

Setting 2.5 (neural networks). Assume Setting 2.1. For every k, n ∈ N, W ∈ Rk×n,
B ∈ Rk let AW,B ∈ C(Rn,Rk) be the affine mapping which satisfies for every x ∈ Rn that
AW,B(x) := Wx+B. For every n ∈ N, x = (xi)

n
i=1 ∈ Rn we define

ReLU∗(x) :=
(

max{xi, 0}
)n
i=1

(componentwise rectified linear unit).

For every L ∈ N, a = (a0, a1, . . . , aL) ∈ NL+1 (network architecture) we define

Pa :=
L

×
l=1

(
Ral×al−1 × Ral

)
(set of neural network parametrizations),

L(a) := L (number of layers), and

P (a) :=

L∑
l=1

alal−1 + al (number of parameters).

For every L ∈ N, a ∈ NL+1, θ = ((Wl, Bl))
L
l=1 ∈ Pa we define the neural network realization

function F(θ) ∈ C(Ra0 ,RaL) by

F(θ) := AWL,BL ◦ ReLU∗ ◦AWL−1,BL−1
◦ ReLU∗ ◦ · · · ◦ ReLU∗ ◦AW1,B1

and its restriction Fu,v(θ) := F(θ)|[u,v]a0 ∈ C([u, v]a0 ,RaL) to the hypercube [u, v]a0 . For
every d ∈ N let the admissible network architectures be given by

Ad :=
⋃
L∈N

{
(a0, a1, . . . , aL) ∈ NL+1 : a0 = d, aL = 1

}
.
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For every d ∈ N, a ∈ Ad, R ∈ (0,∞) (parameter bound) define the set of bounded neural
network parametrizations

Pa,R :=
L

×
l=1

(
[−R,R]al×al−1 × [−R,R]al

)
= {θ ∈ Pa : ‖θ‖∞ ≤ R},

the hypothesis class of neural networks

N u,v
a,R := Fu,v(Pa,R) =

{(
[u, v]d 3 x 7→ F(θ)(x)

)
: θ ∈ Pa,R

}
,

and the hypothesis class of clipped neural networks

N u,v
a,R,D :=

{
clipD ◦ g : g ∈ N u,v

a,R

}
,

where clipD ∈ C(R,R) (clipping function) satisfies for every x ∈ R that

clipD(x) := min{|x|, D} sgn(x).

The hypothesis classes N u,v
a,R,D are somewhat nonstandard in the sense that the clipping func-

tion clipD is applied to the output of a neural network realization. The reason for our choice
of this definition is that Theorem 2.4 requires that the set of neural networks over which
the ERM problem is solved consists of uniformly bounded functions. In Appendix A.4 we
show that the clipping function clipD can be represented as a small neural network, which im-
plies that the seemingly nonstandard classes N u,v

a,R,D are actually conventional neural network
classes that can be trained with standard methods [35, 40, 43, 51].

The next theorem quantifies the Lipschitz continuity Lip(Fu,v) of the operator

Fu,v : (Pa,R, ‖·‖∞)→ (N u,v
a,R, ‖·‖L∞)

which maps bounded neural network parametrizations with fixed architecture to the corre-
sponding realization functions (restricted to [u, v]d).

Theorem 2.6 (Lipschitz continuity of F). Assume Setting 2.5. Let d ∈ N, a ∈ Ad, and
R ∈ [1,∞). Then for every θ,η ∈ Pa,R it holds that

‖Fu,v(θ)−Fu,v(η)‖L∞ ≤ 2 max
{

1, |u|, |v|
}
L(a)2RL(a)−1‖a‖L(a)∞ ‖θ − η‖∞.

The proof is based on estimating the error amplification in each layer of the neural network and
can be found in Appendix A.5. Similar results can be established for any Lipschitz continuous
activation function; see also [53] for a general nonquantitative result. Note that Theorem 2.6
in particular implies that N u,v

a,R and N u,v
a,R,D are compact subsets of C([u, v]d,R) and thus valid

hypothesis classes, as required by Setting 2.1. Next, we recall a basic result on the covering
number of a hypercube w.r.t. the maximum norm ‖·‖∞. Note that a similar statement holds
for any ball in a finite-dimensional Banach space; see [18, Proposition 5].
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Lemma 2.7 (covering numbers of balls). Assume Setting 2.3. Let n ∈ N, R ∈ [1,∞), and
r ∈ (0, 1), and define BallR :=

{
θ ∈ Rn : ‖θ‖∞ ≤ R

}
. Then it holds that

ln Cov(BallR, ‖·‖∞, r) ≤ n ln

⌈
R

r

⌉
.

Proof of Lemma 2.7. The claim follows by a simple counting argument.

Together with Theorem 2.6 this allows us to bound the covering number of our hypothesis
class of (clipped) neural networks.

Proposition 2.8 (covering numbers of neural network hypothesis classes). Assume Set-
tings 2.3 and 2.5. Let d ∈ N, a ∈ Ad, r ∈ (0, 1), and R ∈ [1,∞). Then it holds that

ln Cov
(
N u,v

a,R,D, r
)
≤ ln Cov

(
N u,v

a,R, r
)

≤ P (a)
[

ln
(4L(a)2 max

{
1, |u|, |v|

}
r

)
+ L(a) ln

(
R‖a‖∞

)]
.

The proof in Appendix A.6 is based on the behavior of covering numbers under the action of
a Lipschitz function, i.e.,

Cov
(
Fu,v(Pa,R), r

)
≤ Cov

(
Pa,R,

r

Lip(Fu,v)

)
,

and uses the facts that the clipping function is nonexpansive, i.e., Lip(clipD) = 1, and that
Pa,R '

{
θ ∈ RP (a) : ‖θ‖∞ ≤ R

}
.

2.3. Analysis of the generalization error. Combining Theorem 2.4 and Proposition 2.8,
the following theorem describes our main result related to the generalization capabilities of
hypothesis classes consisting of clipped ReLU networks.

Theorem 2.9 (neural network generalization error bound). Assume Setting 2.5. Let h ∈
C((0,∞)5,R) satisfy for every x = (xi)

5
i=1 ∈ (0,∞)5 that

h(x) = 128D4x21

[
ln(2) + x2 + x3x4x5 + x4 ln

(
128Dmax{1, |u|, |v|}x1x25

)]
,

let d,m ∈ N, ε, % ∈ (0, 1), a ∈ Ad, R ∈ [1,∞) with

m ≥ h
(
ε−1, ln(%−1), ln(R‖a‖∞), P (a), L(a)

)
,

and define H := N u,v
a,R,D. Then it holds that

P

[
Ed
(
f̂d,m,H

)
− Ed

(
fd,H

)
≤ ε
]
≥ 1− %.

Proof of Theorem 2.9. Proposition 2.8 implies that

m ≥ h
(
ε−1, ln(%−1), ln(R‖a‖∞), P (a), L(a)

)
= 128D4ε−2

[
ln(2%−1) + P (a)

(
ln
(
128Dmax {1, |u|, |v|} ε−1L(a)2

)
+ L(a) ln

(
R‖a‖∞

))]
≥ 128D4ε−2

[
ln(2%−1) + ln Cov

(
H, ε

32D

)]
.
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Now Theorem 2.4 and a simple calculation ensures that

P

[
Ed
(
f̂d,m,H

)
− Ed

(
fd,H

)
≤ ε
]
≥ 1− 2Cov

(
H, ε

32D

)
exp

(
− mε2

128D4

)
≥ 1− %,

and this proves the theorem.

Next we show how Theorem 2.9 can be used to leverage bounds on the approximation error
in order to obtain quantitative bounds on the generalization error.

Corollary 2.10 (approximation implies generalization). Assume Setting 2.5. Let d ∈ N,
ε ∈ (0, 1), a ∈ Ad, R ∈ [1,∞), and g ∈ H := N u,v

a,R,D with∥∥g − f∗d∥∥2L2(PXd ) ≤ ε/2,
let h ∈ C((0,∞)5,R) be given as in Theorem 2.9, and let m ∈ N, % ∈ (0, 1) with

m ≥ h
(
2ε−1, ln(%−1), ln(R‖a‖∞), P (a), L(a)

)
.

Then it holds that

P

[∥∥f̂d,m,H − f∗d∥∥2L2(PXd ) ≤ ε] ≥ 1− %.

Proof of Corollary 2.10. Lemma 2.2 ensures that∥∥fd,H − f∗d∥∥2L2(PXd ) ≤ ∥∥g − f∗d∥∥2L2(PXd ) ≤ ε/2
and hence

∥∥f̂d,m,H − f∗d∥∥2L2(PXd ) ≤ Ed(f̂d,m,H) − Ed(fd,H) + ε/2. Theorem 2.9 (with ε ← ε/2)

now directly implies the desired claim.

The previous result in particular implies that whenever the family (f∗d )d∈N from the statistical
learning problem of Setting 2.1 can be approximated by neural networks without the curse of
dimensionality, then the number m of required training samples to achieve a desired accuracy
with high probability does not suffer from the curse of dimensionality either. A compact
version of this statement is given in the next result.

Corollary 2.11 (approximation without curse implies generalization without curse). Assume
Setting 2.5. Assume that there exists a polynomial q : R2 → R such that for every d ∈ N,
ε ∈ (0, 1) there exist ad,ε ∈ Ad, Rd,ε ∈ [1,∞), and gd,ε ∈ Hd,ε := N u,v

ad,ε,Rd,ε,D
with

max {ln(Rd,ε), P (ad,ε)} ≤ q(d, ε−1) and
∥∥gd,ε − f∗d∥∥2L2(PXd ) ≤ ε/2.

Then there exists a polynomial s : R2 → R such that for every d,m ∈ N, ε, % ∈ (0, 1) with

m ≥ s(d, ε−1)(1 + ln(%−1))

it holds that

P

[∥∥f̂d,m,Hd,ε − f∗d∥∥2L2(PXd ) ≤ ε] ≥ 1− %.
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Proof of Corollary 2.11. Observe that for every d ∈ N, ε ∈ (0, 1) it holds that

max {ln(‖ad,ε‖∞), L(ad,ε)} ≤ P (ad,ε) ≤ q(d, ε−1)

and that the function h ∈ C((0,∞)5,R) from Theorem 2.9 satisfies for every x ∈ (0,∞)5 that

h(x) ≤ 128D4x21

[
1 + x4

(
x1 + x3x5 + 2x5 + ln

(
128Dmax{1, |u|, |v|}

)
− 3
)]

(1 + x2).

Thus, Corollary 2.11 is a direct consequence of Corollary 2.10.

3. Applications for the numerical approximation of high-dimensional PDEs. In the
present section we apply the general results of Section 2 to the numerical solution of high-
dimensional Kolmogorov equations.

3.1. Kolmogorov equation as learning problem. The following setting describes suitable
Kolmogorov equations and the data for the corresponding statistical learning problems.

Setting 3.1 (Kolmogorov equations). Assume Setting 2.5. Let K ∈ (0,∞), for every d ∈ N
let µd ∈ C(Rd,Rd) (drift coefficient) and σd ∈ C(Rd,Rd×d) (diffusion coefficient) be affine
functions satisfying for every x ∈ Rd that

‖σd(x)‖2 + ‖µd(x)‖2 ≤ K(1 + ‖x‖2),

and let ϕd ∈ C(Rd, [−D,D]) (initial value). Assume that (ϕd)d∈N can be approximated by
neural networks in the following sense: Let ζ ∈ [1,∞) and β, γ, κ, λ, ν ∈ [0,∞), and let

bd,ε ∈ Ad, ηd,ε ∈ Pbd,ε , d ∈ N, ε ∈ (0, 1), (neural network approximation of ϕd)

such that for every d ∈ N, ε ∈ (0, 1), x ∈ Rd it holds that10

(i) |ϕd(x)−F(ηd,ε)(x)| ≤ ε(1 + ‖x‖ν2),

(ii) |F(ηd,ε)(x)| ≤ D,

(iii) ‖ηd,ε‖∞ ≤ ζdβε−κ, and

(iv) P (bd,ε) ≤ ζdγε−λ.

Let T ∈ (0,∞), and for every d ∈ N let Fd ∈ C([0, T ] × Rd,R) be the unique11 function
satisfying the following:

(i) Fd(0, x) = ϕ(x) for every x ∈ Rd;

(ii) Fd is at most polynomially growing, i.e., there exists ϑ ∈ (0,∞) such that for every
x ∈ Rd it holds that maxt∈[0,T ] Fd(t, x) ≤ ϑ

(
1 + ‖x‖ϑ2

)
; and

10Due to the boundedness assumption on ϕd one can obtain the desired estimates in item (i) and (ii) by
adapting known neural network approximation results; see [14] and Appendix A.4.

11For a proof see [29, Proposition 3.4(i)].
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(iii) Fd is a viscosity solution of the d-dimensional Kolmogorov equation

∂Fd
∂t (t, x) = 1

2Trace
(
σd(x)[σd(x)]∗(HessxFd)(t, x)

)
+ µd(x) · (∇xFd)(t, x)

for every (t, x) ∈ (0, T )× Rd.

Let the probability space (Ω,G,P) be equipped with a filtration (Gt)t∈[0,T ] which fulfills the

usual conditions. For every d ∈ N let (Bd
t )t∈[0,T ] : [0, T ] × Ω → Rd be a d-dimensional (Gt)-

Brownian motion, and for every G0-measurable random variable χ : Ω→ Rd denote by

(Sχt )t∈[0,T ] : [0, T ]× Ω→ Rd (SDE solution process with initial value χ)

the unique (Gt)-adapted stochastic process12 with continuous sample paths satisfying the SDE

dSχt = σd(S
χ
t )dBd

t + µd(S
χ
t )dt and Sχ0 = χ

P-a.s. for every t ∈ [0, T ]. For every d ∈ N let the input data Xd : Ω→ [u, v]d be G0-measurable
and uniformly distributed on [u, v]d and define the label by Yd := ϕd(S

Xd
T ).

The next result shows that computing the end value [u, v]d 3 x 7→ Fd(T, x) of the solution to
the Kolmogorov equation can be restated as a learning problem.

Lemma 3.2 (Kolmogorov equation as learning problem). Assume Setting 3.1 and let d ∈ N.
Then for a.e. x ∈ [u, v]d it holds that

Fd(T, x) = f∗d (x).

The result is based on work from [10] and the following formal calculation:

Fd(T, x) = E
[
ϕd (SxT )

]
= E

[
ϕd(S

Xd
T )
∣∣Xd = x

]
= E

[
Yd
∣∣Xd = x

]
= f∗d (x)

for a.e. x ∈ [u, v]d; see Appendix A.7 for a rigorous proof.

3.2. Neural network generalization results for solutions of Kolmogorov equations. We
first show that the end value [u, v]d 3 x 7→ Fd(T, x) of the solution to the Kolmogorov equation
can be approximated by hypothesis classes consisting of clipped ReLU networks.

Theorem 3.3 (neural network regularity result for Kolmogorov equations). Assume Set-
ting 3.1. Then there exist C, c ∈ (0,∞) such that the following holds: For every d ∈ N,
ε ∈ (0, 1) there exist a ∈ Ad, R ∈ [1,∞), and g ∈ N u,v

a,R,D such that it holds that

(i) 1
(v−u)d

∥∥g − Fd(T, ·)∥∥2L2([u,v]d) ≤ ε,
(ii) P (a) ≤ Cdνλ/2+γε−λ/2−2,

(iii) R ≤ Cd(νκ+3)/2+βε−κ/2−1,

(iv) L(a) = L(bd,cd−ν/2ε1/2), and

12The solution process is unique up to indistinguishability; see, for instance, [5, Theorem 6.2.2].
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(v) ‖a‖∞ ≤ Cε−1‖bd,cd−ν/2ε1/2‖∞.

Except for property (iii) a similar result was shown in [29, Corollary 3.13]. We present the
proof in Appendix A.8 and briefly sketch the idea in the following. First we observe that in
our case of affine coefficients σd and µd there exist random variables M and N such that for
all x ∈ Rd it holds P-a.s. that SxT = Mx+ N; see Lemma A.4. Let ((M(j),N(j)))j∈N be i.i.d.
samples with (M(1),N(1)) ∼ (M,N). Then for fixed x ∈ Rd the mean squared error

E

[(
Fd(T, x)− 1

n

n∑
j=1

F(ηd,δ)
(
M(j)x+ N(j)

))2]
can be decomposed into the sum of the squared bias and the variance, i.e.,

E

[
ϕd(S

x
T )−F(ηd,δ)(S

x
T )
]2

︸ ︷︷ ︸
O(δ2)

+V
[
1
n

n∑
j=1

F(ηd,δ)
(
M(j)x+ N(j)

)]
︸ ︷︷ ︸

O(n−1)

,

where we used the Feynman–Kac formula, our assumptions, and properties of Monte Carlo
sampling. With more effort one can prove analogous estimates in the L2(PXd)-norm, and
our setting implies that PXd = 1

(v−u)dλ[u,v]d , where λ[u,v]d denotes the Lebesgue measure on

[u, v]d. This suggests that, given ε ∈ (0, 1), for sufficient large n ∈ N and small δ ∈ (0, 1) there
exists an outcome ω ∈ Ω such that with M (j) := M(j)(ω) and N (j) := N(j)(ω) it holds that

1
(v−u)d

∫
[u,v]d

(
Fd(T, x)− 1

n

n∑
j=1

F(ηd,δ)
(
M (j)x+N (j)

))2
dx ≤ ε.

In Lemma A.5 we specify a network architecture a ∈ Ad and a parametrization θ ∈ Pa such
that for every x ∈ Rd it holds that

F(θ)(x) = 1
n

n∑
j=1

F(ηd,δ)
(
M (j)x+N (j)

)
and we bound the parameter magnitudes of θ with the help of Lemma A.4.

Observe that the approximation result in Theorem 3.3 does not underlie the curse of
dimensionality, and by Corollary 2.10 we can establish a generalization result that is free of
the curse of dimensionality.

Theorem 3.4 (neural network generalization result for Kolmogorov equations). Assume Set-
ting 3.1 and let h ∈ C((0,∞)5,R) be given as in Theorem 2.9. Then there exist C, c ∈ (0,∞)
such that the following holds: For every d,m ∈ N, ε, % ∈ (0, 1) with

m ≥ h
(
2ε−1, ln(%−1), ln (R‖a‖∞) , P (a), L(a))

)
there exist a ∈ Ad and R ∈ [1,∞) such that it holds that

(i) P
[

1
(v−u)d

∥∥f̂d,m,H − Fd(T, ·)∥∥2L2([u,v]d) ≤ ε] ≥ 1− %,



18 J. BERNER, P. GROHS, AND A. JENTZEN

(ii) P (a) ≤ Cdνλ/2+γε−λ/2−2,

(iii) R ≤ Cd(νκ+3)/2+βε−κ/2−1,

(iv) L(a) = L(bd,cd−ν/2ε1/2), and

(v) ‖a‖∞ ≤ Cε−1‖bd,cd−ν/2ε1/2‖∞,

where H = N u,v
a,R,D.

Proof of Theorem 3.4. This is a direct consequence of Theorem 3.3 (with ε ← ε/2) and
Corollary 2.10.

We can also reformulate this in a more compact form.

Corollary 3.5 (ERM for Kolmogorov equations without curse). Assume Setting 3.1. Then
there exists a polynomial p : R2 → R such that the following holds: For every d,m ∈ N,
ε, % ∈ (0, 1) with

m ≥ p(d, ε−1)(1 + ln(%−1))

there exist a ∈ Ad and R ∈ [1,∞) such that it holds that

(i) P
[

1
(v−u)d

∥∥f̂d,m,H − Fd(T, ·)∥∥2L2([u,v]d) ≤ ε] ≥ 1− % and

(ii) max{R,P (a)} ≤ p(d, ε−1),

where H = N u,v
a,R,D.

Proof of Corollary 3.5. This follows directly from Theorem 3.3 and Corollary 2.11.

3.3. Pricing of high-dimensional options. The proof of Theorem 1.1 from the introduc-
tory section dealing with the pricing of high-dimensional European put options is now an easy
consequence of the above theory.

Proof of Theorem 1.1. We first show that the approximation of (ϕd)d∈N by clipped neu-
ral networks according to Setting 3.1 is possible. Note that for every z ∈ R it holds that
min{z,D} = D − ReLU∗(D − z). This implies that for every d ∈ N, x ∈ Rd it holds that

ϕd(x) = min
{

max {D − cd · x, 0} , D
}

= F(ηd)(x),

where

ηd := ((−[cd]
∗, D) , (−1, D) , (−1, D)) ∈ P(d,1,1,1),D.

Accordingly, Setting 3.1 is satisfied with

ζ = max{D, 6}, γ = 1, β = κ = λ = ν = 0, bd,ε = (d, 1, 1, 1), ηd,ε = ηd.

Now Theorem 3.4 and a straightforward calculation prove the claim.



DEEP LEARNING–BASED ERM FOR BLACK–SCHOLES PDES 19

Appendix A. Proofs. This appendix contains various proofs and additional material
omitted from the main text.

A.1. Measurability of the empirical target function. The following lemma shows that
the empirical regression function can be chosen measurable as required in Setting 2.1. This
implies that the risk of the empirical regression function Ω 3 ω 7→ Ed

(
f̂d,m,H(ω)

)
is measurable

which is necessary for bounding the generalization error in Theorem 2.4.

Lemma A.1 (measurability of the empirical regression function). Let u ∈ R, v ∈ (u,∞), and
d,m ∈ N, let (Ω,G,P) be a probability space, let

(X
(i)
d , Y

(i)
d ) : Ω→ [u, v]d × R, i ∈ N,

be random variables, and let H ⊆ C([u, b]d,R) be compact. For every ω ∈ Ω one can choose

f̂d,m,H(ω) ∈ argmin
f∈H

1
m

m∑
i=1

(
f(X

(i)
d (ω))− Y (i)

d (ω)
)2

in a way, such that it holds that13

(i) Ω 3 ω 7→ f̂d,m,H(ω) is G/B(H)-measurable and

(ii) Ω 3 ω 7→ Ed
(
f̂d,m,H(ω)

)
is G/B(R)-measurable.

Proof of Lemma A.1. First observe that H is a separable metric space induced by the
uniform norm ‖·‖L∞ and that for every f ∈ H the mapping

Ω 3 ω 7→ Êd,m(f)(ω)

is G/B(R)-measurable. By the reverse triangle inequality we obtain for every f, g ∈ H that∣∣Êd,m(f)1/2 − Êd,m(g)1/2
∣∣ ≤ 1√

m

∥∥(f(X
(i)
d )− g(X

(i)
d ))mi=1

∥∥
2
≤ ‖f − g‖L∞ .

This shows that for every ω ∈ Ω the function H 3 f 7→ Êd,m(f)(ω) is continuous and the
Measurable Maximum Theorem in [1, Theorem 18.19] ensures that the set-valued function of
minimizers of

min
f∈H
Êd,m(f)

admits a measurable selector. That is to say, there exists a G/B(H)-measurable mapping
f̂d,m,H : Ω→ H such that for every ω ∈ Ω it holds that

f̂d,m,H(ω) ∈ argmin
f∈H

Êd,m(f)(ω).

13We denote by B(Z) the Borel σ-algebra of a topological space Z.
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This establishes item (i). For the proof of the second item observe that the risk Ed : H → R
is continuous and thus B(H)/B(R)-measurable. Indeed, an analogous computation as for the
empirical risk above shows that for f, g ∈ H it holds that∣∣Ed(f)1/2 − Ed(g)1/2

∣∣ ≤ ‖f(Xd)− g(Xd)‖L2(P) ≤ ‖f − g‖L∞ .

This yields the claim as compositions of measurable functions are again measurable.

A.2. Bias-variance decomposition.

Proof of Lemma 2.2. For every f ∈ L2(PXd) it holds that

Ed(f) = E

[(
f(Xd)− f∗d (Xd) + f∗d (Xd)− Yd

)2]
= E

[(
f(Xd)− f∗d (Xd)

)2]
+E

[(
f∗d (Xd)− Yd

)2]
+ 2E

[(
f(Xd)− f∗d (Xd)

)(
f∗d (Xd)− Yd

)](A.1)

Observe that, due to the fact that it holds P-a.s. that f∗d (Xd) = E
[
Yd
∣∣Xd

]
, the tower property

of the conditional expectation establishes for every f ∈ L2(PXd) that

E
[(
f(Xd)− f∗d (Xd)

)(
f∗d (Xd)− Yd

)]
= E

[
E

[(
f(Xd)− f∗d (Xd))

)(
f∗d (Xd)− Yd

)∣∣∣Xd

]]
= E

[(
f(Xd)− f∗d (Xd)

)(
f∗d (Xd)−E

[
Yd
∣∣Xd

] )]
= 0

which, together with (A.1), implies that

(A.2)
∥∥f − f∗d∥∥2L2(PXd ) = E

[(
f(Xd)− f∗d (Xd)

)2]
= Ed(f)− Ed(f∗d ).

This proves items (i) and (ii) and shows that it holds that∥∥f̂d,m,H − f∗d∥∥2L2(PXd ) = Ed(f̂d,m,H)− Ed(fd,H) + Ed(fd,H)− Ed(f∗d ).

Finally, applying (A.2) (with f ← fd,H) proves the lemma.

A.3. Bound on the generalization error.

Proof of Theorem 2.4. First note that by assumption for every f ∈ H it holds that

|f(Xd)− Yd| ≤ ‖f‖L∞ + |Yd| ≤ 2D

and analogously for the samples ((X
(i)
d , Y

(i)
d ))mi=1. The elementary identity

(y1 − z)2 − (y2 − z)2 = (y1 − y2)(y1 + y2 − 2z)

for real numbers y1, y2, z ∈ R and Jensen’s inequality imply for every f, g ∈ H that∣∣Ed(f)− Ed(g)
∣∣ ≤ E [∣∣(f(Xd)− g(Xd)

)(
f(Xd) + g(Xd)− 2Yd

)∣∣] ≤ 4D‖f − g‖L∞
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and

∣∣Êd,m(f)− Êd,m(g)
∣∣ ≤ 1

m

m∑
i=1

∣∣(f(X
(i)
d )− g(X

(i)
d )
)(
f(X

(i)
d ) + g(X

(i)
d )− 2Y

(i)
d

)∣∣
≤ 4D‖f − g‖L∞ .

Now define N := Cov
(
H, ‖·‖L∞ , ε

32D

)
and choose f1, f2, . . . , fN ∈ H such that the balls

Ball i :=
{
f ∈ H : ‖f − fi‖L∞ ≤

ε

32D

}
, i ∈ {1, 2, . . . , N},

cover H. This establishes that for every i ∈ {1, 2, . . . , N}, f ∈ Ball i it holds that∣∣Ed(f)− Êd,m(f)
∣∣ ≤ ∣∣Ed(f)− Ed(fi)

∣∣+
∣∣Ed(fi)− Êd,m(fi)

∣∣+
∣∣Êd,m(fi)− Êd,m(f)

∣∣
≤ 8D‖f − fi‖L∞ +

∣∣Ed(fi)− Êd,m(fi)
∣∣

≤ ε/4 +
∣∣Ed(fi)− Êd,m(fi)

∣∣.(A.3)

Our assumptions yield that for every ω ∈ Ω it holds that

Ed
(
f̂d,m,H(ω)

)
− Ed

(
fd,H

)
≤ Ed

(
f̂d,m,H(ω)

)
− Êd,m

(
f̂d,m,H(ω)

)
(ω) + Êd,m

(
fd,H

)
(ω)− Ed

(
fd,H

)
≤ 2 sup

f∈H

∣∣Ed(f)− Êd,m(f)(ω)
∣∣.(A.4)

In summary (A.3) and (A.4) imply that{
ω ∈ Ω: Ed

(
f̂d,m,H(ω)

)
− Ed

(
fd,H

)
≥ ε
}

⊆
N⋃
i=1

{
ω ∈ Ω: sup

f∈Balli

∣∣Ed(f)− Êd,m(f)(ω)
∣∣ ≥ ε/2}

⊆
N⋃
i=1

{
ω ∈ Ω:

∣∣Ed(fi)− Êd,m(fi)(ω)
∣∣ ≥ ε/4}.

(A.5)

Observe that for fixed f ∈ H it holds that the random variables Ei :=
(
f(X

(i)
d ) − Y

(i)
d

)2
,

i ∈ {1, 2, . . . ,m}, are independent and satisfy

E [Ei] = Ed(f), 1
m

m∑
i=1

Ei = Êd,m(f), and 0 ≤ Ei ≤ 4D2

which by Hoeffding’s inequality (see [36, Theorem 2]) ensures that

P

[∣∣Ed(f)− Êd,m(f)
∣∣ ≥ ε/4] ≤ 2 exp

(
− mε2

128D4

)
.
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Together with (A.5), the monotonicity and subadditivity of the probability measure, and the
measurability assumptions according to Lemma A.1 this implies that

P

[
Ed
(
f̂d,m,H

)
− Ed

(
fd,H

)
≥ ε
]
≤

N∑
i=1

P

[∣∣Ed(fi)− Êd,m(fi)
∣∣ ≥ ε/4] ≤ 2N exp

(
− mε2

128D4

)
.

Using the complement rule and plugging in the definition of N proves the theorem.

A.4. Clipped neural networks are standard neural networks. We show that “clipped”
neural network hypothesis classes N u,v

a,R,D are in fact subsets of “non-clipped” ones.

Lemma A.2 (clipping function as neural network). Assume Setting 2.5 and let

θ :=

(([
1
−1

]
,

[
0
0

])
,

([
−1 0

0 −1

]
,

[
D
D

])
,
([
−1 1

]
, 0
))
∈ P(1,2,2,1),D.

Then it holds that
clipD = F(θ).

Proof of Lemma A.2. A case distinction establishes that for every x ∈ R it holds that

F(θ)(x) = −ReLU∗
(
D − ReLU∗(x)

)
+ ReLU∗

(
− ReLU∗(−x) +D

)
= clipD(x),

which proves the claim.

Corollary A.3 (clipped neural networks are standard neural networks). Assume Setting 2.5.
Let d ∈ N, R ∈ [D,∞), and a = (a0, a1, . . . , aL) ∈ Ad, and define

b := (a0, a1, . . . , aL, 2, 2, 1) ∈ Ad.

Then it holds that
N u,v

a,R,D ⊆ N
u,v
b,R.

Proof of Corollary A.3. The proof follows by the representation of the clipping function
in Lemma A.2 and the fact that composition with a neural network does not change the
magnitude of its parameters;14 see also [54, Definition 2.2] for a formal definition.

A.5. Lipschitz continuity of the realization map.

Proof of Theorem 2.6. Define L := L(a) and m := max
{

1, |u|, |v|
}

. We will show the
following stronger statement. For every θ,η ∈ Pa,R it holds that

(A.6)
∥∥Fu,v(θ)−Fu,v(η)

∥∥
L∞ ≤

[
mLRL−1‖a‖L∞ +

L∑
l=1

l(R‖a‖∞)l−1
]
‖θ − η‖∞.

This directly implies the statement of Theorem 2.6, as it holds that

L∑
l=1

l(R‖a‖∞)l−1 ≤ L2(R‖a‖∞)L−1 ≤ mL2RL−1‖a‖L∞.

14Because of that we did not choose the easier representation clipD(x) = −D+ReLU∗
(
2D−ReLU∗(D−x)

)
.
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For the proof of (A.6) let us fix θ,η ∈ Pa,R given by

θ = ((Wl, Bl))
L
l=1 and η = ((Vl, Al))

L
l=1.

Let r := ‖θ − η‖∞, and for every s ∈ {1, . . . , L} define the partial parametrizations

θ(s) = ((Wl, Bl))
s
l=1, and η(s) = ((Vl, Al))

s
l=1,

the partial realization functions fs := Fu,v(θ(s)) and gs := Fu,v(η(s)), the partial errors15

e0 := 0 and es :=
∥∥fs − gs∥∥L∞ ,

and the partial maxima

m0 := m = max
{

1, |u|, |v|
}

and ms := max
{

1,
∥∥fs∥∥L∞ ,∥∥gs∥∥L∞} .

We are interested in estimating the error eL and try to bound ms relative to ms−1 and es
relative to es−1. Note that for every s ∈ {2, . . . , L} it holds that∥∥fs∥∥L∞ =

∥∥Ws ReLU∗
(
fs−1

)
+Bs

∥∥
L∞ ≤ R‖a‖∞ms−1 +R.

Analogous computations for the case s = 1 and the function gs establish that for every
s ∈ {1, . . . , L} it holds that ms ≤ R‖a‖∞ms−1 +R. By induction this implies that

(A.7) ms ≤ m(R‖a‖∞)s +R

s−1∑
l=0

(R‖a‖∞)l

for every s ∈ {1, . . . , L}. Moreover, note that for every s ∈ {2, . . . , L} it holds that

es =
∥∥[Ws ReLU∗

(
fs−1

)
+Bs

]
−
[
Vs ReLU∗

(
gs−1

)
+As

]∥∥
L∞

≤
∥∥[Ws − Vs

]
ReLU∗

(
fs−1

)∥∥
L∞ +

∥∥Vs[ReLU∗
(
fs−1

)
− ReLU∗

(
gs−1

)]∥∥
L∞ + r

≤ ‖a‖∞
(
rms−1 +Res−1

)
+ r.

Together with (A.7), one proves by induction that for every s ∈ {1, 2, . . . , L} it holds that

es ≤
[
msRs−1‖a‖s∞ +

s∑
l=1

l(R‖a‖∞)l−1
]
r.

Setting s = L proves the claim in (A.6).

15For vector-valued functions f ∈ C([u, v]d,Rn) we define the uniform norm on [u, v]d by ‖f‖L∞ =
‖f‖L∞([u,v]d) := maxx∈[u,v]d ‖f(x)‖∞.
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A.6. Covering numbers of neural network hypothesis classes.

Proof of Proposition 2.8. To simplify the notation we define m := max
{

1, |u|, |v|
}

,

∆ :=
r

2mL(a)2RL(a)−1‖a‖L(a)∞
, and N := Cov

(
Pa,R, ‖·‖∞,∆

)
.

Choose θ1,θ2, . . . ,θN ∈ Pa,R such that for every θ ∈ Pa,R there exists i ∈ {1, 2, . . . , N} with
‖θ − θi‖∞ ≤ ∆, which by Theorem 2.6 and the fact that clipD is nonexpansive implies that∥∥clipD ◦ Fu,v(θ)− clipD ◦ Fu,v(θi)

∥∥
L∞ ≤

∥∥Fu,v(θ)−Fu,v(θi)
∥∥
L∞

≤ 2mL(a)2RL(a)−1‖a‖L(a)∞ ‖θ − θi‖∞ ≤ r.

Lemma 2.7 and identifying Pa,R '
{
θ ∈ RP (a) : ‖θ‖∞ ≤ R

}
hence show that

ln Cov
(
N u,v

a,R,D, ‖·‖L∞ , r
)
≤ ln Cov

(
N u,v

a,R, ‖·‖L∞ , r
)
≤ ln Cov

(
Pa,R, ‖·‖∞,∆

)
≤ P (a) ln

(⌈R
∆

⌉)
≤ P (a) ln

(2R

∆

)
,

and this proves the proposition.

A.7. Kolmogorov equation as learning problem.

Proof of Lemma 3.2. The proof is based on the Feynman–Kac formula for viscosity solu-
tions of Kolmogorov equations, which states that for every x ∈ Rd it holds that

(A.8) Fd(T, x) = E
[
ϕd (SxT )

]
;

see [29, Corollary 2.23(ii)]. We claim that for every A ∈ B([u, v]d) it holds that

E
[
1A(Xd)ϕd(S

Xd
T )
]

=

∫
A
E [ϕd(S

x
T )] dPXd(x).

This would prove the lemma as it implies that for PXd-a.s. x ∈ [u, v]d it holds that

E
[
ϕd(S

Xd
T )
∣∣Xd = x

]
= E

[
ϕd (SxT )

]
,

which by (A.8) and Setting 3.1 ensures that for a.e. x ∈ [u, v]d it holds that

f∗d (x) = E
[
Yd
∣∣Xd = x

]
= E

[
ϕd(S

Xd
T )
∣∣Xd = x

]
= E

[
ϕd (SxT )

]
= Fd(T, x).

For the proof of the claim let us fix A ∈ B([u, v]d) and let gε ∈ C∞(Rd,R), ε ∈ (0, 1), be a
family of mollifiers. For every ε ∈ (0, 1) we define the convolution with the indicator function
1A,ε := 1A ∗ gε ∈ C∞(Rd,R) and the continuous and bounded mapping

Φε :

{
C([0, T ],Rd) → R

f 7→ 1A,ε(f(0))ϕd(f(T )).
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In [10, Lemma 2.6(v)] it is shown that for every ε ∈ (0, 1) it holds that

E
[
1A,ε(Xd)ϕd(S

Xd
T )
]

= 1
(v−u)d

∫
[u,v]d

1A,ε(x)E
[
ϕd (SxT )

]
dx.

The fact that limε→0 1A,ε(x) = 1A(x) for a.e. x ∈ Rd (see, for instance, [24, Appendix C.5])
and the dominated convergence theorem prove the claim when letting ε tend to zero.

A.8. Neural network approximation result for solutions of Kolmogorov equations. The
proof of Theorem 3.3 is given after the following two auxiliary lemmas. First, we show that
given an SDE with affine coefficients σd and µd, its solution SxT also admits a (random) affine
representation.

Lemma A.4 (representation of SDE solutions). Assume Setting 3.1. Let d ∈ N, let ei ∈ Rd,
i ∈ {1, . . . , d}, be the standard basis in Rd, for every p, z ∈ [0,∞) let

cp(z) := 2p/2
(
z +KT + max{2, p}K

√
T
)p

exp
(
pK2T

[√
T + max{2, p}

]2)
,

and define the random variables M : Ω→ Rd×d and N : Ω→ Rd by

M :=
[
Se1T − S0

T Se2T − S0
T . . . SedT − S0

T

]
and N := S0

T .

Then for every x ∈ Rd it holds P-a.s. that SxT = Mx+ N = AM,N(x) and it holds that16

(i) E
[
‖M‖2 + ‖N‖2

]
≤ 3c1(1)d and

(ii)
∥∥E[ ‖AM,N‖ν2

]∥∥
L2(PXd )

≤ cν(max{1, |u|, |v|})dν/2.

Proof of Lemma A.4. A proof of the first claim can be found in [29, Lemmas 2.7 and 2.15].
For the proof of items (i) and (ii) note that for every p ∈ [0,∞), x ∈ Rd it holds that

E
[
‖AM,N(x)‖p2

]
= E

[
‖SxT ‖

p
2

]
≤
(
E
[
‖SxT ‖

max{2,p}
2

])p/max{2,p}
≤ cp(‖x‖2);

see [29, Proposition 2.14]. Together with the facts that it holds that

E
[
‖M‖2 + ‖N‖2

]
≤ E

[ ∥∥S0
T

∥∥
2

+
d∑
i=1

∥∥SeiT − S0
T

∥∥
2

]
≤ (d+ 1)E

[∥∥S0
T

∥∥
2

]
+

d∑
i=1

E
[∥∥SeiT ∥∥2]

and that∥∥E[ ‖AM,N‖ν2
]∥∥
L2(PXd )

≤
(∫

[u,v]d

[
cν(‖x‖2)

]2
dPXd(x)

)1/2
≤ cν(

√
dmax{1, |u|, |v|})

this implies the desired estimates.

In the next lemma we show that the average of the composition of a neural network with
different affine functions can be represented by a single neural network and we bound the
number and size of its parameters.

16Recall that for a matrix M ∈ Rd×d we denote by ‖M‖2 :=
(∑d

i,j=1M
2
ij

)1/2
its Frobenius norm.
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Lemma A.5 (compositions of neural networks and affine functions). Assume Setting 2.5.
Let d, n ∈ N, b ∈ Ad, η ∈ Pb, and

((M (j), N (j)))nj=1 ∈
(
Rd×d × Rd

)n
.

Then there exist a ∈ Ad and θ ∈ Pa such that it holds that

(i) F(θ) = 1
n

∑n
j=1F(η) ◦ AM(j),N(j),

(ii) P (a) ≤ n2P (b),

(iii) ‖θ‖∞ ≤
√
d‖η‖∞maxnj=1

(
‖M (j)‖2 + ‖N (j)‖2 + 1

)
,

(iv) L(a) = L(b), and

(v) ‖a‖∞ = n‖b‖∞.

Proof of Lemma A.5. With the exception of item (iii) this result is proven in [29, Lemma
3.8]. There it is shown that for η = ((Vl, Al))

L
l=1 a suitable parametrization θ = ((Wl, Bl))

L
l=1

is given by WL :=
[
1
nVL

1
nVL . . . 1

nVL
]
, BL := AL,

W1 :=

V1M
(1)

...

V1M
(n)

 , B1 :=

V1N
(1) +A1

...

V1N
(n) +A1

 , and Wl :=

Vl . . . 0
...

. . .
...

0 . . . Vl

 , Bl :=

Al...
Al

 ,
l ∈ {2, . . . , L− 1}. Now observe that

‖W1‖∞ ≤
√
d‖η‖∞

n
max
j=1
‖M (j)‖2 and ‖B1‖∞ ≤

√
d‖η‖∞

n
max
j=1

(
‖N (j)‖2 + 1

)
,

which proves the lemma.

Now we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. Fix d ∈ N, ε ∈ (0, 1) and define m := max{1, |u|, |v|}. Let M, N,
c1(1), and cν(m) be given as in Lemma A.4, let ((M(j),N(j)))j∈N be i.i.d. random variables
with (M(1),N(1)) ∼ (M,N), and let

(A.9) n ∈
[
16D2ε−1, 32D2ε−1

)
∩ N and δ :=

(
8cν(m)

)−1
d−ν/2ε1/2.

Define g := F (ηd,δ) and note that Setting 3.1, Lemma A.4, and the Feynman–Kac formula [29,
Corollary 2.23(ii)] establish that for every x ∈ Rd it holds that

(A.10) |g(x)| ≤ D, |ϕd(x)− g(x)| ≤ δ(1 + ‖x‖ν2), and Fd(T, x) = E
[(
ϕd ◦ AM,N

)
(x)
]
.

We now use techniques from [29, Proof of Proposition 3.4] to show that the random variable
G : Ω→ [0,∞), given by

G := ε−1/2
∥∥∥Fd(T, ·)− 1

n

n∑
j=1

g ◦ AM(j),N(j)

∥∥∥
L2(PXd )︸ ︷︷ ︸

:=G1

+
(
6c1(1)dn

)−1 n
max
j=1

(∥∥M(j)
∥∥
2

+
∥∥N(j)

∥∥
2

)
︸ ︷︷ ︸

:=G2

,
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satisfies E[G] ≤ 1. First, note that (A.9) and (A.10), together with Jensen’s inequality,
Fubini’s theorem, the Bienaymé formula (see also [29, Lemma 2.3]), and Lemma A.4, ensure
that

E[G1] ≤
∥∥∥E [(ϕd − g) ◦ AM,N]

∥∥∥
L2(PXd )

+E

[∥∥∥E [g ◦ AM,N]− 1
n

n∑
j=1

g ◦ AM(j),N(j)

∥∥∥
L2(PXd )

]
≤
∥∥E[δ(1 + ‖AM,N‖ν2)

]∥∥
L2(PXd )

+
(
E

[ ∫
[u,v]d

(
E
[(
g ◦ AM,N

)
(x)
]
− 1

n

n∑
j=1

(
g ◦ AM(j),N(j)

)
(x)
)2
dPXd(x)

])1/2
≤ δ
(
1 +

∥∥E[ ‖AM,N‖ν2
]∥∥
L2(PXd )

)
+
(∫

[u,v]d
V
[
1
n

n∑
j=1

(
g ◦ AM(j),N(j)

)
(x)
]
dPXd(x)

)1/2
≤ 2cν(m)dν/2δ +Dn−1/2 ≤ 1

2ε
1/2.

Next, observe that Lemma A.4 establishes that

E[G2] ≤ E
[ n∑
j=1

(∥∥M(j)
∥∥
2

+
∥∥N(j)

∥∥
2

) ]
≤ nE

[
‖M‖2 + ‖N‖2

]
≤ 3c1(1)dn

which proves that E[G] = ε−1/2E[G1] +
(
6c1(1)dn

)−1
E[G2] ≤ 1. Thus, there exists ω ∈ Ω

such that G(ω) ≤ 1 (see [29, Proposition 3.3]), and with

M (j) := M(j)(ω) and N (j) := N(j)(ω), j ∈ {1, . . . , n},

it holds that

(A.11) 1
(v−u)d

∥∥∥Fd(T, ·)− 1
n

n∑
j=1

g ◦ AM(j),N(j)

∥∥∥2
L2([u,v]d)

= G2
1(ω) ≤ G2(ω)ε ≤ ε

and that

n
max
j=1

(
‖M (j)‖2 + ‖N (j)‖2

)
= G2(ω) ≤ 6c1(1)G(ω)dn ≤ 192D2c1(1)dε−1.

By Lemma A.5, our assumptions, and (A.9) there exist a ∈ Ad and θ ∈ Pa satisfying the
following:

(i) clipD ◦ F (θ) = F (θ) = 1
n

∑n
j=1F(ηd,δ) ◦ AM(j),N(j) = 1

n

∑n
j=1 g ◦ AM(j),N(j) ;

(ii) P (a) ≤ n2P (bd,δ) ≤ 322D4ζdγε−2δ−λ ≤ Cdνλ/2+γε−λ/2−2;

(iii) ‖θ‖∞ ≤
√
d‖ηd,δ‖∞

(
192D2c1(1)dε−1 + 1

)
≤ Cd(νκ+3)/2+βε−κ/2−1;

(iv) L(a) = L(bd,δ) = L(bd,cd−ν/2ε1/2); and

(v) ‖a‖∞ = n‖bd,δ‖∞ ≤ 32D2ε−1‖bd,δ‖∞ ≤ Cε−1‖bd,cd−ν/2ε1/2‖∞,
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where C := ζ max
{

322D4
(
8cν(m)

)λ
,
(
192D2c1(1) + 1

)(
8cν(m)

)κ}
and c :=

(
8cν(m)

)−1
. To-

gether with (A.11) this proves the theorem.
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Abstract

We present a deep learning algorithm for the numerical solution of parametric fam-
ilies of high-dimensional linear Kolmogorov partial differential equations (PDEs).
Our method is based on reformulating the numerical approximation of a whole
family of Kolmogorov PDEs as a single statistical learning problem using the
Feynman-Kac formula. Successful numerical experiments are presented, which
empirically confirm the functionality and efficiency of our proposed algorithm in
the case of heat equations and Black-Scholes option pricing models parametrized
by affine-linear coefficient functions. We show that a single deep neural network
trained on simulated data is capable of learning the solution functions of an entire
family of PDEs on a full space-time region. Most notably, our numerical observa-
tions and theoretical results also demonstrate that the proposed method does not
suffer from the curse of dimensionality, distinguishing it from almost all standard
numerical methods for PDEs.

1 Introduction

Linear parabolic partial differential equations (PDEs) of the form
∂uγ
∂t = 1

2 Trace
(
σγ [σγ ]∗∇2

xuγ
)

+ 〈µγ ,∇xuγ〉, uγ(x, 0) = ϕγ(x), (1)

are referred to as Kolmogorov PDEs, see [23] for a thorough study of their mathematical properties.
Throughout this paper, the functions

ϕγ : Rd → R (initial condition) and σγ : Rd → Rd×d, µγ : Rd → Rd (coefficient maps)
∗Equal contribution.
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are continuous, and are implicitly determined by a real parameter vector γ ∈ D, whereby D is a
compact set in Euclidean space.

Kolmogorov PDEs frequently appear in applications in a broad variety of scientific disciplines,
including physics and financial engineering [9, 41, 56]. In particular, note that the heat equation from
physical modelling as well as the widely-known Black-Scholes equation from computational finance
are important special cases of Equation (1). Typically, one is interested in finding the (viscosity)
solution2

uγ : [v, w]d × [0, T ]→ R
of Equation (1) on a predefined space-time region of the form [v, w]d × [0, T ]. In almost all cases,
however, Kolmogorov PDEs cannot be solved explicitly. Furthermore, standard numerical solution
algorithms for PDEs, in particular those based on a discretization of the considered domain, are known
to suffer from the so-called curse of dimensionality3, meaning that their computational cost grows
exponentially in the dimension of the domain [2, 50]. The development of new, computationally
efficient methods for the numerical solution of Kolmogorov PDEs is therefore of high interest for
applied scientists.

In this work, we present a novel deep learning algorithm capable of numerically approximating the
solutions (uγ)γ∈D of a whole family of γ-parametrized Kolmogorov PDEs on a full space-time
region. Specifically, our proposed method allows to train a single deep neural network

Φ: D × [v, w]d × [0, T ]→ R (2)
to approximate the parametric solution map

ū : D × [v, w]d × [0, T ]→ R, (γ, x, t) 7→ ū(γ, x, t) := uγ(x, t), (3)

of a family of γ-parametrized Kolmogorov PDEs on the generalized domain D × [v, w]d × [0, T ].
Most notably, we also theoretically investigate the associated approximation and generalization errors
and rigorously show that our algorithm does not suffer from the curse of dimensionality with respect
to the neural network size as well as the sample size. We emphasize that our empirical results strongly
suggest that also the empirical risk minimization (ERM) algorithm, usually a variant of stochastic
gradient descent, does not suffer from the curse of dimensionality but proving this is out of scope of
this paper.

1.1 PDEs and Deep Learning: Current Research and Related Work

Interest in deep-learning based techniques for the numerical solution of PDEs has been growing
rapidly in recent years [6, 24, 32, 46, 51, 54, 55]. This sharp rise in interest can partly be explained
by the remarkable ability of deep neural networks to avoid incurring the curse of dimensionality when
used to approximate PDE solutions in particular settings. More specifically, in some situations it has
been possible to find theoretical upper bounds for the size of the required neural network architectures
which do not depend exponentially on the dimension of the PDE [14, 20, 29, 49, 47]. This represents
a rare and crucial advantage over classical finite difference and finite element methods, all of which
typically cannot be used in high dimensions due to the resulting exponential explosion of required
computational costs.

As a result of these successes, deep learning has recently been studied as a numerical solution
technique for the more general group of parametric PDEs and their associated parametric solution
maps [12, 27, 33, 35, 36, 49]. The investigation of the capabilities of deep artificial neural networks
to learn parametric solution maps of specific parametrizable families of PDEs has become a new and
active area of research. In this work, we provide novel theoretical and empirical results which, for
the first time, demonstrate the viability of deep learning algorithms for the scalable solution of large
classes of parametric Kolmogorov PDEs.

The formulation of the learning problem underlying our method is inspired by the work of Beck
et al. [5]. There it is shown how deep neural networks can be used to numerically solve a non-
parametric version of Equation (1) with fixed initial condition ϕγ and fixed coefficients maps σγ , µγ

2Viscosity solutions are the appropriate solution concept for a wide range of PDEs [10, 23]. Viscosity
solutions are continuous, but not necessarily differentiable.

3The classical way to circumvent the curse of dimensionality has been the employment of stochastic Monte
Carlo based methods, see e.g. [19]; these techniques, however, are only suitable to approximately compute the
solution uγ(x, t) at a single fixed space-time point (x, t) ∈ [v, w]d× [0, T ], limiting their usefulness in practice.
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on a predefined space region [v, w]d and at a predefined time slice T > 0. In other words, their
non-parametric method allows to approximate the function

uγ( · , T ) : [v, w]d → R, x 7→ uγ(x, T ),

for fixed γ ∈ D by training a deep neural network with suitable simulated data of the form

(X,ϕγ(Sγ,X,T )) ∈ [v, w]d × R.

Here, X is uniformly drawn from the spatial hypercube [v, w]d and the random vector Sγ,X,T is the
value of the solution process (Sγ,X,t)t≥0 of the stochastic differential equation (SDE)

dSγ,X,t = µγ(Sγ,X,t)dt+ σγ(Sγ,X,t)dBt, Sγ,X,0 = X,

at time t = T , whereby (Bt)t≥0 is a standard d-dimensional Brownian motion.

The choice of training data is based on the following important identity, which under suitable
regularity assumptions holds for all x ∈ [v, w]d, t ∈ [0, T ], and γ ∈ D:

uγ(x, t) = E[ϕγ(Sγ,x,t)]. (4)

Equality (4) is a version of the well-known Feynman-Kac formula which establishes a link between the
theory of parabolic PDEs and the theory of stochastic differential equations [23]. Using the Feynman-
Kac formula, one can show within the mathematical framework of empirical risk minimization [11,
53] that uγ(· , T ) is in fact the solution of the supervised statistical learning problem defined by the
predictor variable X , the target variable ϕγ(Sγ,X,T ), and a standard quadratic loss function [5].

1.2 Novel Contribution

In this work, we introduce the first algorithm for the numerical solution of parametric Kolmogorov
PDEs on a whole space-time region. No previous technique has achieved this degree of generality;
all former methods for parametric Kolmogorov PDEs were either only capable of computing local
solutions at single space-time points of the domain using Monte Carlo based approaches or did
not employ deep neural networks and were thus not able to break the curse of dimensionality. Our
technique is made possible by constructing a suitable supervised learning problem via a nontrivial
application of the Feynman-Kac formula (4), which involves random initial conditions and SDEs
with random coefficients and stopping times. This reformulation of a broad class of parametric PDEs
as learning problems provides a new theoretical framework to analyze the convergence behavior of
deep learning algorithms. Building upon this framework, we prove theoretical guarantees for the
computational performance of our technique and, to the best of our knowledge, establish the first
combined approximation and generalization results for parametric PDEs.

Note that the parametric nature of the presented algorithm opens up the novel possibility to study
changes in the potentially high-dimensional solution manifold of Equation (1) as its initial conditions
and coefficient maps vary with γ ∈ D. The study of such changes is commonly referred to as
sensitivity analysis. Recall that the proposed method delivers a neural network Φ which approximates
the parametric PDE solution map, i.e. Φ ≈ ū. The partial derivatives of Φ with respect to the
parameter γ, the spatial variable x, and the time variable t can then be readily computed via automatic
differentiation. Thus, the partial derivatives of Φ become computationally accessible approximations
of the partial derivatives of ū. The partial derivatives of ū in turn play an important role in a
variety of widespread applications, such as in the computation of the “Greeks” associated with the
Black-Scholes model from financial engineering (see Section 3.1).

Another highly relevant application area opened up by our method is the calibration of the usually
unknown PDE coefficients σγ , µγ using real-world data. After solving a parametric PDE with our
technique, one can fit γ such that the PDE solution manifold best describes a real data set and
additionally apply uncertainty quantification techniques if γ is modelled as a random variable.

Finally, we establish a new architecture and compare different learning schemes to provide future
researchers with a robust framework for parametric PDEs, which are inherently less stable than
their simpler non-parametric counterparts. Further, this work is complemented by an extendable
implementation with the possibility of distributed training and hyperparameter optimization for the
special use-cases of other researchers.

3



uniform	sampling

SDE	simulation

Figure 1: Illustration of the proposed supervised
learning problem with predictor variable Λ and
target variable ϕΓ(SΓ,X,T ).

Residual-ConnectionDense
Addition Batch	Normalization	/	ReLU	/	Dense

Figure 2: Illustration of the Multilevel ar-
chitecture for L = 4, q = 3.

2 Algorithm

The key idea of the presented algorithm is to describe the parametric solution map (3) of the γ-
parametrized Kolmogorov PDE (1) as the regression function of an appropriately chosen supervised
statistical learning problem. One can then use simulated training data in order to learn ū by means
of deep learning. Inspired by the Feynman-Kac formula (4), we construct a new statistical learning
problem via a uniformly distributed predictor variable and a statistically dependent target variable:

Λ := (Γ, X, T ) ∈ D × [v, w]d × [0, T ] (predictor) and Y := ϕΓ(SΛ) ∈ R (target).
The random vector SΛ is defined as the value of the solution process (SΓ,X,t)t≥0 of the Γ-
parametrized stochastic differential equation

dSΓ,X,t = µΓ(SΓ,X,t)dt+ σΓ(SΓ,X,t)dBt, SΓ,X,0 = X, (5)
at the (random) stopping time t = T . For suitable regularity assumptions, the Feynman-Kac
formula (4) then ensures that
E[Y | Λ = (γ, x, t)] = E[ϕΓ(SΛ) | Λ = (γ, x, t)] = E[ϕγ(Sγ,x,t)] = uγ(x, t) = ū(γ, x, t).

This shows that the minimizer of the corresponding statistical learning problem with quadratic loss
function is indeed the parametric Kolmogorov PDE solution map, see Theorem A.1 in the appendix
for the precise assumptions and a detailed proof.
Theorem 1 (Learning Problem). It holds that the parametric solution map ū is the unique minimizer
of the statistical learning problem

minf E
[(
f(Λ)− Y

)2]
. (6)

Restricting to a hypothesis space of suitable neural networksH and minimizing the empirical mean
squared error (MSE) loss corresponding to (6), we arrive at the feasible supervised ERM problem

minΦ∈H
1
s

∑s
i=1(Φ(λi)− yi)2 (7)

where ((λi, yi))
s
i=1 are realizations of i.i.d. samples drawn from the distribution of (Λ, Y ). Typically,

this problem is then solved by a variant of stochastic gradient descent [48]. The algorithm is
graphically illustrated in Figure 1.

It is trivial to simulate i.i.d. samples of the predictor variable Λ, due to its uniform distribution. On the
other hand i.i.d. samples of the target variable Y = ϕΓ(SΛ) can be obtained via standard numerical
SDE solution techniques without curse of dimensionality [34]. An example for such a technique is
given by the Euler-Maruyama approximation with M ∈ N equidistant steps (SM,m

Λ )Mm=0 which is
defined by the following scheme:

SM,0
Λ = X and SM,m+1

Λ = SM,m
Λ + µΓ(SM,m

Λ ) TM + σΓ(SM,m
Λ )

(
B (m+1)T

M
−BmT

M

)
. (8)

The following theorem shows that solving the learning problem with data simulated by the Euler-
Maruyama scheme does indeed result in the expected approximation of the parametric PDE solution
map ū, see Theorem A.2 in the appendix for a proof.
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Theorem 2 (Approximated Learning Problem). The unique minimizer ūM of the approximated
statistical learning problem

minf E
[(
f(Λ)− YM

)2]
where YM := ϕΓ(SM,M

Λ ) is simulated using the Euler-Maruyama scheme (8) with M ∼ 1/ε2

equidistant steps satisfies that

‖ūM − ū‖L∞(D×[v,w]d×[0,T ]) ≤ ε.

In other words, the approximation of the SDE solution SM,M
Λ ≈ SΛ carries over to the approximation

of the corresponding minimizer ūM ≈ ū. Therefore there exists no constraint of having to solve
the SDE in (5) analytically. The ability to easily simulate artificial training data opens up the highly
desirable capability to supply the learning algorithm with a potentially infinite stream of i.i.d. data
samples. Instead of having to use a train/val/test split on a given finite data set, one can thus constantly
simulate new data points on demand during training. Since the number of samples then grows at will
parallel to the training process, the first epoch never finishes and every new gradient computation can
be done on the basis of previously unseen data.

2.1 Example: Affine-Linear Coefficient Functions

In Section 3 we present numerical experiments based on our algorithm for the important special case
where σγ and µγ are affine-linear functions. Thus from now on let us assume that4

σγ : Rd → Rd×d, σγ(x) = [γσ,1x| . . . |γσ,dx] + γσ,d+1,

µγ : Rd → Rd, µγ(x) = γµ,1x+ γµ,2,

are affine-linear functions, which are determined by parameter tuples of matrices and vectors

γσ ∈ Dσ ⊆ (Rd×d)d+1, γµ ∈ Dµ ⊆ Rd×d × Rd.

The parameter setsDσ andDµ are chosen to be compact. Together with a suitable compact parameter
set Dϕ ⊆ Rk for the initial function ϕγ , we obtain

γ := (γσ, γµ, γϕ) ∈ Dσ ×Dµ ×Dϕ := D ⊆ (Rd×d)d+1 × (Rd×d × Rd)× Rk.

This leads to an input dimension of our neural network Φ of

dimin(Φ) = dim(D × [v, w]d × [0, T ]) = d3 + 2d2 + 2d+ 1 + k.

Kolmogorov PDEs with affine-linear coefficient functions regularly appear in applications; the heat
equation from physics and the classical and generalized Black-Scholes equations from computational
finance are important examples of Kolmogorov PDEs with affine-linear coefficient maps [13, 44].
Note that while affine-linear coefficient functions are important in practice, computationally fast to
evaluate, and easy to parametrize, the presented method is not restricted to the case of affine-linear
coefficients and can as well be used in a substantially more general setting.

3 Numerical Results

We implemented the framework described in Section 2 in PyTorch [42] and computed our results on
a Nvidia DGX-1 using Tune [38] for experiment execution and hyperparameter optimization. In this
section, we describe our setting and present four encouraging demonstrations of the performance of
our algorithm.5

For the neural network Φ we propose a Multilevel architecture which is inspired by multilevel
techniques such as Multilevel Monte Carlo methods [18], network architectures in [26, 59], and the
architecture for the squaring function used in the proofs of our theoretical results in Section A.1, see
also [58, Figure 2c]. One can view the output of the network Φ as a sum

∑L−1
l=0 Φl of sub-networks

4We denote by [a1| . . . |ad] ∈ Rd×d the horizontal concatenation of the vectors a1, . . . , ad ∈ Rd.
5For the implementation details we refer the reader to Section A.2 in the appendix and the repository

associated with this work on https://github.com/juliusberner/deep_kolmogorov.
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Φl with 2l layer each. We think of the shallow network Φ0 as computing a coarse approximation of ū
and of the deep networks Φl (with l ≥ 1) as approximately learning the residuals ū−

∑l−1
i=0 Φi. To

facilitate optimization we normalize our inputs6 and to enhance expressivity we add an initial layer
which increases the width by a given factor q. The Multilevel architecture is depicted in Figure 2 and
described in detail in Definition A.2 in the appendix.

Our optimized hyperparameters as well as an ablation study of our architecture and training scheme
can be found in Sections A.2 and A.3 in the appendix. For all our experiments we were able to stick
to a similar setup which depicts its robustness and general applicability. This is also mirrored by the
small standard deviations of our considered errors across independent runs in Tables 1, 2, 3, and 4.
These tables report average runtimes (in seconds), average approximation errors, and their standard
deviations w.r.t. 4 independent runs each 4000 gradient descent steps. As an evaluation metric we
approximately computed L1-errors via Monte Carlo sampling, that is∥∥∥Φ(Λ)−ū(Λ)

1+|ū(Λ)|

∥∥∥
L1

:= E
[
|Φ(Λ)−ū(Λ)|

1+|ū(Λ)|

]
≈ 1

n

∑n
i=1

|Φ(λi)−ū(λi)|
1+|ū(λi)| (9)

with n ∈ N realizations (λi)
n
i=1 of i.i.d. samples drawn from the distribution of Λ (drawn indepen-

dently of the training data in (7) and drawn independently for each evaluation step). This means that
we always evaluate our model w.r.t. to the parametric solution map ū on unseen input data; if no
closed-form solution for ū is available, as in the case of the Basket option in Section 3.2 below, we
approximate ū(λi) pointwise via Monte Carlo sampling, i.e.

ū(λi) = ū(γi, xi, ti) = E[ϕγi(Sγi,xi,ti)] ≈ 1
m

∑m
j=1 ϕγi(sj) (10)

where (sj)
m
j=1 are realizations of i.i.d. samples drawn from the distribution of the Euler-Maruyama

approximation SM,M
λi

(drawn independently of the training data in (7) and drawn independently for
each point and each evaluation step). Note that (9) is invariant under scaling of the hypercubes and
locally corresponds to relative errors where the solution ū is large and absolute errors where it is
small, which in particular prevents division by zero.

3.1 Black-Scholes Options Pricing Model

Our first example shows that neural networks are capable of learning a parametric version of the
highly-celebrated Black-Scholes option pricing model [9]. We consider a European put option which
gives its owner the right, but not the obligation, to sell a single underlying financial asset at a specified
strike price and at a given time. Formally, this corresponds to d = 1 and

σγ(x) = γσx, µγ(x) = 0, ϕγ(x) = max{γϕ − x, 0}, x ∈ R,

with7 γσ ∈ Dσ ⊆ R and γϕ ∈ Dϕ ⊆ R. Effectively, this leads to an input dimension of our
neural network Φ of dimin(Φ) = 4. In case of the present Black-Scholes model, the associated SDE
in (5) can actually be solved explicitly; it gives rise to geometric Brownian motion with uniformly
distributed volatility Γσ ∈ Dσ , initial value X ∈ [v, w], and stopping time T ∈ [0, T ], i.e.

SΛ = Xe−0.5T Γ2
σ+
√
T ΓσN

where N ∼ N (0, 1) is normally distributed and independent of Λ. We thus obtain an analytic
expression for the parametric PDE solution,

ū(γ, x, t) = γϕΨ(hγ(x, t) +
√
t γσ)− xΨ(hγ(x, t)),

and the partial derivatives, e.g.
∂ū
∂γσ

(γ, x, t) = x
√
tΨ′(−hγ(x, t)),

where
Ψ(z) := 1

2

(
1 + erf

(
z√
2

))
and hγ(x, t) := − 1√

t γσ

(
ln
(
x
γϕ

)
+

tγ2
σ

2

)
,

see [4, Section 13.7]. This analytic expression can be used to evaluate the performance of our
algorithm. We point out that the partial derivatives of ū are crucial in option pricing and each of

6We know the underlying (uniform) distribution and therefore can normalize each input in an exact manner.
7Note that σγ = σγ,1 in the formal framework described in Section 2.1 but here and in the following we use

the natural identifications, e.g. Dσ ∼= Dσ × {0}.
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Figure 3: Shows the average prediction error
|Φ(γ,·,t)−ū(γ,·,t)|

1+|ū(γ,·,t)| and its standard deviation at

t = 0.5, γσ = 0.35, and γϕ = 11.
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Figure 4: Shows the average error of the Vega
| ∂Φ
∂γσ

(γ,·,t)− ∂ū
∂γσ

(γ,·,t)|
1+| ∂ū∂γσ (γ,·,t)| and its standard devia-

tion at t = 0.5, γσ = 0.35, and γϕ = 11.

them is associated with a distinct economic interpretation. They are often referred to as Greeks and
describe the sensitivity of the option price w.r.t. different model parameters, see for instance [4, 50].
The most prominent Greeks are given by

∆ = ∂ū
∂x , Vega = ∂ū

∂γσ
, Θ = −∂ū∂t .

On the basis of the proposed algorithm, our neural network Φ is capable of learning the parametric
solution map ū of the above problem in 24000 gradient updates up to an average L1-error of 0.0011,
see Table 1 and Figure 3. As expected, the partial derivatives of our network Φ (computed via
automatic differentiation) approximate the partial derivatives of ū as can be seen in Figure 4. Further
evidence can be found in Figures 5, 6, 7, and 8 in the appendix. Even though the parametric PDE
problem can be solved explicitly in this special case, we use this relatively simple example for the
purpose of illustrating our algorithm in an intuitive setting. As we will see below, the proposed
algorithm is by no means restricted to such basic examples and can be applied successfully to much
more complex and high-dimensional problems as well.

3.2 Basket Put Option

In the following we show that we can obtain comparable results to Section 3.1 in the case of a
considerably more complicated Basket put option pricing problem, where analytical solutions of the
PDE and the SDE are lacking. In such cases, our algorithm allows practitioners to nevertheless gain
valuable insights into the behaviour of the PDE solution manifold as input parameters vary. By means
of our trained model Φ one can easily compute sensitivity values ∂Φ

∂γ ≈
∂ū
∂γ , ∂Φ

∂t ≈
∂ū
∂t , and ∂Φ

∂x ≈
∂ū
∂x

via automatic differentiation or fit the parameter γ to a real-world data-set ((xi, ti), uγ(xi, ti))
m
i=1

with unknown γ by minimizing minγ∈D
∑m
i=1

(
Φ(γ, xi, ti)− uγ(xi, ti)

)2
via stochastic gradient

descent. Moreover, one can obtain estimates for probabilistic quantities related to uncertainty such as

V[uΞ(x, t)] ≈ V[Φ(Ξ, x, t)] ≈ 1
m−1

∑m
i=1

(
Φ(ξi, x, t)− 1

n

∑m
j=1 Φ(ξj , x, t)

)2
where (ξi)

m
i=1 are realizations of i.i.d. samples drawn from the distribution of a random variable Ξ of

interest. None of these types of insights were accessible before the presented deep learning method.

We proceed by demonstrating the performance of the proposed algorithm for a general multidimen-
sional affine-linear setting as described in Section 2.1. To this end, let d = 3 and define the initial
condition via

ϕγ(x) = max
{
γϕ − 1

3

∑3
i=1 xi, 0

}
, x ∈ R3,

with γϕ ∈ Dϕ ⊆ R. This corresponds to the situation of a Basket put option in a very general
multidimensional Black-Scholes model with 3 potentially highly correlated assets. Note that within
the above setup, the input dimension of our neural network Φ is given by

dimin(Φ) = d3 + 2d2 + 2d+ 1 + 1 = 53.

To generate samples of our target variable ϕΓ(SΛ), we simulate solutions of the SDE in (5) using
the Euler-Maruyama scheme (8) with M = 25 equidistant steps. Moreover, we use a Monte Carlo

7



Table 1: Results for the Black-Scholes model

step avg. time (s) avg. L1-error

0 0 ± 0 0.6812 ± 0.0704
4k 471 ± 3 0.0088 ± 0.0056
8k 943 ± 6 0.0062 ± 0.0025
12k 1413 ± 9 0.0030 ± 0.0004
16k 1885 ± 11 0.0017 ± 0.0001
20k 2356 ± 14 0.0013 ± 0.0002
24k 2827 ± 17 0.0011 ± 0.0001

Table 2: Results for the Basket option

step avg. time (s) avg. L1-error

0 0 ± 0 0.7912 ± 0.0276
4k 811 ± 7 0.0131 ± 0.0019
8k 1614 ± 4 0.0087 ± 0.0013
12k 2434 ± 28 0.0062 ± 0.0009
16k 3236 ± 27 0.0058 ± 0.0011
20k 4162 ± 154 0.0046 ± 0.0007
24k 5077 ± 291 0.0042 ± 0.0002
28k 6024 ± 463 0.0039 ± 0.0001

approximation with m = 220 samples to compute the pointwise evaluation of the reference solution
ū(λi) according to (10) as needed for the error estimation in (9). Despite the considerably higher
dimension of this problem compared with the previous problem from Section 3.1, our deep learning
approach shows almost the same approximation behavior, see Table 2. This remarkably weak
dependence on the dimension of the input data is further supported by the next examples from
physical modelling, where we shall increase the dimensionality of the studied problems even further.

3.3 Heat Equation with Varying Diffusion Coefficients

In this Section, we present two examples of high-dimensional heat equations in d = 10 and d = 150
dimensions with paraboloid and Gaussian initial conditions

ϕγ(x) = ‖x‖2 (paraboloid) and ϕγ = e−‖x‖
2

(Gaussian).
This formally corresponds to

σγ(x) = γσ and µγ(x) = 0

where we use a matrix γσ ∈ Dσ ⊆ R10×10 for the paraboloid case and a scalar γσ ∈ Dσ ⊆ R in the
Gaussian case, leading to input dimensions of our models Φ of
dimin(Φ) = d2 + d+ 1 = 111 (paraboloid) and dimin(Φ) = d+ 1 + 1 = 152 (Gaussian).

Notice that here the solution of the corresponding SDE can be directly sampled via a Brownian
motion with uniformly distributed scaling Γσ , initial position X , and stopping time T , i.e.

SΛ = X +
√
T ΓσN

where N ∼ N (0, Id) is normally distributed and independent of Λ, see [5, Section 3.2]. For
evaluation purposes, these examples were purposefully constructed to have analytic expressions for
the parametric solution maps ū, which are given by

ū(γσ, x, t) = ‖x‖2 + tTrace(γσγ
∗
σ) (paraboloid), ū(γσ, x, t) = e

−
‖x‖2

1+2tγ2
σ

(1+2tγ2
σ)d/2

(Gaussian).

However, in almost all other practical cases an analytic solution for ū is impossible to obtain and
numerical methods are the only path forward.

The above dimensionality settings represent regimes which are completely out of scope for all
preexisting numerical schemes. Nevertheless, Tables 3 and 4 confirm that our proposed deep learning
method once again efficiently converges to the desired parametric solution map ū. Our results
empirically demonstrate that, contrary to conventional numerical solvers, our deep learning based
method does not suffer from the curse of dimensionality, see also Figure 9 in the appendix. We will
rigorously prove this fact in the next section.

4 Theoretical Guarantees

As a first example, we stick to the heat equation with paraboloid initial condition from above and
show that neural networks are capable of simultaneously approximating the parametric solution map
ū and its gradient with the number of network parameters scaling only polynomially in the dimension
d, see Theorem A.3 in the appendix for a proof. Such an approximation guarantee without curse of
dimensionality ensures that sensitivity analysis is possible even in very high dimensions.
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Table 3: Results for the heat equation with
paraboloid initial condition

step avg. time (s) avg. L1-error

0 0 ± 0 0.9609 ± 0.0052
4k 1904 ± 19 0.0150 ± 0.0008
8k 3808 ± 37 0.0120 ± 0.0007
12k 5712 ± 57 0.0093 ± 0.0006
16k 7616 ± 76 0.0068 ± 0.0001
20k 9520 ± 95 0.0062 ± 0.0003
24k 11424 ± 114 0.0057 ± 0.0001
28k 13328 ± 132 0.0056 ± 0.0000

Table 4: Results for the heat equation with
Gaussian initial condition

step avg. time (s) avg. L1-error

0 0 ± 0 0.2035 ± 0.0714
4k 2070 ± 40 0.0123 ± 0.0047
8k 4131 ± 82 0.0050 ± 0.0018
12k 6192 ± 124 0.0051 ± 0.0022
16k 8258 ± 165 0.0033 ± 0.0015
20k 10323 ± 206 0.0025 ± 0.0011
24k 12388 ± 247 0.0024 ± 0.0008
28k 14454 ± 290 0.0019 ± 0.0002

Theorem 3 (Sobolev Approximation). There exists a neural network Φ with ReLU activation function
and O(d4 log(d/ε)) parameters satisfying that

‖Φ− ū‖L∞(D×[v,w]d×[0,T ]) ≤ ε and ‖∇Φ−∇ū‖L∞(D×[v,w]d×[0,T ]) ≤ ε.

Let us now consider the heat equation with varying diffusivity and Gaussian initial condition. In fact,
our framework allows us to rigorously prove sample complexity estimates for this problem which
represents an almost unique scenario for deep learning based methods. This is rendered possible by
the structure of the underlying parametric Kolmogorov PDE and its associated SDE which allows
us to describe the distribution of the predictor and target variable, simulate i.i.d. samples, and infer
regularity properties on the regression function. We briefly sketch the theorem in the following; the
precise formulation and the proof is given in Theorem A.5 in the appendix.
Theorem 4 (Generalization). Using s ∼ (d/ε)2 polylog(d/ε) many samples, every empirical risk
minimizer Φ̂ of (7) in a suitable hypothesis spaceH of neural networks with ReLU activation function,
O(polylog(d/ε)) layers, O(d) neurons per layer, and parameters bounded by O(1) satisfies with
high probability that

1
V ‖Φ̂− ū‖

2
L2(D×[v,w]d×[0,T ]) ≤ ε

where V := vol(D × [v, w]d × [0, T ]).

Note that it holds that
1
V ‖ · ‖

2
L2(D×[v,w]d×[0,T ]) = ‖ · ‖2L2(PΛ)

wherePΛ is the uniform probability measure onD× [v, w]d× [0, T ]. Thus the estimate in Theorem 4
can be viewed as an estimate in the space L2(PΛ) and we want to emphasize that our setting easily
allows us to choose arbitrary probability measures P on D × [v, w]d × [0, T ] and prove analogous
results w.r.t. the L2(P)-norm.

5 Conclusion

The method introduced in this paper is the first deep learning algorithm for the numerical solution
of parametric Kolmogorov PDEs and one of few existing algorithms whose use is computationally
tractable in high-dimensional settings. The parametric nature of our approach readily allows for
sensitivity analysis, model calibration, and uncertainty quantification, all which is of high interest
in a variety of applications. Successful numerical experiments in both low- and high-dimensional
settings empirically confirm the functionality of the proposed algorithm. In addition, we are able to
provide theoretical guarantees for the applicability of our method in high-dimensions.

Besides solving an important problem in scientific computing, our work introduces a class of learning
problems that allows for the rigorous investigation of expressivity and sample complexity, along
with stable and interpretable algorithms. Such strong results become possible by leveraging the
mathematical structure of the learning problem associated with the parametric PDE. We anticipate that
the formulation and study of such structured problems will constitute an important future direction
of research in the scientific machine learning community as it can enable reliable and interpretable
algorithms for the solution of previously intractable problems: in our case parametric families of
Kolmogorov PDEs. This contributes substantially to areas like physical modelling of diffusion
processes and computational finance, which all rely on the use of such PDEs.
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Broader Impact

The deep-learning technique presented in this work is the first computationally scalable method for
the numerical solution of high-dimensional parametric Kolmogorov PDEs. It is also the first method
which allows for a straightforward sensitivity analysis of the associated high-dimensional PDE
solution manifold with respect to input parameters. In addition, it newly allows for high-dimensional
data-driven model calibration and uncertainty quantification. While it is a difficult task to precisely
estimate the cascading effects of technological innovations on wider society, it is reasonable to assume
that the ubiquity of Kolmogorov equations in science and engineering will lead to a positive impact
of our new findings on a multitude of technical areas of social importance.

As an example, Kolmogorov PDEs are heavily used in physics for the modelling of heat flow and
diffusion processes [41, 56]. Simultaneously, Fokker-Planck equations, which take the form of
Kolmogorov equations in particular special cases, are used in the geophysical and atmospheric
sciences as modelling tools for climate change projections [25, 52]. Our described algorithm has clear
promise to make previously intractable high-dimensional physical models computationally accessible
to scientists. Additionally, our method allows for an easy investigation of changes in complex model
forecasts as input parameters are varied during sensitivity analysis. Such advancements have the
potential to accelerate scientific research and can directly lead to better predictive models in applied
physics and engineering. Reliable and efficient predictive models in turn are essential to rationally
inform public policy.

A conceivable risk posed by our work might come in the form of the uncritical use of our algorithm in
applications related to financial engineering. The Black-Scholes equation and associated models have
been notoriously misused in the last decades by semi-technical users working in financial sectors
around the world [31, 57]. The naive usage of technical tools in computational finance has thus
likely been a contributing factor to periods of economic instability in recent history. Our technique
can now add a powerful solver for high-dimensional parametric PDE problems to the tool kits of
individual end-users in finance with various degrees of scientific expertise. Inexperienced users
without appropriate quantitative background might be prone to erroneously taking the complexity of a
high-dimensional financial model as an indicator for its accuracy. Therefore, one must take great care
to systematically inform users without suitable experience in such a scenario that merely increasing
the dimension of an inadequate financial model might not necessarily make its results more accurate.

In total, we are confident that the net impact of our work on the scientific community as well as
broader society is positive. The probability of uncritical use of our technique and other algorithms
in financial engineering can likely be substantially mitigated by targeted educational interventions
and we would encourage practical research in this direction. At the same time, we note that our
technical contribution is a general-purpose tool which has the potential to stimulate the acceleration
of scientific progress in a wide variety of disciplines.
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A Appendix

A.1 Theoretical Results

First we state our assumptions on the coefficient maps and initial conditions.
Assumptions A.1 (Coefficient Maps & Initial Conditions). Let D be a compact set in Euclidean
space and for every γ ∈ D let ϕγ ∈ C(Rd,R), σγ ∈ C(Rd,Rd×d), and µγ ∈ C(Rd,Rd). Assume
that for every x ∈ Rd the mappings

γ 7→ ϕγ(x), γ 7→ σγ(x), and γ 7→ µγ(x)

are continuous and that there exists c ∈ (0,∞) such that for every γ ∈ D, x, y ∈ Rd it holds that8

(i) |ϕγ(x)− ϕγ(y)| ≤ c‖x− y‖(1 + ‖x‖c + ‖y‖c),

(ii) ‖µγ(x)− µγ(y)‖+ ‖σγ(x)− σγ(y)‖ ≤ c‖x− y‖, and

(iii) |ϕγ(0)|+ ‖µγ(0)‖+ ‖σγ(0)‖ ≤ c.

Note that the continuity assumptions on σγ and µγ and the condition in Item (ii) are fulfilled for
the case of affine-linear coefficient functions as described in Section 2.1 and used in our examples.
Further, the polynomial growth condition on the local Lipschitz constant in Item (i), the uniform
bound in Item (iii), and the continuity assumption on ϕγ are also satisfied for all our considered
examples. Under these assumptions we can precisely formulate the setting we are working in.
Definition A.1 (Parametric Kolmogorov PDEs). For every γ ∈ D let uγ : Rd × [0,∞) → R be
the unique continuous, at most polynomially growing function satisfying for every x ∈ Rd that
uγ(x, 0) = ϕγ(x) and satisfying that u|Rd×(0,∞) is a viscosity solution of the Kolmogorov PDE

∂uγ
∂t (x, t) = 1

2 Trace
(
σγ(x)[σγ(x)]∗(∇2

xuγ)(x, t)
)

+ 〈µγ(x), (∇xuγ)(x, t)〉

for (x, t) ∈ Rd × (0,∞), see [23, Corollary 4.17]. Let (Ω,F , (Ft)t∈[0,T ],P) be a suitable filtered
probability space satisfying the usual conditions, let

(Bt)t≥0 : [0,∞)× Ω→ Rd (11)

be a standard d-dimensional (Ft)-Brownian motion, let T ∈ (0,∞), v ∈ R, w ∈ (v,∞) and let

Λ = (Γ, X, T ) : Ω→ D × [v, w]d × [0, T ]

be a F0-measurable, uniformly distributed random variable. Let

(Sγ,x,t)t≥0 : [0,∞)× Ω→ Rd, (γ, x) ∈ D × Rd, and (SΓ,X,t)t≥0 : [0,∞)× Ω→ Rd

be the up to indistinguishability unique (Ft)-adapted stochastic processes with continuous sample
paths satisfying that for every (γ, x, t) ∈ D × Rd × [0,∞) it holds P-a.s. that

Sγ,x,t = x+

∫ t

0

µγ(Sγ,x,s)ds+

∫ t

0

σγ(Sγ,x,s)dBs, (12)

and that for every t ∈ [0,∞) it holds P-a.s. that

SΓ,X,t = X +

∫ t

0

µΓ(SΓ,X,s)ds+

∫ t

0

σΓ(SΓ,X,s)dBs, (13)

see, for instance, [17, Proof of Theorem 8.3]. For every M ∈ N, (γ, x, t) ∈ D × Rd × [0,∞) let

(SM,m
γ,x,t )

M
m=0 : {0, . . . ,M} × Ω 7→ Rd

be a stochastic process satisfying that SM,0
γ,x,t = x and for every m ∈ {0, . . . ,M − 1} that

SM,m+1
γ,x,t = SM,m

γ,x,t + µγ(SM,m
γ,x,t )

t
M + σγ(SM,m

γ,x,t )
(
B (m+1)t

M
−Bmt

M

)
8For a finite index set I and a, b ∈ RI we define ‖a‖ =

√∑
i∈I |ai|2 and 〈a, b〉 =

∑
i∈I aibi.
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and for every M ∈ N let
(SM,m

Γ,X,T )Mm=0 : {0, . . . ,M} × Ω 7→ Rd

be a stochastic process satisfying that SM,0
Γ,X,T = X and for every m ∈ {0, . . . ,M − 1} that

SM,m+1
Γ,X,T = SM,m

Γ,X,T + µΓ(SM,m
Γ,X,T ) TM + σΓ(SM,m

Γ,X,T )
(
B (m+1)T

M
−BmT

M

)
.

Finally, let the random variable Y : Ω 7→ R be given by

Y := ϕΓ(SΛ) = ϕΓ(SΓ,X,T )

and for every M ∈ N let the random variable YM : Ω 7→ R be given by

YM := ϕΓ(SM,M
Λ ) = ϕΓ(SM,M

Γ,X,T ).

In order to prove Theorem 1 we assume the following regularity on our SDEs in (12) and (13).
Assumptions A.2 (Regularity Assumptions). Assume that there exists a jointly measurable9 function

Υ: C([0, T ],Rd)×D × [v, w]d × [0, T ]→ R

such that it holds P-a.s. that
Υ(B,Γ, X, T ) = ϕΓ(SΛ)

and for every (γ, x, t) ∈ D × [v, w]d × [0, T ] it holds P-a.s. that

Υ(B, γ, x, t) = ϕγ(Sγ,x,t),

where B : Ω → C([0, T ],Rd), ω 7→ (t 7→ Bt(ω)), denotes the mapping to the sample paths of the
Brownian motion in (11).

Note that the above assumptions are satisfied for the Black-Scholes model in Section 3.1 and the heat
equations in Section 3.3. In the former case we can write

Υ(b, γ, x, t) = max{γϕ − xe−0.5t γ2
σ+
√
t γσb(1), 0}

and in the latter

Υ(b, γ, x, t) = ‖x+
√
t γσb(1)‖2 (paraboloid), Υ(b, γ, x, t) = e−‖x+

√
t γσb(1)‖2 (Gaussian)

where (b, γ, x, t) ∈ C([0, T ],Rd) ×D × [v, w]d × [0, T ]. Moreover, the existence of a suitable Υ
is in general given for non-parametric Kolmogorov PDEs, see [17, Theorem 8.5] and [5]. First we
establish that under our assumptions the minimizer of the statistical learning problem is indeed the
parametric Kolmogorov PDE solution map.
Theorem A.1 (Learning Problem). Let Assumptions A.1 and A.2 be satisfied. Then it holds that

ū : D × [v, w]d × [0, T ]→ R, (γ, x, t) 7→ ū(γ, x, t) := uγ(x, t)

is the (up to sets of Lebesgue measure zero) unique minimizer of the statistical learning problem

minf E
[(
f(Λ)− Y

)2]
(14)

where the minimum is taken over all measurable functions f : D × [v, w]d × [0, T ]→ R.

Proof. Note that one can extend standard results on the moments of SDE solution processes (see [34,
Theorems 4.5.3 and 4.5.4] and [16, Chapter 5, Theorem 2.3]) to prove that SΛ and thus also the
target variable Y = ϕΓ(SΛ) have bounded moments. It is well-known that under this condition the
(up to sets of measure zero w.r.t. the distribution of Λ) unique solution of the statistical learning
problem (14) is given by the regression function

f∗(γ, x, t) := E[Y | Λ = (γ, x, t)], (γ, x, t) ∈ D × [v, w]d × [0, T ], (15)

that is
f∗ = argminf E

[(
f(Λ)− Y

)2]
,

9If not further specified, we consider measurability w.r.t. the corresponding Borel sigma algebras.

15



see, for instance, [11]. Moreover, the Feynman-Kac formula establishes for every (γ, x, t) ∈
D × [v, w]d × [0, T ] that

E[ϕγ(Sγ,x,t)] = uγ(x, t) = ū(γ, x, t), (16)
see [23, Corollary 4.17]. Finally, Assumptions A.2 and the independence of B and Λ ensure that for
every Borel measurable set A ⊆ D × [v, w]d × [0, T ] it holds that

E
[
1{Λ∈A}ϕΓ(SΛ)

]
=

∫
A

∫
C([0,T ],Rd)

Υ(b, γ, x, t) dPB(b) dP(Γ,X,T )(γ, x, t)

=

∫
A

E
[
ϕγ(Sγ,x,t)

]
dP(Γ,X,T )(γ, x, t)

where we denote the distributions of Λ and B by P(Γ,X,T ) and PB (Wiener measure), respectively.
Together with the fact that Λ is uniformly distributed, this proves that for almost every (γ, x, t) ∈
D × [v, w]d × [0, T ] it holds that

E[Y | Λ = (γ, x, t)] = E[ϕΓ(SΛ) | Λ = (γ, x, t)] = E[ϕγ(Sγ,x,t)],

see [45, Chapter 4] and [1, Theorem 13.46]. Combined with (15) and (16), this proves the claim.

Next, we establish the stability of the statement in Theorem A.1 w.r.t. approximate data generation
via the Euler-Maruyama scheme.
Theorem A.2 (Approximated Learning Problem). Let Assumptions A.1 and A.2 be satisfied and for
every M ∈ N let

ūM : D × [v, w]d × [0, T ]→ R
be the (up to sets of Lebesgue measure zero) unique solution of the approximated learning problem

min
f
E

[(
f(Λ)− YM

)2]
where the minimum is taken over all measurable functions f : D × [v, w]d × [0, T ]→ R. Then there
exists a constant C > 0 such that for every M ∈ N it holds that

‖ūM − ū‖L∞(D×[v,w]d×[0,T ]) ≤ C√
M
.

Proof. Extending results on the Euler-Maruyama scheme (see, e.g., [34, Theorem 10.2.2]) one can
prove that also in the parametric case for every p ≥ 2 there exists a constant C > 0 such that for
every M ∈ N, (γ, x, t) ∈ D × [v, w]d × [0, T ] it holds that

E
[
‖SM,M

γ,x,t ‖p
]
≤ C and

(
E
[
‖SM,M

γ,x,t − Sγ,x,t‖p
])1/p ≤ C√

M
. (17)

Similar to the proof of Theorem A.1 one can further establish that for every M ∈ N and almost every
(γ, x, t) ∈ D × [v, w]d × [0, T ] it holds that

ūM (γ, x, t) = E[YM | Λ = (γ, x, t)] = E[ϕΓ(SM,M
Λ ) | Λ = (γ, x, t)] = E[ϕγ(SM,M

γ,x,t )]

where the existence of functions ΥM with analogous properties as in Assumptions A.2 is guaranteed
by the Euler-Maruyama scheme. The local Lipschitz property of ϕγ now ensures that for every
M ∈ N and almost every (γ, x, t) ∈ D × [v, w]d × [0, T ] it holds that

|ūM (γ, x, t)− ū(γ, x, t)| =
∣∣E[ϕγ(SM,M

γ,x,t )
]
− E[ϕγ(Sγ,x,t)]

∣∣
≤ cE

[
‖SM,M

γ,x,t − Sγ,x,t‖
(
1 + ‖SM,M

γ,x,t ‖c + ‖Sγ,x,t‖c
)] (18)

which together with the Cauchy-Schwarz inequality and (17) proves the theorem.

Note that this result can also be used to show that our generalization result in Theorem 4 is not
compromised by using data simulated by the Euler-Maruyama scheme.

Now we outline how to prove the simultaneous approximation of the parametric solution map and its
partial derivatives by a neural networks without curse of dimensionality, i.e. with the network size
scaling only polynomially in the underlying spatial dimension. In mathematical terms, we prove
approximation results in the Sobolev norm ‖·‖W 1,∞ , see [15]. As a motivating example, we take the
heat equation from Section 3.3 and from now on we only consider feed-forward neural networks with
ReLU activation function (ReLU networks), see e.g. [43, Section 2] for a precise definition.
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Theorem A.3 (Sobolev Approximation). Let a ∈ R, b ∈ (a,∞), and for every d ∈ N let

ūd(γσ, x, t) = ‖x‖2 + tTrace(γσγ
∗
σ), (γσ, x, t) ∈ [a, b]d×d × [v, w]d × [0, T ],

be the parametric solution map for the d-dimensional heat equation with paraboloid initial condition.
Then there exists a constant C > 0 with the following property: For every ε ∈ (0, 1/2), d ∈ N there
exists a ReLU network Φε,d with at most bCd4 log(d/ε)c parameters satisfying that

‖Φε,d − ūd‖W 1,∞([a,b]d×d×[v,w]d×[0,T ]) ≤ ε.

Proof. Our result is based on ReLU network approximation results in [22, Propositions C.1 and C.2]
and [21, Propositions III.2 and III.4], which are extensions of the work by Yarotsky [58]. Specifically,
let ∆ > 0 and let sq : [−∆,∆]→ R be the squaring function given by sq(x) := x2. Then there exists
a ReLU network Φsqε with O(log(1/ε)) layers, O(1) neurons per layer, and parameters bounded by
O(1) satisfying that

‖Φsqε − sq ‖W 1,∞([−∆,∆]) ≤ ε.
By the polarization identity xy = 1

2 ((x + y)2 − x2 − y2) an analogous result holds for the multi-
plication function mult : [−∆,∆]2 → R given by mult(x, y) := xy. We can therefore imitate the
representation

ūd(γσ, x, t) =

d∑
i=1

sq(xi) +

d∑
i,j=1

mult
(
t, sq((γσ)ij)

)
using ReLU network concatenation and parallelization [14, Section 5]. Finally, we can estimate the
error using a chain rule for ReLU networks, see [7] and [22, Section B.1].

Next, we show that our setting even allows for combined approximation and generalization results
without curse of dimensionality. To prove this, we focus on the d-dimensional heat equation with
varying diffusivity and Gaussian initial condition. We first show that ReLU networks are capable of
efficiently approximating the parametric solution map.
Theorem A.4 (Approximation). Let a ∈ R, b ∈ (a,∞) and for every d ∈ N let

ūd(γσ, x, t) =
1

(1 + 2tγ2
σ)d/2

e
−
‖x‖2

1+2tγ2
σ , (γσ, x, t) ∈ [a, b]× [v, w]d × [0, T ], (19)

be the parametric solution map of the d-dimensional heat equation with Gaussian initial condition.
Then there exist a constant C > 0 and a polynomial q : R → R with the following property: For
every ε ∈ (0, 1/2), d ∈ N there exists a ReLU network Φε,d with at most bq(log(d/ε))c layers, at
most bCdc neurons per layer, and parameters bounded by C satisfying that

‖Φε,d − ūd‖L∞([a,b]×[v,w]d×[0,T ]) ≤ ε.

Proof. The proof is based on combining ReLU approximation results for Chebyshev polynomials
(see [21, Lemma A.6]) and the squaring and multiplication functions sq, mult (see the proof of
Theorem A.3). Specifically, for given ∆ > 0 we can approximate the functions

[0,∆] 3 x 7→ h(x) :=
√

1
1+2x and [0,∆] 3 x 7→ g(x) := e−x

2

up to precision ε by ReLU networks with O(polylog(1/ε)) layers, O(1) neurons per layer, and
parameters bounded by O(1). Moreover, observe that

ūd(γσ, x, t) =

d∏
i=1

mult
(
g
(

mult(xi, f(t, γσ))
)
, f(t, γσ)

)
where

f(t, γσ) := h(mult(t, sq(γσ))) =
√

1
1+2tγ2

σ
.

We can imitate this representation using ReLU network concatenation and parallelization and hi-
erarchical, pairwise multiplications for the tensor product, see [14, Section 5 and Proposition 6.4].
Finally, we can estimate the error via the mean value theorem.
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Now we show that the number of samples s in (7), needed to learn the parametric solution map
ū, does not suffer from the curse of dimensionality, either. To satisfy boundedness assumptions
commonly used in statistical learning theory, we restrict ourself to clipped ReLU networks, the output
of which is assumed to be bounded by 1. This can be achieved by composing each ReLU network
with a simple clipping function, which itself can be represented as a small ReLU network [8, Section
A.4]. Note that this incorporates our prior knowledge that the parametric solution map of the heat
equation with Gaussian initial condition in (19) satisfies ‖ūd‖L∞([a,b]×[v,w]d×[0,T ]) ≤ 1.

Theorem A.5 (Generalization). Let a ∈ R, b ∈ (a,∞) and for every d ∈ N let

Vd := vol([a, b]× [v, w]d × [0, T ]) = T (b− a)(w − v)d,

let ūd : [a, b]× [v, w]d × [0, T ] 7→ [0, 1] be the parametric solution map of the d-dimensional heat
equation with Gaussian initial condition as defined in (19), let

Λd = (Γd, Xd, Td) ∼ U([a, b]× [v, w]d × [0, T ]) and Nd ∼ N (0, Id)

be independent random variables, define Yd = e−‖Xd+
√
Td ΓdNd‖2 , and let ((Λd,i, Yd,i))i∈N be i.i.d.

random variables with (Λd,1, Yd,1) ∼ (Λd, Yd). Then there exist a constant C > 0 and a polynomial
q : R→ R with the following property: For every ε, ρ ∈ (0, 1/2), d, s ∈ N with

s ≥ (d/ε)2q(log(d/ε)) log(1/ρ)

there exists a neural network architecture Aε,d with at most bq(log(d/ε))c layers and at most bCdc
neurons per layer such that every measurable empirical risk minimizer

Φ̂ε,d,s : Ω→ Hε,d, Φ̂ε,d,s(ω) ∈ arg min
Φ∈Hε,d

1
s

s∑
i=1

(Φ(Λd,i(ω))− Yd,i(ω))2, ω ∈ Ω,

in a hypothesis spaceHε,d of clipped ReLU networks with architectureAε,d and parameters bounded
by C satisfies that

P

[
1
Vd
‖Φ̂ε,d,s − ūd‖2L2([a,b]×[v,w]d×[0,T ]) ≤ ε

]
≥ 1− ρ.

Proof. Let Aε,d be the architecture of the ReLU network Φε/2,d in Theorem A.4. To simplify
notation, we define ‖·‖L2 := ‖·‖L2([a,b]×[v,w]d×[0,T ]) and for every Φ ∈ Hε,d we define its riskR(Φ)

and its empirical risk R̂(Φ) by

R(Φ) := E
[(

Φ(Λd)− Yd
)2]

and R̂(Φ) := 1
s

s∑
i=1

(Φ(Λd,i)− Yd,i)2.

The fact that the regression function coincides with the parametric solution map (see Theorem A.1)
and the bias-variance decomposition (see [8, Lemma 2.2] and [11]) imply that

1
Vd
‖Φ̂ε,d,s − ūd‖2L2 = R(Φ̂ε,d,s)−R(Φ∗)︸ ︷︷ ︸

generalization error

+ 1
Vd
‖Φ∗ − ūd‖2L2︸ ︷︷ ︸

approximation error

where Φ∗ ∈ arg minΦ∈Hε,d ‖Φ− ūd‖L2 is a best approximation of ūd inHε,d. Our choice of Aε,d
and Theorem A.4 ensure that

1
Vd
‖Φ∗ − ūd‖2L2 ≤ ‖Φ∗ − ūd‖2L∞([a,b]×[v,w]d×[0,T ]) ≤ ε/2.

For the generalization error we make use of results on the covering numbers of neural network
hypothesis spaces, see e.g. [8, Proposition 2.8]. They ensure the existence of clipped ReLU networks
(Φi)

n
i=1 ⊂ Hε,d with

log(n) ∈ O(d2 polylog(d/ε)) (20)
such that balls of radius ε/64 (w.r.t. the uniform norm) around those functions coverHε,d. Further,
note that the boundedness of the target variable, i.e. supω∈Ω |Yd(ω)| ≤ 1, and the boundedness of
the clipped ReLU networks in our hypothesis space, i.e. supΦ∈Hε,d ‖Φ‖L∞([a,b]×[v,w]d×[0,T ]) ≤ 1,
ensure that the (empirical) risk is (uniformly) Lipschitz continuous with

Lip(R) ≤ 4 and Lip(R̂) ≤ 4,
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see [8, Proof of Theorem 2.4]. Thus we can bound the generalization error by

R(Φ̂ε,d,s)−R(Φ∗) ≤ R(Φ̂ε,d,s)− R̂(Φ̂ε,d,s) + R̂(Φ∗)−R(Φ∗)

≤ 2
n

max
i=1

∣∣R(Φi)− R̂(Φi)
∣∣+ 2ε(Lip(R)+Lip(R̂))

64

≤ 2
n

max
i=1

∣∣R(Φi)− R̂(Φi)
∣∣+ ε/4.

Employing Hoeffding’s inequality [28] and a union bound, it holds that

P
[ n

max
i=1

∣∣R(Φi)− R̂(Φi)
∣∣ ≤ ε/8] ≥ 1− ρ

where we need s ∼ log(n/ρ)/ε2 many samples. Together with (20) this implies the claim.

A.2 Implementation Details

First, we want to present a rigorous definition of our Multilevel network architecture.
Definition A.2 (Multilevel Architecture). Let L, q, p ∈ N, χ ∈ {0, 1}, and % : R→ R. We define the
Multilevel network Φ: Rp → R with input dimension dimin(Φ) = p, L levels, amplifying factor q,
(component-wise applied) activation function %, and residual constant χ for every x ∈ Rp by

Φ(x) :=

L−1∑
l=0

Φ2l

l (x) ∈ R (21)

where the intermediate network outputs Φil(x) are given by the following scheme:

Φ1
l (x) = A1

l (%(Norm1
l (A0

l (x))), l ∈ {0, . . . , L− 1},
Φil(x) = Ail(%Normi

l(Φ
i−1
l (x) + χΦ2i−2

l+1 (x))), l ∈ {1, . . . , L− 2}, i ∈ {2, . . . , 2l},
ΦiL−1(x) = AiL−1(%(Normi

L−1(Φi−1
L−1(x))), i ∈ {2, . . . , 2L−1}.

In the above, the constant χ controls whether we use intermediate residual connections, and for every
l ∈ {0, . . . , L− 1} the functions

Normi
l : Rqp → Rqp, i ∈ {1, . . . , 2l},

are denoting normalization layers, e.g. batch normalization [30] or layer normalization [3], and

A0
l : Rp → Rqp, Ail : Rqp → Rqp, i ∈ {1, . . . , 2l − 1}, A2l

l : Rqp → R

are learnable linear mappings (or affine-linear in case of A2l

l ).

In the implementation of our examples we used χ = 1 to propagate intermediate residuals from the
corresponding higher level using additive skip-connections, followed by a batch normalization layer
as proposed by [30]. This allows the length of the shortest gradient path during backpropagation to
scale like the number of levels L instead of the number of layers 2L; a feature commonly known to
prevent diminishing or exploding gradients [59]. Thus, we can maintain computational tractability
while at the same time having rather deep architectures. Note that a certain depth is needed for
our approximation and generalization results in Section A.1, as well as to optimally approximate
certain families of functions [40, 43, 58]. We pick the ReLU activation function as non-linearity
to remain consistent with our theoretical guarantees in Section A.1 and with the growing body of
literature on the approximation and generalization capabilities of ReLU networks. To optimize the
networks we use the Adam optimizer (with decoupled weight decay regularization as proposed
by [39]) and exponentially decaying learning rate. The precise setup is summarized in Table 5 and
the hyperparameters over which we optimized using Tune [37, 38] are given in Table 6.
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Table 5: Training setup

Black-Scholes Basket Put Heat Paraboloid Heat Gaussian
Input sets
Dσ [0.1, 0.6]× {0} ([0.1, 0.6]3×3)4 {~0} × [0, 1]10×10 {~0} × [0, 0.1]I150

Dµ {~0} [0.1, 0.6]3×4 {~0} {~0}
Dϕ [10, 12] [10, 12] {} {}
[v, w] [9, 10] [9, 10] [0.5, 1.5] [−0.1, 0.1]
[0, T ] [0, 1] [0, 1] [0, 1] [0, 1]

Network
dimin(Φ) 4 53 111 152
architecture Multilevel Multilevel Multilevel Multilevel
(L, q, χ) (4,5,1) (4,5,1) (4,4,1) (4,4,1)
activation % ReLU ReLU ReLU ReLU
Norm layer batch norm. batch norm. batch norm. batch norm.
#parameters 5.4K 0.8M 2.4M 4.5M

Training
solution SDE analytic Euler-M. analytic analytic
optimizer AdamW AdamW AdamW AdamW
param. init. U([−ξ, ξ]) U([−ξ, ξ]) U([−ξ, ξ]) U([−ξ, ξ])
weight decay 0.01 0.01 0.01 0.01
batch-size 216 217 217 217

(init. lr., min. lr.) (10−2, 10−8) (10−3, 10−8) (10−3, 10−8) (10−3, 10−8)
(decay, patience) (0.25, 4000) (0.4, 4000) (0.4, 4000) (0.4, 4000)

Validation
solution PDE analytic MC-approx. analytic analytic
batch-size 216 217 217 217

#eval. batches 150 1 150 150

Execution
seeds 0,1,2,3 0,1,2,3 0,1,2,3 0,1,2,3
#GPUs per run 2 (Tesla V100) 4 (Tesla V100) 2 (Tesla V100) 2 (Tesla V100)

1. Input sets: input sets for the parameter γ = (γσ, γµ, γϕ) ∈ Dσ × Dµ × Dϕ = D, the
spatial variable x ∈ [v, w], and the time variable t ∈ [0, T ], as defined in Section 2.1.

2. Network: input dimension dimin(Φ), activation function %, number of levels L, amplifying
factor q, usage of intermediate residual connections χ, normalization layers Normi

l , and
approximate number of parameters of the Multilevel architecture, see Definition A.2.

3. Training: computation of the SDE solution, optimizer, initialization of the linear mappings
Ail where ξ := d

−1/2
in with din denoting the input dimension, weight decay, batch-size, initial

learning rate, and factor for learning rate decay each patience steps as long as the learning
rate is larger than the minimal learning rate. Note that the training data size in (7) is given
by s = batch-size · #steps where the number of steps is reported in Tables 1, 2, 3, and 4.

4. Validation: pointwise computation of the PDE solution, batch-size, and number of batches
per evaluation.10 Note that n = batch-size · #eval. batches for each reported L1-error,
see (9).

5. Execution: PyTorch module and random module seeds for the 4 independent runs and
number and type of GPUs per run.

10The evaluation of the PDE via Monte Carlo simulation as in (10) is computationally very expensive. That is
the reason why we only took one evaluation batch per iteration for the Basket put option. However, note that
training the network with Euler-Maruyama simulated data does not increase the training time significantly (see
Table 2) which underlines the general applicability of our algorithm.
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Table 6: Ranges for hyperparameter optimization

hyperparameter range

(L, q) {3, 4} × {4, 5, 6}
optimizer {AdamW, SGD (with momentum & weight decay)}
batch-size {16384, 32768, 65536, 131072}
learning rate (10−1, 10−5)
lr. decay factor (0.2, 0.6)

Table 7: Ablation study for the Black-Scholes model

architecture, normalization layer avg. time (s) avg. best L1-error #parameters

Feed-Forward, layer norm. 809 ± 9 0.1476 ± 0.0772 6741
Feed-Forward, none 496 ± 26 0.0526 ± 0.0002 6101
Feed-Forward, batch norm. 3755 ± 57 0.0017 ± 0.0003 6741
Multilevel χ = 0, layer norm. 867 ± 10 0.0349 ± 0.0000 5404
Multilevel χ = 0, none 570 ± 6 0.0069 ± 0.0001 4804
Multilevel χ = 0, batch norm. 3414 ± 18 0.0012 ± 0.0000 5404
Multilevel χ = 1, layer norm. 874 ± 13 0.0348 ± 0.0001 5404
Multilevel χ = 1, none 581 ± 10 0.0069 ± 0.0000 4804
Multilevel χ = 1, batch norm. 3453 ± 34 0.0011 ± 0.0001 5404

Table 8: Ablation study for the heat equation with paraboloid initial condition

architecture avg. time (s) avg. best L1-error #parameters

Feed-Forward 14764 ± 65 0.0090 ± 0.0003 3020977
Multilevel χ = 0 13892 ± 83 0.0058 ± 0.0001 2380732
Multilevel χ = 1 14049 ± 138 0.0055 ± 0.0001 2380732

A.3 Additional Numerical Results

In Tables 7 and 8 we present an ablation study which empirically proves the superior performance
of our Multilevel architecture in combination with batch normalization compared to feed-forward
architectures or the usage of layer normalization [3]. For the feed-forward architecture we used the
network Φ2L

L defined in (21), i.e. only the highest level of the corresponding Multilevel network
with L + 1 levels and χ = 0. Despite having slightly less parameters, our Multilevel architecture
consistently outperforms the feed-forward architecture. Moreover, the use of residual connections,
i.e. χ = 1, has a positive impact. Note that all not-mentioned settings are kept as in Table 5.

The performance of our algorithm in the case of the Black-Scholes option pricing model from
Section 3.1 is further illustrated in Figures 5, 6, 7, and 8. Finally, Figure 9 depicts the computational
cost of our algorithm as a function of the problem input dimension for the heat equation with
paraboloid initial condition.
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Figure 5: Shows ū(γ, x, ·) vs. the average
prediction (and its standard deviation) at x =
9.5, γσ = 0.35, and γϕ = 11.
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Figure 6: Shows the Vega ∂ū
∂γσ

(γ, x, ·) vs. the
average prediction (and its standard deviation)
at x = 9.5, γσ = 0.35, and γϕ = 11.
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Figure 7: Shows the average prediction error
|Φ(γ,x,·)−ū(γ,x,·)|

1+|ū(γ,x,·)| and its standard deviation

at x = 9.5, γσ = 0.35, and γϕ = 11.
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Figure 8: Shows the average error of the Vega
| ∂Φ
∂γσ

(γ,x,·)− ∂ū
∂γσ

(γ,x,·)|
1+| ∂ū∂γσ (γ,x,·)| and its standard devia-

tion at x = 9.5, γσ = 0.35, and γϕ = 11.
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Figure 9: Shows the cost in terms of number of network parameters times average number of steps
to achieve an L1-error of 10−2 w.r.t. to the problem dimension d2 + d + 1 for the heat equations
with paraboloid initial condition and d = 1, . . . , 15. The absence of the curse of dimensionality is
underlined by the linear behaviour in the log-log inset. The error was evaluated every 250 gradient
descent steps and except of the varying dimension all settings are kept as in Table 5.
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Robust SDE-Based Variational Formulations
for Solving Linear PDEs via Deep Learning

Lorenz Richter * 1 2 3 Julius Berner * 4

Abstract

The combination of Monte Carlo methods and
deep learning has recently led to efficient algo-
rithms for solving partial differential equations
(PDEs) in high dimensions. Related learning prob-
lems are often stated as variational formulations
based on associated stochastic differential equa-
tions (SDEs), which allow the minimization of
corresponding losses using gradient-based opti-
mization methods. In respective numerical im-
plementations it is therefore crucial to rely on
adequate gradient estimators that exhibit low vari-
ance in order to reach convergence accurately and
swiftly. In this article, we rigorously investigate
corresponding numerical aspects that appear in
the context of linear Kolmogorov PDEs. In par-
ticular, we systematically compare existing deep
learning approaches and provide theoretical ex-
planations for their performances. Subsequently,
we suggest novel methods that can be shown to
be more robust both theoretically and numerically,
leading to substantial performance improvements.

1. Introduction
In this paper we suggest novel methods for solving high-
dimensional linear Kolmogorov PDEs. In particular, those
methods allow for more efficient approximations by reduc-
ing the variance of loss estimators, as illustrated by numeri-
cal experiments like the one displayed in Figure 1.

High-dimensional PDEs are ubiquitous in applications ap-
pearing in economics, science, and engineering, however,
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Figure 1. Standard deviation and performance (in terms of the
mean squared error (MSE) on evaluation data) of different losses
as a function of the batch size after training a neural network for
30k steps, where due to memory constraints different losses allow
for different maximal batch size values.

their numerical treatment poses formidable challenges since
traditional grid-based methods suffer from the curse of di-
mensionality. Recently, the combination of Monte Carlo
methods and deep learning has led to feasible algorithms
(E et al., 2017; Sirignano & Spiliopoulos, 2018; Han et al.,
2018; Raissi et al., 2019; Pfau et al., 2020; Berner et al.,
2021), which, at least in some settings, are able to beat
this curse (Jentzen et al., 2018; Reisinger & Zhang, 2019;
Berner et al., 2020b). The general idea is to rely on stochas-
tic representations of the PDE which may be interpreted as
variational formulations that can subsequently be minimized
by iterative gradient decent methods (Nüsken & Richter,
2021a). In respective algorithms it is therefore crucial to
rely on adequate gradient estimators that exhibit low vari-
ance and eventually lead to robust numerical optimization
routines, where robustness refers to the ability of coping
with stochasticity in the optimization process.

In this article we focus on linear Kolmogorov PDEs for
which variational formulations may be based on the cel-
ebrated Feynman-Kac formula (Beck et al., 2021). This
method is handy from an implementational point of view,
however, we can demonstrate potential non-robustness is-
sues that might deteriorate the numerical performance. To
overcome these issues, we suggest alternative approaches
resting on backward stochastic differential equations which
lead to variance-reduced estimators and robust algorithms.
Our contributions can be summarized as follows:

• We provide a systematic numerical comparison of loss

mailto:julius.berner@univie.ac.at
mailto:lorenz.richter@fu-berlin.de
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functions for solving linear Kolmogorov PDEs via deep
learning.

• We can show both theoretically and numerically why
certain methods are non-robust and might therefore
incur numerical instabilities.

• We provide new loss functions and optimization meth-
ods which are provably robust and ultimately yield
significant performance improvements in relevant high-
dimensional numerical experiments.

1.1. Related Work

Solving linear Kolmogorov PDEs via the Feynman-Kac for-
mula by means of deep learning has been suggested in Beck
et al. (2021) and further analyzed in Berner et al. (2020a).
For an analysis of certain kinds of elliptic linear PDEs we re-
fer to Grohs & Herrmann (2020). Variational formulations
of nonlinear PDEs based on backward stochastic differ-
ential equations (BSDEs) have been pioneered in E et al.
(2017) and extensions that aim for approximations on entire
domains have, for instance, been suggested in Nüsken &
Richter (2021a). We refer to Richter (2021) for a comprehen-
sive introduction and further perspectives, and to Beck et al.
(2019) for the treatement of fully nonlinear equations. An al-
ternative method for the approximation of high-dimensional
PDEs is termed physics-informed neural networks (PINNs)
(Raissi et al., 2019; Sirignano & Spiliopoulos, 2018), which
relies on iterative residual minimizations. Note that in con-
trast to most SDE-based methods it relies on the explicit
computation of Hessians and involves additional loss terms
for the boundary values, which need to be tuned carefully.

In terms of variance reduction of Monte Carlo estimators we
refer to Vidales et al. (2018) for a control variate attempt via
deep learning. Robustness and variance analyses of certain
loss functions related to PDE problems have been conducted
in Nüsken & Richter (2021b). The related observation that
including a certain Itô integral term into the objective func-
tion can lead to variance-reduced estimators has been made
in Zhou et al. (2021). Both works, however, consider differ-
ent settings and focus only on Hamilton–Jacobi–Bellman
(HJB) equations. Furthermore, they do not provide a de-
tailed analysis of the interplay between robustness proper-
ties, performance, and computational feasibility, which is
crucial for practical applications.

1.2. Notation

We assume that our random variables are defined on a suit-
able underlying filtered probability space (Ω,F , (Ft)t,P)
satisfying the usual conditions (Klenke, 2013). We de-
note the expectation of a random variable A : Ω → R
by E[A] :=

∫
A dP. Given another random variable

B : Ω → Rk with k ∈ N, we also consider the condi-

tional expectationE[A|B] of A given B and the conditional
expectation b 7→ E[A|B = b] of A given B = b, see,
e.g., Ash & Doléans-Dade (2000) for the definitions. We fur-
ther define the variance of A byV[A] := E

[
(A−E[A])2

]
and the conditional variance of A given B by V[A|B] :=
E
[
(A−E[A|B])2|B

]
. Throughout the article,W is a stan-

dard d-dimensional Brownian motion which is adapted to
the underlying filtration and we consider stochastic integrals
w.r.t. W as, e.g., defined in Gall (2016). Further remarks on
the notation can be found in Appendix A.

2. SDE-Based Variational Formulations of
Linear PDEs

In this paper we consider linear Kolmogorov partial differ-
ential equations1 of the type

(∂t + L)V (x, t) = 0, (x, t) ∈ Rd × [0, T ), (1a)

V (x, T ) = g(x), x ∈ Rd, (1b)

where g ∈ C(Rd,R) is a given terminal condition and

L :=
1

2

d∑
i,j=1

(σσ>)ij(x, t)∂xi∂xj +

d∑
i=1

bi(x, t)∂xi (2)

is a differential operator based on given coefficient functions
σ ∈ C(Rd×[0, T ],Rd×d) and b ∈ C(Rd×[0, T ],Rd). For
simplicity, let us assume the existence of a unique strong so-
lution V ∈ C2,1(Rd×[0, T ],R) to the PDE in (1) and refer
to Assumption 1 in Appendix B for further technical details.
At the same time, let us note that most of our results also
hold for the more general concept of viscosity solutions that
are continuous but not necessarily differentiable and require
weaker conditions on the functions b, σ, and g, see Hairer
et al. (2015). Furthermore, we can also consider more gen-
eral linear PDEs as well as elliptic and parabolic problems
on bounded domains, as elaborated on in Appendix C.

This covers a broad spectrum of PDEs, for which accurate
and reliable solvers are of great importance to practitioners.
For instance, such PDEs frequently appear in physics for
the modelling of heat flow and diffusion processes (Widder,
1976; Pascucci, 2005). Moreover, the PDE in (1) includes
the Black-Scholes equation and extensions thereof, used
for pricing financial derivative instruments (Black & Sc-
holes, 1973; Pironneau & Achdou, 2009; Ekström & Tysk,
2010). Finally, we want to emphasize appearances of such
PDEs in the field of machine learning, e.g., in the context
of reinforcement learning (Theodorou et al., 2010; Kiu-
marsi et al., 2017) and diffusion-based generative model-
ing (Huang et al., 2021).

1PDEs of this type are often also referred to as Kolmogorov
(backward) equations and their adjoints are known as Fokker-
Planck equations or Kolmogorov forward equations.
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In order to design machine learning algorithms aiming to
approximate solutions to (1), we consider loss functions

L : U → R≥0, (3)

which shall be minimal if and only if u ∈ U fulfills (1),
thereby offering a variational formulation that allows for
iterative minimization strategies. Here, U is an appropri-
ate function class holding sufficient approximation capacity
and containing, for instance, a class of certain neural net-
works. Moreover, we implicitly assume that U is chosen
such that V ∈ U and, for our theoretical results, we require
the functions in U to be sufficiently smooth.

A first obvious choice for the loss could be the squared
difference between the approximating function u and the
solution V , i.e.

LEval(u) := E
[
(V (ξ, τ)− u(ξ, τ))

2
]
, (4)

where ξ and τ are suitable2 random variables with values in
Rd and [0, T ], respectively. At first glance, this loss seems
intractable since the solution V is just the quantity we are
after and is therefore not known. However, let us recall the
Feynman-Kac formula, which connects the deterministic
function V to a stochastic process by stating that almost
surely it holds that

V (ξ, τ) = E [g(XT )|(ξ, τ)] , (5)

where X is the solution to the SDE

dXs = b(Xs, s) ds+ σ(Xs, s) dWs, Xτ = ξ, (6)

see Appendix C for details. This allows us to rewrite (4) as

LEval(u) = E
[(
E [g(XT )|(ξ, τ)]− u(ξ, τ)

)2]
(7a)

= E
[
E [∆u|(ξ, τ)]

2
]

(7b)

= E
[
E [∆u − Su|(ξ, τ)]

2
]
, (7c)

which now relies on the (random) quantities3

∆u := g(XT )− u(ξ, τ), (8a)

Su :=

∫ T

τ

(
σ>∇xu

)
(Xs, s) · dWs. (8b)

2In practice, one often chooses random variables that are uni-
formly distributed on a given hypercube. For our theoretical results,
we assume that ξ and τ are F0-measurable and exhibit sufficiently
many bounded moments. This ensures that ξ and τ are sufficiently
concentrated and independent of the Brownian motion W .

3For the sake of readability, we omit several implicit depen-
dencies. Specifically, the stochastic process X and the quantities
∆u and Su depend on the random variable (ξ, τ), defining the
initial time and value of the SDE, i.e., Xτ = ξ. Also note that the
stochastic integral Su and the SDE in (6) are driven by the same
Brownian motion W .

The last step (7c) follows from the fact that, under mild regu-
larity assumptions, the stochastic integral Su is a martingale
which has zero expectation given (ξ, τ). Adding quantities
with a known expectation is a common trick for variance
reduction of corresponding estimators known as control
variates, see, e.g., Section 4.4.2 in Robert & Casella (2004).
The benefit of particularly choosing Su becomes clear with
the following Lemma, which states that for u = V the cor-
responding control variate actually yields a zero-variance
estimator.

Lemma 2.1 (Optimal control variate). Let V be a solution
to the PDE in (1). For ∆V and SV as defined in (8a) and
(8b) it almost surely holds that

∆V = SV , (9)

which implies thatV [∆V − SV |(ξ, τ)] = 0.

Proof. The proof is an application of Itô’s lemma. Together
with the observation that X is an Itô process given by the
SDE in (6), it implies that almost surely it holds that

V (XT , T )− V (ξ, τ) =

∫ T

τ

(∂t + L)V (Xs, s) ds+ SV ,

assuming that V ∈ C2,1(Rd×[0, T ],R), see, e.g., Theorem
3.3.6 in Karatzas & Shreve (1998). Using the fact that V
solves the PDE in (1), this implies the statement.

While, in principle, the new representation in (7) makes the
loss LEval computationally tractable, an immediate disad-
vantage are the two expectations, which, for a numerical
implementation, might be costly as they would both need to
rely on Monte Carlo approximations.

It turns out, however, that the conditional expectations
in (7b) and (7c) are in fact not needed and we can further
define the two losses

LFK(u) := E
[
∆2
u

]
(10)

and
LBSDE(u) := E

[
(∆u − Su)

2
]
. (11)

Note that now the expectations in (10) and (11) are to be
understood with respect to the random initial time τ , random
initial value ξ, and the randomness of the Brownian motion
W , which defines the evolution of the stochastic process X
on the (random) interval [τ, T ].

In the remainder of this article we will investigate the above
losses with respect to certain robustness properties that will
turn out to imply different statistical properties and con-
sequently lead to different optimization performances of
corresponding algorithms. Let us start with the following
proposition which relates the three losses to one another and



Robust SDE-Based Variational Formulations for Solving Linear PDEs via Deep Learning

therefore guarantees that LFK and LBSDE indeed constitute
meaningful objectives for approximating the solution V to
the PDE in (1).

Proposition 2.2 (Minima of LFK and LBSDE). For every
measurable u : Rd×[0, T ]→ R it holds that

LEval(u) = LFK(u)−V [SV ] (12a)
= LBSDE(u)−V [SV−u] . (12b)

This implies that the solution V to the PDE in (1) is the
unique4 minimizer of LFK and LBSDE. The minima satisfy

(i) minu LFK(u) = LFK(V ) = E[∆2
V ] = V[SV ],

(ii) minu LBSDE(u) = LBSDE(V ) = 0.

Proof. See Appendix B.

Remark 2.3 (Origin of the losses). As already hinted at,
the names of the losses originate from the Feynman-Kac
(FK) formula and backward stochastic differential equations
(BSDE), respectively. The former, as stated in (5) and de-
tailed in Appendix C, implies that the solution of the PDE
in (1) can be expressed as a conditional expectation, i.e.,

V (x, t) = E[g(XT )|Xt = x] (13a)
= E[g(XT )|(ξ, τ) = (x, t)]. (13b)

This can then be combined with the fact that the condi-
tional expectation is the minimizer of a corresponding L2-
optimization problem and one readily recovers LFK as spec-
ified in (10), see Beck et al. (2021). The latter loss, LBSDE,
originates from the BSDE

dYs = Zs · dWs, YT = g(XT ), (14)

which can essentially be derived from Itô’s lemma and
which involves the backward processes Ys = V (Xs, s) and
Zs = (σ>∇xV )(Xs, s), see Appendix D for further details.
The name of the loss LEval refers to the fact that it is mostly
used in order to evaluate the solution candidate u, using
either a known solution V or the reformulation in (7). This
is also how we evaluate the mean squared error (MSE) for
our methods, see Appendix E.

2.1. Estimator Versions of Losses and Robustness
Issues

The expectations in the losses (4), (7), (10), or (11) can usu-
ally not be computed analytically and we need to resort to
Monte Carlo approximations L(K) based on a given number
K ∈ N of independent samples

(ξ(k), τ (k),W (k)) ∼ (ξ, τ,W ), k = 1, . . . ,K.

4Up to null sets w.r.t. to the image measure of (ξ, τ).

In practice, one further has to employ a time discretization
of the SDE, yielding the estimators

L̂(K)
FK (u) =

1

K

K∑
k=1

(
∆̂(k)
u

)2

, (15a)

L̂(K)
BSDE(u) =

1

K

K∑
k=1

(
∆̂(k)
u − Ŝ(k)

u

)2

, (15b)

where ∆̂
(k)
u and Ŝ(k)

u are discretized versions of (8a) and
(8b), evaluated at the k-th sample. More precisely, we define

∆̂(k)
u := g(X̂

(k)

J(k)+1
)− u(ξ(k), τ (k)), (16a)

Ŝ(k)
u :=

J(k)∑
j=1

s
(k)
j , (16b)

where

s
(k)
j := (σ>∇xu)(X̂

(k)
j , t

(k)
j ) ·

(
W

(k)
tj+1
−W (k)

tj

)
. (17)

Here, (X̂
(k)
j )J

(k)+1
j=1 denotes a discretization of the solution

to the SDE in (6) (driven by the Brownian motion W (k)) on
a time grid τ (k) = t

(k)
1 < · · · < t

(k)

J(k)+1
= T with initial

condition X̂(k)
1 = ξ(k), see Appendix E for details.

In this section we will investigate different statistical proper-
ties of the Monte Carlo estimators. It will turn out that even
though the loss LFK is prominent for solving linear PDEs in
practice (see, e.g., Beck et al. (2021); Berner et al. (2020a)),
it might have some disadvantages from a numerical point of
view. In fact, Lemma 2.1 and Proposition 2.2 already show
that, while LBSDE can be minimized to zero expectation,
LFK always exhibits the additional term

E[∆2
V ] = V[∆V ] = V[SV ] = E[S2

V ], (18)

which is a potential source of additional noise. By the Itô
isometry, this can also be written as

E
[
S2
V

]
= E

[(∫ T

τ

‖σ>∇xV (Xs, s)‖2ds

)]
. (19)

The following proposition shows what this implies for the
estimator versions of the losses at the optimum.

Proposition 2.4 (Variance of losses). For the estimator ver-
sions of the losses defined in (10) and (11) it holds that

E

[
L(K)

FK (V )
]

= V [SV ] , V

[
L(K)

FK (V )
]

=
1

K
V
[
S2
V

]
and

E

[
L(K)

BSDE(V )
]

= 0, V

[
L(K)

BSDE(V )
]

= 0.
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Figure 2. Estimator losses and their standard deviations as a func-
tion of the gradient steps when solving the HJB equation from
Section 3.3 with batch size K = 128. One observes that the state-
ment of Proposition 2.4 already holds in an approximative sense
before converging to the solution V .

Proof. See Appendix B.

Proposition 2.4 shows that neither the expectation nor the
variance of L(K)

FK can be zero at the solution u = V unless
SV or S2

V are deterministic, which is usually not the case in
practice as demonstrated by the numerical examples in Sec-
tion 3 and Figure 2. While the non-zero expectation of the
estimator is typically not a problem for the optimization
routine, the non-vanishing variance might cause troubles
when converging to the global minimum.

Since the considered losses are usually minimized via vari-
ants of gradient decent, our further analysis shall therefore
focus on the variance of corresponding gradient estimators.
For this let us first define an appropriate notion of derivative.

Definition 2.5 (Gateaux derivative). We say that L : U →
R≥0 is Gateaux differentiable at u ∈ U if for all φ ∈ U the
mapping

ε 7→ L(u+ εφ) (20)

is differentiable at ε = 0. The Gateaux derivative of L in
direction φ is then defined as

δ

δu
L(u;φ) :=

d

dε

∣∣∣
ε=0
L(u+ εφ). (21)

Inspired by an analysis in Nüsken & Richter (2021b) let us
first investigate the variance of derivatives at the solution
u = V , where intuitively we might want to favor gradient
estimators whose variances vanish at the global minimizer of
the loss. The following proposition shows that this property
is indeed only the case for L(K)

BSDE.

Proposition 2.6 (Gradient variances). For the estimator
versions of the losses defined in (10) and (11) and for all
φ ∈ U it holds that

(i) V
[
δ
δu

∣∣∣
u=V
L(K)

FK (u;φ)
]

= 4
K V [SV φ(ξ, τ)],

(ii) V
[
δ
δu

∣∣∣
u=V
L(K)

BSDE(u;φ)
]

= 0.

Proof. See Appendix B.
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Figure 3. Gradient estimator standard deviations (maximum over
directions φ = ∂θiΦθ , where Φθ is a neural network with param-
eters θ, see Appendix E) and the MSE (on evaluation data) as a
function of the gradient steps when solving the HJB equation from
Section 3.3 with batch size K = 128. In line with Proposition 2.7
the standard deviation of the gradient of L̂(K)

BSDE decreases when
the solution is sufficiently well approximated.

Note that even though the gradient estimator L(K)
FK does not

have vanishing variance at the solution, a large batch size
K can counteract this effect. We will study correspond-
ing dependencies between variances and batch sizes in our
numerical experiments in Section 3.

While Proposition 2.6 only makes a statement on the gradi-
ent variances at the solution u = V , the following propo-
sition shall indicate that, at least close to the solution, one
might still expect a small variance of the gradients ofL(K)

BSDE,
see also Figure 3.
Proposition 2.7 (Stability of LBSDE close to the solution).
Assume it holds almost surely that

|u(ξ, τ)− V (ξ, τ)| ≤ ε and |φ(ξ, τ)| ≤ κ (22)

and that there exists γ ∈ R>0 such that for every (x, t) ∈
Rd×[0, T ] it holds that

‖∇xu(x, t)−∇xV (x, t)‖ ≤ ε(1 + ‖x‖γ) (23)

and that
‖∇xφ(x, t)‖ ≤ κ(1 + ‖x‖γ). (24)

Then the variance can be bounded by

V

[
δ

δu
L(K)

BSDE(u;φ)

]
≤ Cε2κ2

K
, (25)

where C ∈ R>0 is a constant that depends only on γ, ξ, τ ,
and the given PDE in (1).

Proof. See Appendix B.

Remark 2.8. We remark that the simultaneous approxima-
tion of a function and its gradient by a neural network, as
required in (22) and (23), has, for instance, been consid-
ered in Berner et al. (2019). Using Proposition 2.2 we can
see that it is actually sufficient to approximate the gradient
∇xV (which only implies the approximation of V up to a
constant) in order to reach zero variance. We also note that,
for u far away from the solution V , the term Su could po-
tentially increase the estimator variance, see, e.g., Figure 14
in the appendix.
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2.2. Algorithmic Details and Neural Network
Approximations

So far our analysis has been agnostic of the choice of the
approximating function space U . In practice, we usually rely
on functions represented by a neural network Φθ : Rd+1 →
R with parameters θ ∈ Rp. The training of such a network
is then conducted by minimizing a suitable estimated and
time-discretized loss L̂(K) using some variant of gradient
descent. In its simplest form, this corresponds to the update
rule

θ(m+1) = θ(m) − λ∇θL̂(K)(Φθ(m)), (26)

where λ ∈ R>0 is a learning rate and θ(0) ∈ Rp is a random
initialization. Let us refer to Algorithm 1 in Appendix E for
further details.

Relating to the Gateaux derivatives from the previous sec-
tion, let us note that we are particularly interested in the
directions5 φ = ∂θiΦθ for i ∈ {1, . . . , p}. This choice is
motivated by (26) and the chain rule of the Gateaux deriva-
tive, which, under suitable assumptions, states that

∂θiL̂(K)(Φθ) =
δ

δu

∣∣∣
u=Φθ

L̂(K) (u; ∂θiΦθ) . (27)

Now, in order to elaborate on some computational aspects,
let us state the actual gradients of the corresponding losses.
For a neural network u = Φθ, we compute

∇θL̂(K)
FK (u) = − 2

K

K∑
k=1

∆̂(k)
u ∇θu, (28a)

∇θL̂(K)
BSDE(u) = − 2

K

K∑
k=1

e(k)
(
∇θu+∇θŜ(k)

u

)
, (28b)

where e(k) := ∆̂
(k)
u − Ŝ(k)

u is the sample-wise error.

From a computational point of view, note that the derivative
of L̂(K)

FK as displayed in (28a) only relies on a single gradient
computation of the approximating function u (w.r.t. the
model parameters θ), whereas the derivative of L̂(K)

BSDE as
displayed in (28b) needs evaluations of ∇θs(k)

j , see (16)
and (17). This might be costly for automatic differentiation
(autodiff) tools and we will suggest computational speed-
ups and memory-efficient versions in the next section.

Further, note that due to the term Ŝ
(k)
u the loss L̂(K)

BSDE al-
ways needs to rely on discretized SDEs, whereas L̂(K)

FK can
be computed without SDE simulations whenever explicit
solutions of the stochastic processes are available (which,
admittedly, is often not the case in practice – see, however,
the examples in Sections 3.1 and 3.2).

5We assume that the functions Φθ , θ ∈ Rp, as well as all partial
derivatives ∂θiΦθ lie in U .

2.3. Further Computational Adjustments

For the loss LBSDE as defined in (11) we can make further
adjustments that will turn out to be relevant from a com-
putational point of view. In particular, let us suggest two
alternative versions that are based on the fact that the func-
tion u in (11) appears in two instances, which can be treated
differently. One idea is to differentiate only with respect to
one of its appearances. To this end, let us define the loss

Ldetach
BSDE (u,w) := E

[
(∆u − Sw)

2
]
, (29)

now depending on two arguments. We then compute deriva-
tives according to

δ

δu

∣∣∣
w=u
Ldetach

BSDE (u,w), (30)

where in automatic differentiation tools setting w = u after
computing the derivative is usually obtained by detaching
w from the computational graph6. One can readily check
that Ldetach

BSDE is a valid loss for problem (1) that keeps the
robustness property stated in Propositions 2.4 and 2.6 intact.
At the same time we expect a great reduction of the compu-
tational effort since the second-order derivatives of the form
∇θ∂xiu, appearing in ∇θŜ(k)

u , do not need to be computed
anymore – in particular note that multiple such derivatives
would need to be evaluated in actual implementations due to
the discretization of the integral, as stated in (16b). We refer
to Section 3 where we can indeed demonstrate substantial
computational improvements in several settings.

Another version of LBSDE relies on explicitly modelling
the gradient of the approximating function u by an extra
function, see also Zhou et al. (2021). We can therefore
define the loss

Lgrad
BSDE(u, r) := E

[(
∆u − S̃r

)2
]
, (31)

where now

S̃r =

∫ T

τ

(
σ>r

)
(Xs, s) · dWs. (32)

The additional function r : Rd×[0, T ] → Rd can be mod-
elled with a separate neural network. The loss (31) is then
minimized with respect to the parameters of the functions u
and r simultaneously, which again avoids the computation
of second-order derivatives.

Finally, let us introduce another viable option for decreas-
ing computational resources, which is essentially a more
memory-efficient way of computing the derivative formula
stated in (28b). Usually, one performs a forward pass to

6In PyTorch and TensorFlow this can be achieved by the
detach and stop gradient operations.
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compute L̂(K)
BSDE(u) and then uses automatic differentiation

to obtain the gradient∇θL̂(K)
BSDE(u). However, this requires

to keep track of all the discretization steps for the stochastic
integral (s

(k)
j )J

(k)

j=1 , as they all depend on θ. This leads to
a GPU memory consumption which scales linearly in the
number of steps J (k) and, already for small K, exceeds
common capacities, see Figures 5 and 7 in the appendix.

To circumvent this issue, we observe that the derivative
in (28b) can be decomposed into

G1 := − 2

K

K∑
k=1

e(k)∇θu, (33)

which equals the derivative of the loss Ldetach
BSDE , and

J∑
j=1

G2,j :=
J∑
j=1

− 2

K

K∑
k=1

e(k)∇θs(k)
j , (34)

where J = maxKk=1 J
(k) and s(k)

j = 0 for j > J (k). There-
fore, we can first compute and cache the errors (e(k))Kk=1

and the gradients G1. Then, we repeat the same simula-
tion, i.e., use the same realization of (ξ(k), τ (k),W (k)), to
compute and accumulate the gradients (G2,j)

J
j=1 on-the-fly.

In doing so, automatic differentiation only needs to track
a single discretization step s(k)

j . This keeps the memory
footprint independent of the number of steps J (k) or, equiv-
alently, the step-size t(k)

j+1 − t
(k)
j – however, at the cost of

an increased computational time7. Of course, the same trick
can also be applied to the loss Lgrad

BSDE. Even though from
a mathematical perspective the losses are still the same as
LBSDE and Lgrad

BSDE, we give them the new names

LBSDE, eff and Lgrad
BSDE, eff (35)

in order to relate to their significant computational improve-
ments, which we will illustrate in the next section.

3. Numerical Examples
In this section we aim to illustrate our theoretical results
on three high-dimensional PDEs8. Specifically, we con-
sider a heat equation with paraboloid terminal condition, a
HJB equation arising in molecular dynamics, and a Black-
Scholes model with correlated noise. The respective refer-
ence solutions are given as a closed-form expression, as a

7For most practical use-cases one is interested in obtaining the
most accurate solution and there is only little restriction on the
time for training, which needs to be done once per PDE. However,
for time-critical applications, we present the performance w.r.t. the
training time in Figures 11 and 12 in the appendix.

8The associated code can be found at https://github.
com/juliusberner/robust_kolmogorov.

tensor-product of one-dimensional approximations obtained
by finite-difference methods, and as a Monte-Carlo approxi-
mation using the Feynman-Kac formula, see Appendix C.

In all of our numerical experiments we use comparable
setups which are detailed in Appendix E. We emphasize
that, instead of using a train/val/test split on a given finite
data set, our setting allows us to simulate new i.i.d. samples
(ξ(k), τ (k),W (k)) for each batch on demand during training.
To evaluate our methods, we compute the MSE between the
neural network approximation and the reference solution at
points (x, t) which are sampled independently of the train-
ing data, i.e., on previously unseen points, see Appendix E.

We will show that all considered losses are viable in the
sense that they yield appropriate approximations of solu-
tions to the associated PDEs. At the same time we will see
substantial performance differences, which can be attributed
to the different variance properties outlined before.

3.1. Heat Equation

Let us first consider a version of the heat equation with
paraboloid terminal condition by setting b(x, t) = 0,
σ(x, t) = σ̄ ∈ Rd×d, and g(x) = ‖x‖2. This allows for
explicit solutions given by

V (x, t) = ‖x‖2 + Trace(σ̄σ̄>)(T − t) (36)

and
Xs = ξ + σ̄(Ws −Wτ ), (37)

see also Beck et al. (2021). We analyze the special case
σ̄ = ν Id with ν ∈ R, where we have that∫ T

τ

σ̄>∇xV (Xs, s) · dWs = 2 ν

∫ T

τ

Xs · dWs. (38)

Using the fact that
∫ T

0
Bs ·dBs = 1

2

(
‖BT ‖2−dT

)
, where

T = T − τ and Bs = Wτ+s −Wτ , the stochastic integral
in (38) evaluates to the following closed-form formula

2νξ · (WT −Wτ ) + ν2
(
‖WT −Wτ‖2− d(T − τ)

)
. (39)

This expression shows how the quantities in Propositions 2.4
and 2.6 may behave. For a fair comparison, however, we do
not make use of this explicit representation.

For our experiments, we consider d = 50, T = 1, ν = 0.5,
ξ ∼ Unif([−0.5, 0.5]d), and τ ∼ Unif([0, 1]). For a fixed
batch size all of our proposed methods significantly outper-
form the standard approach of minimizing LFK, see Fig-
ure 1. For larger batch sizes the losses LBSDE and Lgrad

BSDE

run out of our memory limit of 8 GiB and the performance of
LFK improves. However, when using the efficient versions
or Ldetach

BSDE , we still outperform the baseline by a substantial
margin. As suggested by our theory, the performance gains

https://github.com/juliusberner/robust_kolmogorov
https://github.com/juliusberner/robust_kolmogorov
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Figure 4. Standard deviation of the gradient estimators (maximum
over directions φ = ∂θiΦθ) and MSE of the gradients (on evalu-
ation data) in the setup of Figure 1, see also Appendix E. In line
with Proposition 2.7 and Remark 2.8, the standard deviations of
the loss and gradient estimators are smaller for the BSDE-based
losses, especially when the gradient∇xV is well approximated.

are based on the variance reducing effect of the stochas-
tic integral, see Figures 1 and 4. While the gradient ∇xV
can be best approximated by Lgrad

BSDE, eff (see also Figure 8
in the appendix), which reduces the variance according to
Proposition 2.7, the loss LBSDE, eff still performs better in
approximating the solution V . This can be motivated by
the fact that in case of Lgrad

BSDE, eff one network learns the
gradient and another one independently learns the solution.
In contrast, in the case of LBSDE, eff , a single network is
trained to simultaneously approximate V and its gradient
∇xV . Note that these observations are consistent across
various diffusivities ν, see Figures 9 and 10.

3.2. Black–Scholes Model with Correlated Noise

As a second example we consider a version of the celebrated
Black–Scholes model from financial engineering (Black &
Scholes, 1973), given by

σ(x, t) = diag(β1x1, . . . , βdxd)σ̄, b(x, t) = b̄x, (40)

with β ∈ Rd, σ̄ ∈ Rd×d, b̄ ∈ R, and

g(x) = max

{
0, κ−

d
min
i=1

xi

}
. (41)

It models a rainbow European put option, giving its holder
the right to sell the minimum of underlying assets at the
strike price κ ∈ R>0 at time T .

For the experiments we choose d = 50, T = 1, b̄ = −0.05,
κ = 5.5, β = (0.1 + i/(2d))di=1,

ξ ∼ Unif([4.5, 5.5]d), τ ∼ Unif([0, 1]), (42)

and σ̄ to be the lower triangular matrix arising from the
Cholesky decomposition σ̄σ̄> = Q with

Qi,j = 0.5(1 + δi,j), i, j ∈ {1, . . . , d}, (43)

where δi,j denotes the Kronecker delta. There does not exist
a closed form solution V , however, one can use Monte Carlo
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Figure 5. Estimator standard deviation, gradient estimator standard
deviation (maximum over directions φ = ∂θiΦθ), and MSE (on
evaluation data) after 30k gradient steps for the Black–Scholes
model in Section 3.2. The last plot shows that LBSDE and Lgrad

BSDE

cannot be used for batch size K = 1024 and larger as it would
exceed the GPU memory limit of 8 GiB. The same holds for the
other losses at batch size K = 524288.

sampling and the representation

(Xs)i = ξie

(
b̄− ‖βiσi‖

2

2

)
(s−τ)+βiσi·(Ws−Wτ ), (44)

where σi is the i-th row of σ̄, in order to evaluate the solution
pointwise, see Beck et al. (2021). Note that, in case of the
loss LFK, such a closed-form expression could be used
instead of the Euler-Maruyama scheme in order to speed up
training. However, for most settings such a representation
is not available and, for the sake of a fair comparison, we
did not make use of it during training.

Note that for this example the coefficient functions σ and
b depend on x, which makes the discretization of the SDE
more delicate. The loss Ldetach

BSDE can be sensitive to initial
performance and performs suboptimally in this example,
see Remark 2.8 and Figure 14. The other losses again under-
line our theoretical results and, in particular, substantially
outperform the loss LFK, see Figure 5. As suggested by our
results, a larger batch size generally improves the robustness.
However, the efficient versions of LBSDE and Lgrad

BSDE do
not need significantly more GPU memory than LFK such
that they can be used with the same maximal batch size.

3.3. Hamilton–Jacobi–Bellman Equation

Finally, let us consider the nonlinear Hamilton–Jacobi–
Bellman equation

(∂t + L)Ṽ (x, t) + f(x, t) =
1

2

∥∥(σ>∇xṼ )(x, t)
∥∥2

(45)

for (x, t) ∈ Rd × [0, T ), with terminal condition

Ṽ (x, T ) = g̃(x) (46)
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for x ∈ Rd. This prominent PDE from control theory
corresponds to the controlled stochastic process

dXv
s = (b(Xv

s , s) + (σv)(Xv
s , s)) ds+ σ(Xv

s , s) dWs,

where the control v ∈ C(Rd×[0, T ],Rd) can be thought of
as a steering force to be chosen so as to minimize a given
cost function

J(v) = E

[∫ T

0

(
fs +

1

2
‖vs‖2

)
ds+ g̃(Xv

T )

]
, (47)

with the short-hands fs := f(Xv
s , s) and vs := v(Xv

s , s).
In the above, f ∈ C(Rd×[0, T ],R) represents running
costs (in addition to the squared costs on the control v) and
g̃ ∈ C(Rd,R) specifies the terminal costs. It turns out
that one can recover the optimal control v∗ that minimizes
the costs (47) from the solution to the PDE in (45) by the
relation v∗ = −σ>∇xṼ .

Now, with the transformation9 V = exp(−Ṽ ), we can con-
vert the nonlinear PDE in (45) to a linear one of the form (1)
(or, to be precise, of the form (69)) with boundary condition
g = exp(−g̃), which allows us to apply Algorithm 1, see
Lemma G.1 for the details.

For our experiments, we consider a problem that is promi-
nent in molecular dynamics and has been suggested in
Nüsken & Richter (2021b). We define the drift to be
b = −∇xΨ, with Ψ(x) = κ

∑d
i=1(x2

i − 1)2 being a po-
tential of double well type. In applications, the potential
represents the energy associated to a system of atoms (i.e.
molecule) and one is often interested in how molecular
configurations change over time. This is then related to
transition paths between metastable states of the stochastic
dynamics, whose sampling poses formidable computational
challenges, see e.g. Hartmann & Richter (2021).

For an example, let us define a terminal value that is sup-
ported in one of the 2d minima of Ψ, namely g(x) =

exp(−η
∑d
i=1(xi − 1)2) and set f = 0. We choose

η = 0.04 and κ = 0.1 in dimension d = 10 as well as
σ = Id. The left panel of Figure 6 shows the original po-
tential Ψ as well as a tilted version that can be derived from
the solution of the HJB equation (45) via Ψ∗ = Ψ +σσ>Ṽ ,
computed with a finite difference reference method as well
as with our algorithm. We can see that both solutions agree
for all of our considered methods. However, note that for
the optimal control functions the BSDE-based losses are
again superior to LFK, as displayed in the right panel. This
is in line with the more accurate approximation of the gradi-

9This transformation is also known as Hopf-Cole transforma-
tion, see, e.g., Section 4.4.1 in Evans (2010). See also Hartmann
et al. (2017) for a discussion on related applications in impor-
tance sampling of stochastic processes relevant in computational
statistical physics.
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Figure 6. For a HJB equation with double well potential we display
the tilted version of the potential Ψ∗ evaluated at x = (α, . . . , α)>

and t = 0.75, which is approximated well by all our methods
(after 30k gradient steps with batch size 1024). However, the
approximation of the first component of the control σ>∇x log V
depicted in the right panel is better for BSDE-based losses.

ent, which is demonstrated by a performance comparison in
Figure 15 in the appendix.

4. Conclusion
The most prominent method for solving general high-
dimensional linear PDEs of Kolmogorov type is based
on minimizing a variational formulation inspired by the
Feynman-Kac formula over a class of neural networks.
Building upon results on BSDEs and control variates for
Monte Carlo estimators, we suggest an alternative formula-
tion and prove that the corresponding loss estimator enjoys
lower variance. Lending to the notion of Gateaux deriva-
tives, we can further show that this leads to gradient estima-
tors with lower variance, which is crucial for gradient-based
optimization. Importantly, we also develop a novel, more
efficient estimator that is adapted to current deep learning
frameworks and show that resulting methods yield signifi-
cant performance gains. It is up to future research to exploit
such efficient estimators for boundary value problems, see
Appendix C, and non-linear PDEs, which can naturally be
approached with BSDE-based losses, see Appendix D.

In summary, we suspect that the techniques used in this
paper can be transferred to a number of related deep learn-
ing methods that rely on Monte Carlo sampling. Providing
important theoretical guarantees and performance improve-
ments, our work is a fundamental step in developing robust
and reliable algorithms for the solution of high-dimensional
PDEs.
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A. Notation
We write C2,1(Rd×[0, T ],R) for the space of functions
(x, t) 7→ f(x, t) which are twice continuously differentiable
in the spatial coordinate x ∈ Rd and once continuously
differentiable in the time coordinate t ∈ [0, T ]. We fur-
ther denote the partial derivatives (w.r.t. to the i-th spa-
tial coordinate xi and time coordinate t) and the gradient
of f (w.r.t. to the spatial coordinate x) by ∂xif , ∂tf , and
∇xf = (∂x1f, . . . , ∂xdf)>, respectively. We say that func-
tions f ∈ C(Rd×[0, T ],R) and g ∈ C(Rd,R) are at most
polynomially growing if there exist constants c, λ ∈ R>0

such that for every (x, t) ∈ Rd × [0, T ] it holds that

|g(x)| ≤ c(1 + ‖x‖λ), |f(x, t)| ≤ c(1 + ‖x‖λ). (48)

Finally, we write ‖ · ‖ for the Euclidean norm and ‖ · ‖F for
the Frobenius norm.

B. Assumptions and Proofs
We usually operate under the following assumption which
guarantees a unique strong solution to the SDE in (6) as
well as the existence of a unique strong solution V ∈
C2,1(Rd×[0, T ],R) to the PDE in (1) which can be ex-
pressed as V (x, t) = E[g(XT )|Xt = x] as, for instance,
stated in (13), see Baldi (2017, Theorem 10.6), Karatzas
& Shreve (1998, Remark 5.7.8), Øksendal (2003, Theorem
5.2.1), and Pavliotis (2014, Theorem 2.1).
Assumption 1 (Conditions on b, σ, and g). We assume
that g ∈ C2(Rd,R) is an at most polynomially growing
function. Further, we assume that the coefficient func-
tions σ ∈ C(Rd×[0, T ],Rd×d) and b ∈ C(Rd×[0, T ],Rd)
satisfy the following properties: There exist constants
c1, c2, c3, c4 ∈ R>0 such that

‖b(x, t)‖+ ‖σσ>(x, t)‖F ≤ c1, (boundedness)

‖σ(x, t)− σ(y, t)‖F ≤ c2‖x− y‖, (Lipschitz continuity)

‖b(x, t)− b(y, t)‖ ≤ c3‖x− y‖, (Lipschitz continuity)

η · (σσ>)(x, t)η ≥ c4‖η‖2, (uniform ellipticity)

for all x, y, η ∈ Rd and t ∈ [0, T ].

Throughout the proofs, we denote by ∆
(k)
u and S(k)

u the
quantities in (8a) and (8b) evaluated at the k-th sample. This
corresponds to replacing (ξ, τ,W ) in (6), (8a), and (8b) by
the k-th sample (ξ(k), τ (k),W (k)).

Proof of Proposition 2.2. We will use the fact that ∆V =
SV almost surely, see Lemma 2.1. This allows us to rewrite

LBSDE(u) = E
[
(∆u + V (ξ, τ)− V (ξ, τ)− Su)

2
]

= E
[
(V (ξ, τ)− u(ξ, τ) + SV − Su)

2
]

= E
[
(V (ξ, τ)− u(ξ, τ))

2
]

+E
[
S2
V−u

]
.

In the last step we used the tower property of the conditional
expectation and the vanishing expectation of the stochastic
integrals SV and Su to show that the cross-term has zero
expectation, namely

E [(V (ξ, τ)− u(ξ, τ)) (SV − Su)]

= E [(V (ξ, τ)− u(ξ, τ))E [SV − Su|(ξ, τ)]] = 0.

For the loss LFK we can similarly write

LFK(u) = E
[
(V (ξ, τ)− u(ξ, τ) + ∆V )

2
]

(49a)

= E
[
(V (ξ, τ)− u(ξ, τ))

2
]

+E
[
∆2
V

]
, (49b)

where the cross-term has again zero expectation. More
precisely, the tower property of the conditional expectation
and Lemma 2.1 imply that

E [(V (ξ, τ)− u(ξ, τ)) ∆V ] (50a)
= E [(V (ξ, τ)− u(ξ, τ))E [∆V |(ξ, τ)]] (50b)
= E [(V (ξ, τ)− u(ξ, τ))E [SV |(ξ, τ)]] = 0. (50c)

This proves Proposition 2.2.

Proof of Proposition 2.4. Let us recall Lemma 2.1 which
states that ∆V = SV almost surely. With the mutual in-
dependence of (∆

(k)
u )Kk=1 and (S

(k)
u )Kk=1 we now readily

obtain that

E

[
L(K)

BSDE(V )
]

= E
[
(∆V − SV )

2
]

= 0, (51)

and

V

[
L(K)

BSDE(V )
]

=
1

K
V

[
(∆V − SV )

2
]

= 0. (52)

For the loss LFK, it holds that

E

[
L(K)

FK (V )
]

= E
[
∆2
V

]
= V [SV ] (53)

and

V

[
L(K)

FK (V )
]

=
1

K
V
[
∆2
V

]
=

1

K
V
[
S2
V

]
, (54)

which proves the claim.

Proof of Proposition 2.6. (i) It holds that

δ

δu
L(K)

FK (u;φ) =
d

dε

∣∣∣
ε=0
L(K)

FK (u+ εφ) (55a)

=
d

dε

∣∣∣
ε=0

1

K

K∑
k=1

(
∆

(k)
u+εφ

)2

(55b)

= − 2

K

K∑
k=1

∆(k)
u φ(ξ(k), τ (k)). (55c)
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Using the mutual independence of our samples this implies
that

V

[
δ

δu
L(K)

FK (u;φ)

]
=

4

K
V [∆uφ(ξ, τ)] . (56)

Now, setting u = V , Lemma 2.1 shows that the variance of
the Gateaux derivative at V satisfies

V

[
δ

δu

∣∣∣
u=V
L(K)

FK (u;φ)

]
=

4

K
V [SV φ(ξ, τ)] . (57)

By the Itô isometry, this evaluates to

4

K
E

[(∫ T

τ

‖σ>∇xV (Xs, s)‖2ds

)
φ2(ξ, τ)

]
, (58)

which, in general, is non-zero for an arbitrary φ ∈ U .

(ii) By definition, we have that

L(K)
BSDE(u+ εφ) =

1

K

K∑
k=1

(
∆

(k)
u+εφ − S

(k)
u+εφ

)2

. (59)

The Gateaux derivative

δ

δu
L(K)

BSDE(u;φ) =
d

dε

∣∣∣
ε=0
L(K)

BSDE(u+ εφ) (60)

thus evaluates to

− 2

K

K∑
k=1

(
∆(k)
u − S(k)

u

)(
φ(ξ(k), τ (k)) + S

(k)
φ

)
. (61)

Now, setting u = V , Lemma 2.1 readily implies that

δ

δu

∣∣∣
u=V
L(K)

BSDE(u;φ) = 0 (62)

almost surely for all φ ∈ U . This shows that

V

[
δ

δu

∣∣∣
u=V
L(K)

BSDE(u;φ)

]
= 0, (63)

which proves the claim. Note that the above calculation
shows that the derivative of any squared loss exhibits zero
variance whenever the error is vanishing almost surely.

Proof of Proposition 2.7. Let us define

δ(x, t) = u(x, t)− V (x, t). (64)

Analogously to (61) we can compute

V

[
δ

δu

∣∣∣
u=V+δ

L(K)
BSDE(u;φ)

]
=

4

K
V [(δ(ξ, τ) + Sδ) (φ(ξ, τ) + Sφ)] .

(65)

Now, properties of the variance as well as the Cauchy-
Schwarz inequality yield

V [(δ(ξ, τ) + Sδ) (φ(ξ, τ) + Sφ)]

≤ E
[
(δ(ξ, τ) + Sδ)

2
(φ(ξ, τ) + Sφ)

2
]

≤ E
[
(δ(ξ, τ) + Sδ)

4
] 1

2

E

[
(φ(ξ, τ) + Sφ)

4
] 1

2

.

Each of the above factors can be bounded by using the
Burkholder-Davis-Gundy inequality (Da Prato & Zabczyk,
2014, Section 4.6), Hölder’s inequality, and the consistency
of the Euclidean norm, i.e.

E

[
(δ(ξ, τ) + Sδ)

4
]
≤ 8

(
E
[
δ(ξ, τ)4

]
+E

[
S4
δ

])
≤ 8
(
ε4 + 36T

∫ T

0

E
[
‖(σ>∇xδ)(Xs, s)‖4

]
ds
)

≤ 8ε4
(

1 + 36T

∫ T

0

E
[
‖σ(Xs, s)‖4F (1 + ‖Xs‖γ)4

]
ds
)
.

Defining

C := 32
(

1+36T

∫ T

0

E
[
‖σ(Xs, s)‖4F (1 + ‖Xs‖γ)4

]
ds
)
,

we thus showed that

V

[
δ

δu

∣∣∣
u=V+δ

L(K)
BSDE(u;φ)

]
≤ Cε2κ2

K
, (66)

which proves the claim.

C. Feynman-Kac Theorem and More General
Linear PDEs

As outlined in Section 2 and for instance stated in (5) as
well as (13), the Feynman-Kac formula brings a stochastic
representation of the linear PDE in (1) via

V (x, t) = E[g(XT )|Xt = x] (67a)
= E[g(XT )|(ξ, τ) = (x, t)]. (67b)

Note that this can be shown using the identity in (9). More
specifically, the stochastic integral SV has a vanishing ex-
pectation conditioned on (ξ, τ) and we obtain that

E[∆V − SV |(ξ, τ)] = E[∆V |(ξ, τ)] = 0. (68)

Let us make this observation precise and at the same time
state a slightly more general version of the Feynman-Kac
theorem.

Theorem C.1 (Feynman-Kac formula). Let g ∈ C2(Rd,R),
k ∈ C(Rd×[0, T ],R), and V ∈ C2,1(Rd×[0, T ],R)
be at most polynomially growing functions. Further, let



Robust SDE-Based Variational Formulations for Solving Linear PDEs via Deep Learning

f ∈ C(Rd×[0, T ],R≥0) and assume that V solves the
parabolic problem

(∂t + L− f(x, t))V (x, t) + k(x, t) = 0 (69)

on (x, t) ∈ Rd×[0, T ) with terminal condition

V (x, T ) = g(x), x ∈ Rd . (70)

Then

V (x, t) = E

[∫ T

t

e−
∫ r
t
f(Xs,s)dsk(Xr, r)dr

+ e−
∫ T
t
f(Xs,s)dsg(XT )

∣∣∣∣∣Xt = x

]
,

(71)

where X is a strong solution to (6).

Proof. The proof, whose main ingredient is Itô’s Lemma,
can, for instance, be found in Karatzas & Shreve (1998,
Theorem 5.7.6) and Baldi (2017, Theorem 10.5).

Let us recall that our loss LFK as defined in (10) readily
follows from the Feynman-Kac formula – see also Beck
et al. (2021). Note that a crucial point in the derivation of the
Feynman-Kac formula is the elimination of the stochastic
integral SV , as defined in (8b), via its martingale property,
see (68). Ironically, as elaborated on in Section 2, it turns
out that this elimination is just the reason for larger variances
of estimators of LFK.
Remark C.2 (Initial value problems). Note that time can be
reversed and initial value problems (as opposed to termi-
nal value problems as in Theorem C.1) can be formulated.
As an example, we can consider the time-homogeneous
case, where b, σ, f , and k do not depend on time. Let
V ∈ C2,1(Rd×[0, T ],R) solve the parabolic PDE

(∂t − L+ f(x))V (x, t)− k(x) = 0 (72)

on (x, t) ∈ Rd×(0, T ] with initial condition

V (x, 0) = g(x), x ∈ Rd . (73)

The associated stochastic representation is then given by

V (x, t) = E

[∫ t

0

e−
∫ r
0
f(Xs)dsk(Xr)dr

+ e−
∫ t
0
f(Xs)dsg(Xt)

∣∣∣∣∣X0 = x

]
.

(74)

Remark C.3 (Bounded domains). We can restrict ourselves
to open, bounded domains D ⊂ Rd and consider the
parabolic PDE in (69) on D, adding the additional boundary

condition10 V (x, t) = g(x) for (x, t) ∈ ∂D × [0, T ]. The
stochastic representation then becomes

V (x, t) = E

[∫ T ∧T
t

e−
∫ r
t
f(Xs,s)dsk(Xr, r)dr

+ e−
∫ T ∧T
t

f(Xs,s)dsg(XT ∧T )

∣∣∣∣∣Xt = x

]
,

where T ∧ T := min{T, T } and T := inf{t ≥ 0 : Xt /∈
D} is the first exit time of the stochastic process from the
domain D, for which we usually assume T < ∞ almost
surely. Likewise, we can consider the elliptic boundary
value problem

(L− f(x))V (x) + k(x) = 0, x ∈ D, (75a)
V (x) = g(x), x ∈ ∂D, (75b)

where now the solution V , the coefficients b and σ in the
SDE (6), as well as f and k do not depend explicitly on time
anymore, yielding the stochastic representation

V (x) = E

[∫ T
0

e−
∫ r
0
f(Xs)dsk(Xr)dr

+ e−
∫ T
0
f(Xs)dsg(XT )

∣∣∣∣∣X0 = x

]
,

(76)

again with T := inf{t ≥ 0 : Xt /∈ D}, see e.g. Proposition
5.7.2 in Karatzas & Shreve (1998).

Leveraging the above representations, our proposed meth-
ods can readily be applied to a range of elliptic and parabolic
PDEs on bounded domains. Note, however, that one needs
to take into account the hitting times T , for instance, us-
ing naive stopping criteria (Nüsken & Richter, 2021a) or
more elaborate walk-on-the-sphere algorithms (Grohs &
Herrmann, 2020). As this might obscure the comparisons
between different loss functions, we focus on unbounded
domains in our experiments.

D. Backward Stochastic Differential
Equations and Semi-Linear PDEs

Backward stochastic differential equations (BSDEs) have
been studied extensively in the last three decades and
we refer to Pardoux (1998), Pham (2009), Gobet (2016),
and Zhang (2017) for good introductions to the topic. Even
though in this paper we only consider linear PDEs as stated
in (1) or (69), BSDEs are typically associated to nonlinear
(parabolic) PDEs of the type

(∂t + L)V (x, t) = h(x, t, V (x, t), (σ>∇xV )(x, t)) (77)

10One can also consider boundary conditions that are different
from the terminal condition in (70), see, for instance, Baldi (2017,
Theorem 10.4) and Lelievre & Stoltz (2016, Proposition 6.1).
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for (x, t) ∈ Rd × [0, T ], a nonlinearity h : Rd×[0, T ] ×
R×Rd → R, and differential operator L defined as in (2).
The terminal value is given by

V (x, T ) = g(x), (78)

for a specified function g ∈ C(Rd,R).

BSDEs were first introduced in Bismut (1973) and their sys-
tematic study began with Pardoux & Peng (1990). Loosely
speaking, they can be understood as nonlinear extensions
of the Feynman-Kac formula (see Pardoux (1998) and Ap-
pendix C), relating the nonlinear PDE in (77) to the stochas-
tic process Xs defined by

dXs = b(Xs, s) ds+ σ(Xs, s) dWs, X0 = x0. (79)

The key idea is then to define the processes

Ys = V (Xs, s), Zs = (σ>∇xV )(Xs, s), (80)

as representations of the PDE solution and its gradient, re-
spectively, and apply Itô’s lemma to obtain

dYs = h(Xs, s, Ys, Zs) ds+ Zs · dWs, (81)

with terminal condition YT = g(XT ). Noting that the
processes Y and Z are adapted11 to the filtration gener-
ated by the Brownian motion W , they should indeed be
understood as backward processes and not be confused with
time-reversed processes. A convenient interpretation of the
relations in (80) is that solving for the processes Y and Z
under the constraint (81) corresponds to determining the so-
lution of the PDE in (77) (and its gradient) along a random
grid which is provided by the stochastic process X defined
in (79).

Let us note that under suitable assumptions on the coeffi-
cients b, σ, h, and g one can prove existence and uniqueness
of a solution to the BSDE system as defined in (79) and
(81), see for instance Theorem 4.3.1 in Zhang (2017).

We further note that the standard BSDE system can be gen-
eralized to

dXv
s =(b(Xv

s , s) + v(Xv
s , s)) ds+ σ(Xv

s , s)dWs,

dY vs =(h(Xv
s , s, Y

v
s , Z

v
s ) + v(Xv

s , s)·Zvs )ds+ Zvs · dWs,

with
Xv

0 = x, Y vT = g(Xv
T ). (82)

In the above, v ∈ C(Rd×[0, T ],Rd) is a suitable control
vector field that can be understood as pushing the forward
trajectories into desired regions of the state space, noting
that the relations

Y vs = V (Xv
s , s), Zvs = (σ>∇xV )(Xv

s , s), (83)

11Intuitively, this means that the processes Y and Z must not
depend on future values of the Brownian motion W .

Algorithm 1 Solving the PDE in (1) via deep learning

input Neural network Φ with initial parameters θ(0), op-
timizer method step for updating the parameters, maxi-
mum number of steps M , batch size K, step-size ∆t

output parameters θ(M)

for m← 0, . . . ,M − 1 do
(ξ(k), τ (k),W (k))Kk=1 ← sample from (ξ, τ,W )⊗K

(X̂(k))Kk=1 ← simulate using the EM scheme in (84)
L ← pick L ∈ {LFK,LBSDE}
L̂(K)(Φθ(m))← compute estimator loss as in (15)
∇θL̂(K)(Φθ(m))← autodiff(L̂(K)(Φθ(m)))

θ(m+1) ← step
(
θ(m),∇θL̂(K)(Φθ(m))

)
end for

with V ∈ C2,1(Rd×[0, T ],R) being the solution to the
parabolic PDE in (77), hold true independent of the choice
of v (Hartmann et al., 2019).

E. Further Computational Details
For convenience, we first summarize our considered method
in Algorithm 1. In numerical simulations we need to dis-
cretize the stochastic process X as defined in (6) on a time
grid τ = t1 < · · · < tJ . A practical way to do so is based
on the Euler-Maruyama (EM) scheme

X̂j+1 = X̂j + b(X̂j , tj)∆t+ σ(X̂, tj)
√

∆t ζj+1, (84)

where ∆t := tj+1 − tj is the step-size and

ζj+1 :=
Wtj+1

−Wtj√
∆t

∼ N (0, Id) (85)

is a standard normally distributed random variable. It can be
shown that X̂j convergences toXj∆t in an appropriate sense
(Kloeden & Platen, 1992). This readily leads to discrete
versions of the quantities ∆u and Su as defined in (16). Note
that the discrete process X̂ is initialized at the random value
X̂1 = ξ and J is chosen according to the randomly drawn
initial time τ . More precisely, we set J = d(T−τ)/∆te and
use a smaller final step-size in order to arrive at the terminal
time T . An alternative strategy would be to fix J for all
realizations and change the step-size ∆t = T−τ

J depending
on the value of τ . We display the memory requirements of
our methods as a function of the step-size ∆t in Figure 7.

In Table 1 we summarize the hyperparameters for our ex-
periments. We specify the amount of steps (Schedule A)
or time (Schedule B) that we train and the percentile, i.e.,
milestone, where we decrease the learning rate λ and the
step-size ∆t. In order to have comparable results, we set a
GPU memory limit of 8 GiB during training and always use
batch sizes K ∈ {24, 27, 210, 213, 216, 219}.



Robust SDE-Based Variational Formulations for Solving Linear PDEs via Deep Learning

10 3 10 2 10 1

t

101

102

103

104

GP
U 

m
em

or
y 

(M
iB

)

FK
detach
BSDE
grad
BSDE
grad
BSDE, eff

BSDE
BSDE, eff

Figure 7. GPU memory requirements for a gradient step with batch
size K = 1024 and different step-sizes ∆t for the SDE discretiza-
tion when solving the heat equation. If we do not consider the
efficient versions, the memory usage for the losses Lgrad

BSDE and
LBSDE depends approximately linearly on ∆t.

We employ a Multilevel neural network architecture, which
has shown to be advantageous over standard feed-forward
architectures. More precisely, we use an architecture with
L = 3 levels, amplifying factor q = 5 for the HJB equa-
tion and q = 3 for the other PDEs, intermediate residual
connections (χ = 1) and without normalization layer, as
defined in Berner et al. (2020a). Note that in case of the
losses Lgrad

BSDE and Lgrad
BSDE, eff we use the same architecture

with output dimension d for the neural network representing
the function r in (31). As the activation function needs to
be twice differentiable for certain losses, we replace the
ReLU by the SiLU (also known as swish) activation func-
tion (Hendrycks & Gimpel, 2016).

Finally, Table 1 also specifies the number of samples used
to approximate the MSE metrics and the number of batches
used to estimate the loss and gradient variances. For the lat-
ter, we compute the value and derivative of L̂(K) (w.r.t. the
parameters θ of Φθ) for 30 batches consisting of K indepen-
dent samples of (ξ, τ,W ) by performing forward and back-
ward passes without updating the parameters θ. To compute
the MSE we evaluate L̂(N)

Eval with N = 10 ·217 i.i.d. samples
drawn from the distribution of (ξ, τ) – independently of
the training data and independently for each evaluation. In
this sense, we always evaluate our model w.r.t. to the real
solution V on unseen data. For comparing the gradients we
replace (u(ξ, τ)−V (ξ, τ))2 by ‖∇xu(ξ, τ)−∇xV (ξ, τ)‖2
or ‖r(ξ, τ)−∇xV (ξ, τ)‖2 in case of the methods Lgrad

BSDE

and Lgrad
BSDE, eff . When no closed-form solution for V is

available, as for the Black–Scholes model in Section 3.2,
we use the version in (7b) with another 216 independent
samples to estimate the inner expectation.

F. Further Numerical Experiments
Figures 8 to 15 show the results of additional numerical
experiments. The corresponding captions describe the re-
spective settings.

Table 1. Training and evaluation setup

Schedule A: Step limit
steps M 3 · 104

milestone 0.9

Schedule B: Time limit
time 24h
milestone 0.5

Training
learning rate λ [5 · 10−4, 5 · 10−6]
step-size ∆t [10−2, 10−3]
optimizer Adam
batch size K {24, 27, 210, 213, 216, 219}
GPU memory constraint 8 GiB

Network
architecture Multilevel
(L, q, χ) {(3, 3, 1), (3, 5, 1)}
activation function SiLU

Evaluation
samples N 10 · 217

batches (for variances) 30
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Figure 8. Approximation of the norm of the gradient ‖∇xV ‖ of the
solution V to the heat equation in Section 3.1 for t ∈ {0.25, 0.75}
and x = (α, . . . , α)> after training for 30k steps with batch
size K = 1024. As expected, the stochastic integral, which is
present in all losses except LFK, induces better approximation
of the gradient. Furthermore, explicitly modelling the gradient
as in Lgrad

BSDE, eff or back-propagating the derivative of the neural
network as in LBSDE, eff also improves the approximation outside
of the sampling interval for x, i.e. outside of [−0.5, 0.5]50.
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Figure 9. Estimator standard deviation and MSE after 30k gradient
steps for the heat equation in Section 3.1 with batch size 1024 and
varying diffusivities ν. While solving the PDE becomes more chal-
lenging for higher values of ν, our proposed methods consistently
outperform the baseline.
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Figure 10. We observe performance differences similar to Figure 1
when solving the heat equation from Section 3.1 with a higher
diffusivity of ν =

√
3.
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Figure 11. MSE of different losses as a function of the training
time when solving the heat equation from Section 3.1 with batch
size K = 8192. Although the time needed for computing and
back-propagating the stochastic integral leads to significantly less
gradient steps and thus samples of (ξ, τ,W ) (see Figure 12), the
loss LBSDE, eff still outperforms the loss LFK.
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Figure 12. Scaling of estimator loss, standard deviation of the (gra-
dient) estimator, and MSE when training for 24h. We observe
similar effects as in Figures 1 and 4, even though the number of
samples (or, proportionally, the number of steps) is significantly
higher for the loss LFK. For batch sizes higher than K = 8192 a
larger time budget is necessary.
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Figure 13. Performance and standard deviation of the losses LEval

and Ldetach
Eval (detaching Su in (7c) from the computational graph

as in (30)) for the heat equation from Section 3.1 compared to their
natural counterparts. Note that they perform significantly worse
for small batch sizes, but similarly for large batch sizes – for the
detached version one can allow for larger batch sizes, given a fixed
memory budget. Note via a comparison to Figures 1 and 4 that the
efficient versions of the considered losses are still much better.

0 10000 20000 30000
step

10 4

10 3

10 2

10 1

100

101

es
tim

at
or

 st
d.

0 10000 20000 30000
step

10 5

10 4

10 3

10 2

10 1

M
SE

FK
detach
BSDE
grad
BSDE, eff

BSDE, eff

Figure 14. Estimator standard deviation and MSE as a function of
the gradient steps when solving the Black–Scholes equation from
Section 3.2 with batch size K = 8192. In case of the loss Ldetach

BSDE ,
a bad initial approximation actually leads to a variance-increasing
effect of the stochastic integral. As the error in the gradient is not
back-propagated to the network parameters, this deteriorates the
convergence.
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Figure 15. Similar to Figures 1, 4, and 5, our theoretical and empiri-
cal findings also hold in case of the HJB equation from Section 3.3.
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G. Additional Material
The following Lemma details the relation of the HJB equa-
tion from Section 3.3 and a linear PDE of Kolmogorov type.

Lemma G.1 (Linearization of HJB equation). Let Ṽ ∈
C2,1(Rd×[0, T ],R) solve the Hamilton–Jacobi–Bellman
equation in (45), then V = exp(−Ṽ ) fulfills the linear PDE
as stated in Theorem C.1 with k = 0 and g = exp(−g̃), i.e.

(∂t + L− f(x, t))V (x, t) = 0, (x, t) ∈ Rd×[0, T ),

V (x, T ) = g(x), x ∈ Rd .

Subsequently, we get the representation

Ṽ (x, t) = − logE
[
e−W(X)

∣∣∣Xt = x
]

(87)

withW(X) =
∫ T
t
f(Xs, s)ds+ g̃(XT ).

Proof. We consider the transformation V = exp(−Ṽ ) and
for notational convenience omit the space and time depen-
dencies of Ṽ , f, b, and σ. We can compute

Le−Ṽ = −b · e−Ṽ∇xṼ −
1

2

d∑
i,j=1

(σσ>)ij∂xi
(
∂xje

−Ṽ Ṽ
)

= −e−Ṽ
(
b · ∇xṼ +

1

2

d∑
i,j=1

(σσ>)ij∂xi∂xj Ṽ

− 1

2

d∑
i,j=1

(σσ>)ij∂xi Ṽ ∂xj Ṽ

)

= −e−Ṽ
(
b · ∇xṼ +

1

2

d∑
i,j=1

(σσ>)ij∂xi∂xj Ṽ

− 1

2

d∑
i,j,k=1

σikσjk∂xi Ṽ ∂xj Ṽ

)

= −e−Ṽ
(
b · ∇xṼ +

1

2

d∑
i,j=1

(σσ>)ij∂xi∂xj Ṽ

− 1

2

d∑
k=1

(
d∑
i=1

σik∂xi Ṽ

)2)

= −e−Ṽ
(
LṼ − 1

2
‖σ>∇xṼ ‖2

)
.

The PDE in (69) therefore becomes

0 = (∂t + L− f)e−Ṽ (88a)

= −e−Ṽ
(

(∂t + L)Ṽ + f − 1

2
‖σ>∇xṼ ‖2

)
, (88b)

which is equivalent to the HJB equation in (45).

For a discussion on the application of Lemma G.1 in the con-
text of importance sampling of stochastic processes that are
relevant in computational statistical physics and molecular
dynamics we refer to Hartmann et al. (2017).
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Abstract

Neural network training is usually accomplished by solving a non-convex opti-
mization problem using stochastic gradient descent. Although one optimizes over
the networks parameters, the main loss function generally only depends on the
realization of the neural network, i.e. the function it computes. Studying the opti-
mization problem over the space of realizations opens up new ways to understand
neural network training. In particular, usual loss functions like mean squared error
and categorical cross entropy are convex on spaces of neural network realizations,
which themselves are non-convex. Approximation capabilities of neural networks
can be used to deal with the latter non-convexity, which allows us to establish
that for sufficiently large networks local minima of a regularized optimization
problem on the realization space are almost optimal. Note, however, that each
realization has many different, possibly degenerate, parametrizations. In particular,
a local minimum in the parametrization space needs not correspond to a local
minimum in the realization space. To establish such a connection, inverse stability
of the realization map is required, meaning that proximity of realizations must
imply proximity of corresponding parametrizations. We present pathologies which
prevent inverse stability in general, and, for shallow networks, proceed to establish
a restricted space of parametrizations on which we have inverse stability w.r.t. to a
Sobolev norm. Furthermore, we show that by optimizing over such restricted sets,
it is still possible to learn any function which can be learned by optimization over
unrestricted sets.

1 Introduction and Motivation

In recent years much effort has been invested into explaining and understanding the overwhelming
success of deep learning based methods. On the theoretical side, impressive approximation capa-
bilities of neural networks have been established [9, 10, 16, 20, 32, 33, 37, 39]. No less important
are recent results on the generalization of neural networks, which deal with the question of how

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



well networks, trained on limited samples, perform on unseen data [2, 3, 5–7, 17, 29]. Last but
not least, the optimization error, which quantifies how well a neural network can be trained by
applying stochastic gradient descent to an optimization problem, has been analyzed in different
scenarios [1, 11, 13, 22, 24, 25, 27, 38]. While there are many interesting approaches to the latter
question, they tend to require very strong assumptions (e.g. (almost) linearity, convexity, or extreme
over-parametrization). Thus a satisfying explanation for the success of stochastic gradient descent for
a non-smooth, non-convex problem remains elusive.
In the present paper we intend to pave the way for a functional perspective on the optimization
problem. This allows for new mathematical approaches towards understanding the training of neural
networks, some of which are demonstrated in Section 1.2. To this end we examine degenerate
parametrizations with undesirable properties in Section 2. These can be roughly classified as

C.1 unbalanced magnitudes of the parameters

C.2 weight vectors with the same direction

C.3 weight vectors with directly opposite directions.

Under conditions designed to avoid these degeneracies, Theorem 3.1 establishes inverse stability
for shallow networks with ReLU activation function. This is accomplished by a refined analysis
of the behavior of ReLU networks near a discontinuity of their derivative. Proposition 1.2 shows
how inverse stability connects the loss surface of the parametrized minimization problem to the loss
surface of the realization space problem. In Theorem 1.3 we showcase a novel result on almost
optimality of local minima of the parametrized problem obtained by analyzing the realization space
problem. Note that this approach of analyzing the loss surface is conceptually different from previous
approaches as in [11, 18, 23, 30, 31, 36].

1.1 Inverse Stability of Neural Networks

We will focus on neural networks with the ReLU activation function ρ(x) := x+, and adapt the
mathematically convenient notation from [33], which distinguishes between the parametrization of a
neural network and its realization. Let us define the set AL of all network architectures with depth
L ∈ N, input dimension d ∈ N, and output dimension D ∈ N by

AL := {(N0, . . . , NL) ∈ NL+1 : N0 = d,NL = D}. (1)

The architecture N ∈ AL simply specifies the number of neurons Nl in each of the L layers. We can
then define the space PN of parametrizations with architecture N ∈ AL as

PN :=
L∏
`=1

(
RN`×N`−1 × RN`

)
, (2)

the set P =
⋃
N∈AL

PN of all parametrizations with architecture in AL, and the realization map

R : P → C(Rd,RD)

Θ = ((A`, b`))
L
`=1 7→ R(Θ) := WL ◦ ρ ◦WL−1 . . . ρ ◦W1,

(3)

where W`(x) := A`x+ b` and ρ is applied component-wise. We refer to A` and b` as the weights
and biases in the `-th layer.
Note that a parametrization Θ ∈ Ω ⊆ P uniquely induces a realizationR(Θ) in the realization space
R(Ω), while in general there can be multiple non-trivially different parametrizations with the same
realization. To put it in mathematical terms, the realization map is not injective. Consider the basic
counterexample

Θ =
(
(A1, b1), . . . , (AL−1, bL−1), (0, 0)

)
and Γ =

(
(B1, c1), . . . , (BL−1, cL−1), (0, 0)

)
(4)

from [34] where regardless of A`, B`, b` and c` both realizations coincide withR(Θ) = R(Γ) = 0.
However, it it is well-known that the realization map is locally Lipschitz continuous, meaning that
close1 parametrizations in PN induce realizations which are close in the uniform norm on compact

1On the finite dimensional vector space PN all norms are equivalent and we take w.l.o.g. the maximum norm
‖Θ‖∞, i.e. the maximum of the absolute values of the entries of the A` and b`.
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sets, see e.g. [2, Lemma 14.6], [7, Theorem 4.2], and [34, Proposition 5.1].
We will shed light upon the inverse question. Given realizationsR(Γ) andR(Θ) that are close, do
the parametrizations Γ and Θ have to be close? In an abstract setting we measure the proximity of
realizations in the norm ‖ · ‖ of a Banach space B withR(P) ⊆ B, while concrete Banach spaces of
interest will be specified later. In view of the above counterexample we will, at the very least, need to
allow for the reparametrization of one of the networks, i.e. we arrive at the following question.

Given R(Γ) and R(Θ) that are close, does there exist a parametrization Φ with
R(Φ) = R(Θ) such that Γ and Φ are close?

As we will see in Section 2, this question is fundamentally connected to understanding the redundan-
cies and degeneracies of the way that neural networks are parametrized. By suitable regularization, i.e.
considering a subspace Ω ⊆ PN of parametrizations, we can avoid these pathologies and establish a
positive answer to the question above. For such a property the term inverse stability was introduced
in [34], which constitutes the only other research conducted in this area, as far as we are aware.

Definition 1.1 (Inverse stability). Let s, α > 0, N ∈ AL, and Ω ⊆ PN . We say that the realization
map is (s, α) inverse stable on Ω w.r.t. ‖ · ‖, if for all Γ ∈ Ω and g ∈ R(Ω) there exists Φ ∈ Ω with

R(Φ) = g and ‖Φ− Γ‖∞ ≤ s‖g −R(Γ)‖α. (5)

In Section 2 we will see why inverse stability fails w.r.t. the uniform norm. Therefore, we consider
a norm which takes into account not only the maximum error of the function values but also of
the gradients. In mathematical terms, we make use of the Sobolev norm ‖ · ‖W 1,∞(U) (on some
domain U ⊆ Rd) defined for every (locally) Lipschitz continuous function g : Rd → RD by
‖g‖W 1,∞(U) := max{‖g‖L∞(U), |g|W 1,∞(U)} with the Sobolev semi-norm | · |W 1,∞(U) given by

|g|W 1,∞(U) := ‖Dg‖L∞(U) = ess sup
x∈U

‖Dg(x)‖∞. (6)

See [15] for further information on Sobolev norms, and [8] for further information on the derivative
of ReLU networks.

1.2 Implications of inverse stability for neural network optimization

We proceed by demonstrating how inverse stability opens up new perspectives on the optimiza-
tion problem which arises in neural network training. Specifically, consider a loss function
L : C(Rd,RD) → [0,∞) on the space of continuous functions. For illustration, we take the com-
monly used mean squared error (MSE) which, for training data ((xi, yi))ni=1 ∈ (Rd×RD)n, is given
by

L(g) = 1
n

n∑
i=1

‖g(xi)− yi‖22, for g ∈ C(Rd,RD). (7)

Typically, the optimization problem is solved over some subspace of parametrizations Ω ⊆ PN , i.e.

min
Γ∈Ω
L(R(Γ)) = min

Γ∈Ω

1
n

n∑
i=1

‖R(Γ)(xi)− yi‖22. (8)

From an abstract point of view, by writing g = R(Γ) ∈ R(Ω), this is equivalent to the corresponding
optimization problem over the space of realizationsR(Ω), i.e.

min
g∈R(Ω)

L(g) = min
g∈R(Ω)

1
n

n∑
i=1

‖g(xi)− yi‖22. (9)

However, the loss landscape of the optimization problem (8) is only properly connected to the loss
landscape of the optimization problem (9) if the realization map is inverse stable on Ω. Otherwise
a realization g ∈ R(PN ) can be arbitrarily close to a global minimum in the realization space but
every parametrization Φ withR(Φ) = g is far away from the corresponding global minimum in the
parametrization space. Moreover, local minima of (8) in the parametrization space must correspond
to local minima of (9) in the realization space if and only if we have inverse stability.
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Proposition 1.2 (Parametrization minimum⇒ realization minimum). Let N ∈ AL, Ω ⊆ PN and
let the realization map be (s, α) inverse stable on Ω w.r.t. ‖ · ‖. Let Γ∗ ∈ Ω be a local minimum of
L ◦ R on Ω with radius r > 0, i.e. for all Φ ∈ Ω with ‖Φ− Γ∗‖∞ ≤ r it holds that

L(R(Γ∗)) ≤ L(R(Φ)). (10)

Then R(Γ∗) is a local minimum of L on R(Ω) with radius ( rs )1/α, i.e. for all g ∈ R(Ω) with
‖g −R(Γ∗)‖ ≤ ( rs )1/α it holds that

L(R(Γ∗)) ≤ L(g). (11)

See Appendix A.1.2 for a proof and Example A.1 for a counterexample in the case that inverse
stability is not given. Note that in (9) we consider a problem with convex loss function but non-convex
feasible set, see [34, Section 3.2]. This opens up new avenues of investigation using tools from
functional analysis and allows utilizing recent results [19, 34] exploring the topological properties of
neural network realization spaces.
As a concrete demonstration we provide with Theorem A.2 a strong result obtained on the realization
space, which estimates the quality of a local minimum based on its radius and the approximation
capabilities of the chosen architecture for a class of functions S. Specifically let C > 0, let
Λ: B → [0,∞) be a quasi-convex regularizer, and define

S := {f ∈ B : Λ(f) ≤ C}. (12)
We denote the sets of regularized parametrizations by

ΩN := {Φ ∈ PN : Λ(R(Φ)) ≤ C} (13)
and assume that the loss function L is convex and c-Lipschitz continuous on S. Note that virtually
all relevant loss functions are convex and locally Lipschitz continuous on C(Rd,RD). Employing
Proposition 1.2, inverse stability can then be used to derive the following result for the practically
relevant parametrized problem, showing that for sufficiently large architectures local minima of a
regularized neural network optimization problem are almost optimal.
Theorem 1.3 (Almost optimality of local parameter minima). Assume that S is compact in the
‖ · ‖-closure of R(P) and that for every N ∈ AL the realization map is (s, α) inverse stable on
ΩN w.r.t. ‖ · ‖ . Then for all ε, r > 0 there exists n(ε, r) ∈ AL such that for every N ∈ AL with
N1 ≥ n1(ε, r), . . . , NL−1 ≥ nL−1(ε, r) the following holds:
Every local minimum Γ∗ with radius at least r of minΓ∈ΩN

L(R(Γ)) satisfies
L(R(Γ∗)) ≤ min

Γ∈ΩN

L(R(Γ)) + ε. (14)

See Appendix A.1.2 for a proof and note that here it is important to have an inverse stability result,
where the parameters (s, α) do not depend on the size of the architecture, which we achieve for
L = 2 and B = W 1,∞. Suitable Λ would be Besov norms which constitute a common regularizer in
image and signal processing. Moreover, note that the required size of the architecture in Theorem 1.3
can be quantified, if one has approximation rates for S. In particular, this approach allows the use of
approximation results in order to explain the success of neural network optimization and enables a
combined study of these two aspects, which, to the best of our knowledge, has not been done before.
Unlike in recent literature, our result needs no assumptions on the sample set (incorporated in the loss
function, see (7)), in particular we do not require “overparametrization” with respect to the sample
size. Here the required size of the architecture only depends on the complexity of S, i.e. the class of
functions one wants to approximate, the radius of the local minima of interest, the Lipschitz constant
of the loss function, and the parameters of the inverse stability.
In the following we restrict ourselves to two-layer ReLU networks without biases, where we present
a proof for (4, 1/2) inverse stability w.r.t. the Sobolev semi-norm on a suitably regularized space of
parametrizations. Both the regularizations as well as the stronger norm (compared to the uniform
norm) will shown to be necessary in Section 2. We now present, in an informal way, a collection
of our main results. A short proof making the connection to the formal results can be found in
Appendix A.1.2.
Corollary 1.4 (Inverse stability and implications - colloquial). Suppose we are given data
((xi, yi))ni=1 ∈ (Rd × RD)n and want to solve a typical minimization problem for ReLU networks
with shallow architecture N = (d,N1, D), i.e.

min
Γ∈PN

1
n

n∑
i=1

‖R(Γ)(xi)− yi)‖22. (15)

4



First we augment the architecture to Ñ = (d+ 2, N1 + 1, D), while omitting the biases, and augment
the samples to x̃i = (xi1, . . . , x

i
d, 1,−1). Moreover, we assume that the parametrizations

Φ =
((

[a1| . . . |aN1+1]T , 0
)
, ([c1| . . . |cN1+1], 0)

)
∈ Ω ⊆ PÑ (16)

are regularized such that

C.1 the network is balanced, i.e. ‖ai‖∞ = ‖ci‖∞,

C.2 no non-zero weight vectors in the first layer are redundant, i.e. ai 6‖ aj ,

C.3 the last two coordinates of each weight vector ai are strictly positive.

Then for the new minimization problem

min
Φ∈Ω

1
n

n∑
i=1

‖R(Φ)(x̃i)− yi‖22 (17)

the following holds:

1. If Φ∗ is a local minimum of (17) with radius r, then R(Φ∗) is a local minimum of
ming∈R(Ω)

1
n

∑n
i=1 ‖g(x̃i)− yi‖22 with radius at least r

2

16 w.r.t. | · |W 1,∞ .

2. The global minimum of (17) is at least as good as the global minimum of (15), i.e.

min
Φ∈Ω

1
n

n∑
i=1

‖R(Φ)(x̃i)− yi‖22 ≤ min
Γ∈PN

1
n

n∑
i=1

‖R(Γ)(xi)− yi‖22. (18)

3. By further regularizing (17) in the sense of Theorem 1.3, we can estimate the quality of its
local minima.

This argument is not limited to the MSE loss function but works for any loss function based on
evaluating the realization. The omission of bias weights is standard in neural network optimization
literature [11, 13, 22, 24]. While this severely limits the functions that can be realized with a given
architecture, it is sufficient to augment the problem by one dimension in order to recover the full
range of functions that can be learned [1]. Here we augment by two dimensions, so that the third
regularization condition C.3 can be fulfilled without loosing range. Moreover, note that, for simplicity
of presentation, the regularization assumptions stated above are stricter than necessary and possible
relaxations are discussed in Section 3.

2 Obstacles to inverse stability - degeneracies of ReLU parametrizations

In the remainder of this paper we focus on shallow ReLU networks without biases and define the cor-
responding space of parametrizations with architecture N = (d,m,D) as NN := Rm×d × RD×m.
The realization map2 R is, for every Θ = (A,C) =

(
[a1| . . . |am]T , [c1| . . . |cm]

)
∈ NN , given by

Rd 3 x 7→ R(Θ)(x) = Cρ(Ax) =
m∑
i=1

ciρ(〈ai, x 〉). (19)

Note that each function x 7→ ciρ(〈ai, x〉) represents a so-called ridge function which is zero on the
half-space {x ∈ Rd : 〈ai, x〉 ≤ 0} and linear with constant derivative ciaTi ∈ RD × Rd on the other
half-space. Thus, the ai are the normal vectors of the separating hyperplanes {x ∈ Rd : 〈ai, x〉 = 0}
and consequently we refer to the weight vectors ai also as the directions of Θ. Moreover, for Θ ∈ NN
it holds that R(Θ)(0) = 0 and, as long as the domain of interest U ⊆ Rd contains the origin, the
Sobolev norm ‖ · ‖W 1,∞(U) is equivalent to its semi-norm, since

‖R(Θ)‖L∞(U) ≤
√
d diam(U)|R(Θ)|W 1,∞ , (20)

2This is a slight abuse of notation, justified by the the fact that R acts the same on PN with zero biases b1, b2
and weights A1 = A and A2 = C.
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Figure 1: The figure shows gk for k = 1, 2.

see also inequalities of Poincaré-Friedrichs type [14, Subsection 5.8.1]. Therefore, in the rest of the
paper we will only consider the Sobolev semi-norm3

|R(Θ)|W 1,∞(U) = ess sup
x∈U

∥∥∥ ∑
i∈[m] : 〈ai,x〉>0

cia
T
i

∥∥∥
∞
. (21)

In (21) one can see that in our setting | · |W 1,∞(U) is independent of U (as long as U contains a
neighbourhood of the origin) and will thus be abbreviated by | · |W 1,∞ .

2.1 Failure of inverse stability w.r.t. uniform norm

All proofs for this section can be found in Appendix A.2.2. We start by showing that inverse stability
fails w.r.t. the uniform norm. This example is adapted from [34, Theorem 5.2] and represents, to the
best of our knowledge, the only degeneracy which has already been observed before.
Example 2.1 (Failure due to exploding gradient). Let Γ := (0, 0) ∈ N(2,2,1) and gk ∈ R(N(2,2,1))
be given by (see Figure 1)

gk(x) := kρ(〈(k, 0), x〉)− kρ(〈(k,− 1
k2 ), x〉), k ∈ N. (22)

Then for every sequence (Φk)k∈N ⊆ N(2,2,1) withR(Φk) = gk it holds that

lim
k→∞

‖R(Φk)−R(Γ)‖L∞((−1,1)2) = 0 and lim
k→∞

‖Φk − Γ‖∞ =∞. (23)

In particular, note that inverse stability fails here even for a non-degenerate parametrization of the
zero function Γ = (0, 0). However, for this type of counterexample the magnitude of the gradient of
R(Φk) needs to go to infinity, which is our motivation for looking at inverse stability w.r.t. | · |W 1,∞ .

2.2 Failure of inverse stability w.r.t. Sobolev norm

In this section we present four degenerate cases where inverse stability fails w.r.t. | · |W 1,∞ . This
collection of counterexamples is complete in the sense that we can establish inverse stability under
assumptions which are designed to exclude these four pathologies.
Example 2.2 (Failure due to complete unbalancedness). Let r > 0, Γ :=

(
(r, 0), 0

)
∈ N(2,1,1) and

gk ∈ R(N(2,1,1)) be given by (see Figure 2)

gk(x) = 1
kρ(〈(0, 1), x〉), k ∈ N. (24)

Then for every k ∈ N and Φk ∈ N(2,1,1) withR(Φk) = gk it holds that

|R(Φk)−R(Γ)|W 1,∞ = 1
k and ‖Φk − Γ‖∞ ≥ r. (25)

This is a very simple example of a degenerate parametrization of the zero function, sinceR(Γ) = 0
regardless of choice of r. The issue here is that we can have a weight pair, i.e. ((r, 0), 0), where the
product is independent of the value of one of the parameters. Note that in Example A.4 one can see a
slightly more subtle version of this pathology by considering Γk :=

(
(k, 0), 1

k2

)
∈ N(2,1,1) instead.

In that case one could still get an inverse stability estimate for each fixed k; the parameters of inverse
3For m ∈ N we abbreviate [m] := {1, . . . ,m}.
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Figure 2: ShowsR(Γ) (r = 0.5) and g3. Figure 3: ShowsR(Γ) and g2.

stability (s, α) would however deteriorate with increasing k. In particular this demonstrates the need
for some sort of balancedness of the parametrization, i.e. control over ‖ci‖∞ and ‖ai‖∞ individually
relative to ‖ci‖∞‖ai‖∞.
Inverse stability is also prevented by redundant directions as the following example illustrates.
Example 2.3 (Failure due to redundant directions). Let

Γ :=

([
1 0
1 0

]
, (1, 1)

)
∈ N(2,2,1) (26)

and gk ∈ R(N(2,2,1)) be given by (see Figure 3)

gk(x) := 2ρ(〈(1, 0), x〉) + 1
kρ(〈(0, 1), x〉), k ∈ N. (27)

Then for every k ∈ N and Φk ∈ N(2,2,1) withR(Φk) = gk it holds that

|R(Φk)−R(Γ)|W 1,∞ = 1
k and ‖Φk − Γ‖∞ ≥ 1. (28)

The next example shows that not only redundant weight vectors can cause issues, but also weight
vectors of opposite direction, as they would allow for a (balanced) degenerate parametrization of the
zero function.
Example 2.4 (Failure due to opposite weight vectors 1). Let ai ∈ Rd, i ∈ [m], be pairwise linearly
independent with ‖ai‖∞ = 1 and

∑m
i=1 ai = 0. We define

Γ :=
(
[a1| . . . |am| − a1| . . . | − am]T ,

(
1, . . . , 1,−1, . . . ,−1

))
∈ N(d,2m,1). (29)

Now let v ∈ Rd with ‖v‖∞ = 1 be linearly independent to each ai, i ∈ [m], and let gk ∈
R(N(d,2m,1)) be given by (see Figure 4)

gk(x) = 1
kρ(〈v, x〉), k ∈ N. (30)

Then there exists a constant C > 0 such that for every k ∈ N and every Φk ∈ N(d,2m,1) with
R(Φk) = gk it holds that

|R(Φk)−R(Γ)|W 1,∞ = 1
k and ‖Φk − Γ‖∞ ≥ C. (31)

Thus we will need an assumption which prevents each individual Γ in our restricted set from having
pairwise linearly dependent weight vectors, i.e. coinciding hyperplanes of non-differentiability. This,
however, does not suffice as is demonstrated by the next example, which shows that the relation
between the hyperplanes of the two realizations matters.
Example 2.5 (Failure due to opposite weight vectors 2). We define the weight vectors

ak1 = (k, k, 1
k ), ak2 = (−k, k, 1

k ), ak3 = (0,−
√

2k, 1√
2k

), ck = (k, k,
√

2k) (32)

and consider the parametrizations (see Figure 5)

Γk :=
([
− ak1

∣∣− ak2∣∣− ak3]T , ck) ∈ N(3,3,1), Θk :=
([
ak1
∣∣ak2∣∣ak3]T , ck) ∈ N(3,3,1). (33)

Then for every k ∈ N and every Φk ∈ N(3,3,1) withR(Φk) = R(Θk) it holds that

|R(Φk)−R(Γk)|W 1,∞ = 3 and ‖Φk − Γk‖∞ ≥ k. (34)

Note that Γ and Θ need to have multiple exactly opposite weight vectors which add to something
small (compared to the size of the individual vectors), but not zero, since otherwise reparametrization
would be possible (see Lemma A.5).
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Figure 4: ShowsR(Γ) and g3 (a1 = (1,− 1
2 ),

a2 = (−1,− 1
2 ), a3 = (0, 1), v = (1, 0)).

Figure 5: Shows the weight vectors of Θ2

(grey) and Γ2 (black).

3 Inverse stability for two-layer ReLU Networks

We now establish an inverse stability result using assumptions designed to exclude the pathologies
from the previous section. First we present a rather technical theorem for output dimension one
which considers a parametrization Γ in the unrestricted parametrization space NN and a function g
in the the corresponding function spaceR(NN ). The aim is to use assumptions which are as weak as
possible, while allowing us to find a parametrization Φ of g, whose distance to Γ can be bounded
relative to |g −R(Γ)|W 1,∞ . We then continue by defining a restricted parametrization spaceN ∗N , for
which we get uniform inverse stability (meaning that we get the same estimate for every Γ ∈ N ∗N ).
Theorem 3.1 (Inverse stability at Γ ∈ NN ). Let d,m ∈ N, N := (d,m, 1), β ∈ [0,∞), let

Γ =
([
aΓ

1

∣∣ . . . ∣∣aΓ
m

]T
, cΓ
)
∈ NN , g ∈ R(NN ), and let IΓ := {i ∈ [m] : aΓ

i 6= 0}.
Assume that the following conditions are satisfied:

C.1 It holds for all i ∈ [m] with ‖cΓi aΓ
i ‖∞ ≤ 2|g −R(Γ)|W 1,∞ that |cΓi |, ‖aΓ

i ‖∞ ≤ β.

C.2 It holds for all i, j ∈ IΓ with i 6= j that
aΓ
j

‖aΓ
j ‖∞

6= aΓ
i

‖aΓ
i ‖∞

.

C.3 There exists a parametrization Θ =
([
aΘ

1

∣∣ . . . ∣∣aΘ
m

]T
, cΘ
)
∈ NN such thatR(Θ) = g and

(a) it holds for all i, j ∈ IΓ with i 6= j that
aΓ
j

‖aΓ
j ‖∞

6= − aΓ
i

‖aΓ
i ‖∞

and for all i, j ∈ IΘ with

i 6= j that
aΘ
j

‖aΘ
j ‖∞

6= − aΘ
i

‖aΘ
i ‖∞

,

(b) it holds for all i ∈ IΓ, j ∈ IΘ that aΓ
i

‖aΓ
i ‖∞

6= − aΘ
j

‖aΘ
j ‖∞

where IΘ := {i ∈ [m] : aΘ
i 6= 0}.

Then there exists a parametrization Φ ∈ NN with

R(Φ) = g and ‖Φ− Γ‖∞ ≤ β + 2|g −R(Γ)|
1
2

W 1,∞ . (35)

The proof can be found in Appendix A.3.2. Note that each of the conditions in the theorem above
corresponds directly to one of the pathologies in Section 2.2. Condition C.1, which deals with
unbalancedness, only imposes an restriction on the weight pairs whose product is small compared
to the distance of R(Γ) and g. As can be guessed from Example 2.2 and seen in the proof of
Theorem 3.1, such a balancedness assumption is in fact only needed to deal with degenerate cases,
where R(Γ) and g have parts with mismatching directions of negligible magnitude. Otherwise a
matching reparametrization is always possible. Note that a balanced Γ (i.e. |cΓi | = ‖aΓ

i ‖∞) satisfies
Condition C.1 with β = (2|g −R(Γ)|W 1,∞)1/2.
It is also possible to relax the balancedness assumption by only requiring |cΓi | and ‖Γi‖∞ to be close
to ‖cΓi aΓ

i ‖
1/2
∞ , which would still give a similar estimate but with a worse exponent. In order to see that

requiring balancedness does not restrict the space of realizations, observe that the ReLU is positively
homogeneous (i.e. ρ(λx) = λρ(x) for all λ ≥ 0, x ∈ R). Thus balancedness can always be achieved
simply by rescaling.
Condition C.2 requires Γ to have no redundant directions, the necessity of which is demonstrated by
Example 2.3. Note that prohibiting redundant directions does not restrict the space of realizations,
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see (87) in the appendix for details. From a practical point of view, enforcing this condition could
be achieved by a regularization term using a barrier function. Alternatively on could employ a
non-standard approach of combining such redundant neurons by changing one of them according
to (87) and either setting the other one to zero or removing it entirely4.
From a theoretical perspective the first two conditions are rather mild, in the sense that they only
restrict the space of parametrizations and not the corresponding space of realizations. Specifically we
can define the restricted parametrization space

N ′(d,m,D) := {Γ ∈ N(d,m,D) : ‖cΓi ‖∞ = ‖aΓ
i ‖∞ for all i ∈ [m] and Γ satisfies C.2} (36)

for which we have R(N ′N ) = R(NN ). Note that the above definition as well as the following
definition and theorem are for networks with arbitrary output dimensions, as the balancedness
condition makes this extension rather straightforward.
In order to satisfy Conditions C.3a and C.3b we need to restrict the parametrization space in a way
which also restricts the corresponding space of realizations. One possibility to do so is the following
approach, which also incorporates the previous restrictions as well as the transition to networks
without biases.
Definition 3.2 (Restricted parametrization space). Let N = (d,m,D) ∈ N3. We define

N ∗N :=
{

Γ ∈ N ′N : (aΓ
i )d−1, (a

Γ
i )d > 0 for all i ∈ [m]

}
. (37)

While we no longer haveR(N ∗N ) = R(NN ), Lemma A.6 shows that for every Θ ∈ P(d,m,D) there
exists Γ ∈ N ∗(d+2,m+1,D) such that for all x ∈ Rd it holds that

R(Γ)(x1, . . . , xd, 1,−1) = R(Θ)(x1, . . . , xd). (38)

In particular, this means that for any optimization problem over an unrestricted parametrization
space P(d,m,D), there is a corresponding optimization problem over the parametrization space
N ∗(d+2,m+1,D) whose solution is at least as good (see Corollary 1.4). Our main result now states that
for such a restricted parametrization space we have uniform (4, 1/2) inverse stability w.r.t. | · |W 1,∞ ,
a proof of which can be found in Appendix A.3.2.
Theorem 3.3 (Inverse stability on N ∗N ). Let N ∈ N3. For all Γ ∈ N ∗N and g ∈ R(N ∗N ) there exists
a parametrization Φ ∈ N ∗N with

R(Φ) = g and ‖Φ− Γ‖∞ ≤ 4|g −R(Γ)|
1
2

W 1,∞ . (39)

4 Outlook

This contribution investigates the potential insights which may be gained from studying the optimiza-
tion problem over the space of realizations, as well as the difficulties encountered when trying to
connect it to the parametrized problem. While Theorem 1.3 and Theorem 3.3 offer some compelling
preliminary answers, there are multiple ways in which they can be extended.
To obtain our inverse stability result for shallow ReLU networks we studied sums of ridge functions.
Extending this result to deep ReLU networks requires understanding their behaviour under com-
position. In particular, we have ridge functions which vanish on some half space, i.e. colloquially
speaking each neuron may “discard half the information” it receives from the previous layer. This
introduces a new type of degeneracy, which one will have to deal with.
Another interesting direction is an extension to inverse stability w.r.t. some weaker norm like ‖·‖L∞ or
a fractional Sobolev norm under stronger restrictions on the space of parametrizations (see Lemma A.7
for a simple approach using very strong restrictions).
Lastly, note that Theorem 1.3 is not specific to the ReLU activation function and thus also incentivizes
the study of inverse stability for any other activation function.
From an applied point of view, Conditions C.1-C.3 motivate the implementation of corresponding
regularization (i.e. penalizing unbalancedness and redundancy in the sense of parallel weight vectors)
in state-of-the-art networks, in order to explore whether preventing inverse stability leads to improved
performance in practice. Note that there already are results using, e.g. cosine similarity, as regularizer
to prevent parallel weight vectors [4, 35] as well as approaches, called Sobolev Training, reporting
better generalization and data-efficiency by employing a Sobolev norm based loss [12].

4This could be of interest in the design of dynamic network architectures [26, 28, 40] and is also closely
related to the co-adaption of neurons, to counteract which, dropout was invented [21].
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A Appendix - Proofs and Additional Material

A.1 Section 1

A.1.1 Additional Material

Example A.1 (Without inverse stability: parameter minimum 6=⇒ realization minimum). Consider
the two domains

D1 := {(x1, x2) ∈ (−1, 1)2 : x2 > |x1|}, D2 := {(x1, x2) ∈ (−1, 1)2 : x1 > |x2|}. (40)

For simplicity of presentation, assume we are given two samples x1 ∈ D1, x2 ∈ D2 with labels
y1 = 0, y2 = 1. The corresponding MSE is

L(g) = 1
2

(
(g(x1))2 + (g(x2)− 1)2

)
(41)

for every g ∈ C(R2,R). Let the zero realization be parametrized by5

Γ∗ = (0, (−1, 0)) ∈ N(2,1,1) (42)

with loss L(R(Γ∗)) = 1
2 . Note that changing each weight by less than 1

2 does not decrease the loss,
as this rotates the vector (−1, 0) by at most 45◦. Thus Γ∗ is a local minimum in the parametrization
space. However, the sequence of realizations given by

gk(x) = 1
kρ(x1 − x2) = R((1,−1), 1

k ) (43)

satisfies that
‖gk −R(Γ∗)‖W 1,∞((−1,1)2) = ‖gk‖W 1,∞((−1,1)2) ≤ 1

k (44)
and

L(gk) = 1
2 (gk(x2)− 1)2 < 1

2 = L(R(Γ∗)), (45)
see Figure 6. Accordingly, R(Γ∗) is not a local minimum in the realization space even w.r.t. the
Sobolev norm. The problem occurs, since inverse stability fails due to unbalancedness of Γ∗.

(x2, y2)

(x1, y1)

(x2, y2)

(x1, y1)

Figure 6: The figure shows the samples ((xi, yi))i=1,2, the realizationR(Γ∗) of the local parameter
minimum (left) and g3 (right).

Theorem A.2 (Quality of local realization minima). Assume that

sup
f∈S

inf
Φ∈ΩN

‖R(Φ)− f‖ < η (approximability). (46)

Let g∗ be a local minimum with radius r′ ≥ 2η of the optimization problem ming∈R(ΩN ) L(g). Then
it holds for every g ∈ R(ΩN ) (in particular for every global minimizer) that

L(g∗) ≤ L(g) + 2c
r′ ‖g∗ − g‖η. (47)

Proof. Define λ := r′

2‖g−g∗‖ and f := (1− λ)g∗ + λg ∈ S. Due to (46) there is Φ ∈ ΩN such that
‖R(Φ)− f‖ ≤ η and by the assumptions on g∗ and L it holds that

L(g∗) ≤ L(R(Φ)) ≤ L(f) + cη ≤ (1− λ)L(g∗) + λL(g) + cη.

This completes the proof. See Figure 7 for illustration.
5See notation in the beginning of Section 2.
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S

g
r′

f

R(Φ)

g∗

η
L(g)

L(f)

L(g∗)

L(RΦ)

cη

Figure 7: The figure illustrates the proof idea of Theorem A.2. Note that decreasing η, c, ‖g∗ − g‖ or
increasing r′ leads to a better local minimum due to the convexity of the loss function (red).

A.1.2 Proofs

Proof of Proposition 1.2. By Definition 1.1 we know that for every g ∈ R(Ω) with ‖g −R(Γ∗)‖ ≤
( rs )1/α there exists Φ ∈ Ω with

R(Φ) = g and ‖Φ− Γ∗‖∞ ≤ s‖g −R(Γ∗)‖α ≤ r. (48)

Therefore by assumption it holds that

L(R(Γ∗)) ≤ L(R(Φ)) = L(g). (49)

which proves the claim.

Proof of Theorem 1.3. Let ε, r > 0, define r′ := ( rs )1/α and η := min{( 2c
r′ diam(S))−1ε, r

′

2 }.
Then compactness of S implies the existence of an architecture n(ε, r) ∈ AL such that for every
N ∈ AL with N1 ≥ n1(ε, r), . . . , NL−1 ≥ nL−1(ε, r) the approximability assumption (46) is
satisfied. Let now Γ∗ be a local minimum with radius at least r of minΓ∈ΩN

L(R(Γ)). As we
assume uniform (s, α) inverse stability, Proposition 1.2 implies that R(Γ∗) is a local minimum of
the optimization problem ming∈R(ΩN ) L(g) with radius at least r′ = ( rs )1/α ≥ 2η. Theorem A.2
establishes the claim.

Proof of Corollary 1.4. We simply combine the main observations from our paper. First, note that
the assumptions imply that the restricted parametrization space Ω, which we are optimizing over, is
the space N ∗(d+2,N1+1,D) from Definition 3.2. Secondly, Theorem 3.3 implies that the realization
map is (4, 1/2) inverse stable on Ω. Thus, Proposition 1.2 directly proves Claim 1. For the proof
of Claim 2 we make use of Lemma A.6. It implies that for every Θ ∈ P(d,N1,D) there exists Γ ∈ Ω
such that it holds that

1
n

n∑
i=1

‖R(Γ)(x̃i)− yi‖2 = 1
n

n∑
i=1

‖R(Θ)(xi)− yi‖2, (50)

which proves the claim.

A.2 Section 2

A.2.1 Additional Material

Lemma A.3 (Reparametrization in case of linearly independent weight vectors). Let

Θ = (AΘ, CΘ) =
(
[aΘ

1 | . . . |aΘ
m]T , [cΘ1 | . . . |cΘm]

)
∈ N(d,m,D) (51)
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with linearly independent weight vectors (aΘ
i )mi=1 and mini∈[m] ‖cΘi ‖∞ > 0 and let

Φ = (AΦ, BΦ) =
(
[aΦ

1 | . . . |aΦ
m]T , [cΦ1 | . . . |cΦm]

)
∈ N(d,m,D) (52)

withR(Φ) = R(Θ). Then there exists a permutation π : [m]→ [m] such that for every i ∈ [m] there
exist λi ∈ (0,∞) with

aΦ
i = λia

Θ
π(i) and cΦi = 1

λi
cΘπ(i). (53)

This means that, up to reordering and rebalancing, Θ is the unique parametrization ofR(Θ).

Proof. First we define for every s ∈ {0, 1}m the corresponding open orthant

Os := {x ∈ Rm : x1(2s1 − 1) > 0, . . . , xm(2sm − 1) > 0} ⊆ Rm. (54)

By assumption AΘ has rank m, i.e. is surjective, and therefore the preimages of the orthants

Hs := {x ∈ Rd : AΘx ∈ Os} ⊆ Rd, s ∈ {0, 1}m, (55)

are disjoint, non-empty open sets. Note that on each Hs the realizationR(Θ) is linear with

R(Θ)(x) = CΘ diag(s)AΘx and DR(Θ)(x) = CΘ diag(s)AΘ. (56)

Since AΘ has full row rank, it has a right inverse. Thus we have for s, t ∈ {0, 1}m that

CΘ diag(s)AΘ = CΘ diag(t)AΘ =⇒ CΘ diag(s) = CΘ diag(t). (57)

Note that CΘ diag(s) = CΘ diag(t) can only hold if s = t due to the assumptions that ‖cΘi ‖∞ 6= 0
for all i ∈ [m]. Thus the above establishes that for s, t ∈ {0, 1}m it holds that

CΘ diag(s)AΘ = CΘ diag(t)AΘ if and only if s = t, (58)

i.e. R(Θ) has different derivatives on its 2m linear regions. In order for R(Φ) to have matching
linear regions and matching derivatives on each one of them, there must exist a permutation matrix
P ∈ {0, 1}m×m such that for every s ∈ {0, 1}m

PAΦx ∈ Os for every x ∈ Hs. (59)

Thus, there exist (λi)
m
i=1 ∈ (0,∞)m such that

AΦ = diag(λ1, . . . , λm)PTAΘ. (60)

The assumption that DR(Θ) = DR(Ψ), together with (56) for s = (1, . . . , 1), implies that

CΦ = CΘP diag( 1
λ1
, . . . , 1

λm
), (61)

which proves the claim.

Example A.4 (Failure due to unbalancedness). Let

Γk :=
(
(k, 0), 1

k2

)
∈ N(2,1,1), k ∈ N, (62)

and gk ∈ R(N(2,1,1)) be given by

gk(x) = 1
kρ(〈(0, 1), x〉), k ∈ N. (63)

The only way to parametrize gk is gk(x) = R(Φk)(x) = cρ(〈(0, a), x〉) with a, c > 0 (see
Lemma A.3), and we have

|R(Φk)−R(Γk)|W 1,∞ ≤ 1
k and ‖Φk − Γk‖∞ ≥ k. (64)

Lemma A.5. Let d,m ∈ N and ai ∈ Rd, i ∈ [m], such that
∑
i∈[m] ai = 0. Then it holds for all

x ∈ Rd that ∑
i∈[m]

ρ(〈ai, x〉) =
∑
i∈[m]

ρ(〈−ai, x〉). (65)

Proof. By assumption we have for all x ∈ Rd that
∑
i∈[m]〈ai, x〉 = 0. This implies for all x ∈ Rd

that ∑
i∈[m] : 〈ai,x〉≥0

〈ai, x〉 −
∑
i∈[m]

〈ai, x〉 =
∑

i∈[m] : 〈ai,x〉≤0

−〈ai, x〉, (66)

which proves the claim.
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A.2.2 Proofs

Proof of Example 2.1. We have for every k ∈ N that

‖gk‖L∞((−1,1)2) ≤ 1
k and |gk|W 1,∞ = k2. (67)

Assume that there exists sequence of networks (Φk)k∈N ⊆ N(2,2,1) with R(Φk) = gk and with
uniformly bounded parameters, i.e. supk∈N ‖Φk‖∞ < ∞. Note that there exists a constant C (de-
pending only on the network architecture) such that the realizationsR(Φk) are Lipschitz continuous
with

Lip(R(Φk)) ≤ C‖Φk‖2∞
(see [34, Prop. 5.1]). It follows that |R(Φk)|W 1,∞ ≤ Lip(R(Φk)) is uniformly bounded which
contradicts (67).

Proof of Example 2.2. The only way to parametrize gk is gk(x) = R(Φk)(x) = cρ(〈(0, a), x〉) with
a, c > 0 (see also Lemma A.3), which proves the claim.

Proof of Example 2.3. Any parametrization of gk must be of the form Φk := (A, c) ∈ R2×2 ×R1×2

with

A =

[
a1 0
0 a2

]
or A =

[
0 a2

a1 0

]
(68)

(see Lemma A.3). Thus it holds that ‖Φk − Γ‖∞ ≥ ‖(1, 0) − (0, a2)‖∞ ≥ 1 and the proof is
completed by direct calculation.

Proof of Example 2.4. Let Φk be an arbitrary parametrization of gk given by

Φk =
(
[ã1|ã2| . . . |ã2m]T , c̃

)
∈ N(d,2m,1) (69)

As gk has two linear regions separated by the hyperplane with normal vector v, there exists j ∈ [2m]
and λ ∈ R \ {0} such that

ãj = λv. (70)

The distance of any weight vector ±ai of Γ to the line {λv : λ ∈ R} can be lower bounded by

‖ ± ai − λv‖2∞ ≥ 1
d‖ ± ai − λv‖

2
2 ≥ 1

d2

[
‖ai‖22‖v‖22 − 〈ai, v〉2

]
, i ∈ [m], λ ∈ R. (71)

The Cauchy-Schwarz inequality and the linear independence of v to each ai, i ∈ [m], establishes
that C := 1

d2 mini∈[m]

[
‖ai‖22‖v‖22 − 〈ai, v〉2

]
> 0. Together with the fact that R(Γ) = 0, this

completes the proof.

Proof of Example 2.5. Since x = ρ(x)− ρ(−x) for every x ∈ R, the difference of the realizations
is linear, i.e.

R(Θk)−R(Γk) = 〈ck1ak1 + ck2a
k
2 + ck3a

k
3 , x〉 = 〈(0, 0, 3), x〉 (72)

and thus the difference of the gradients is constant, i.e.

|R(Θk)−R(Γk)|W 1,∞ = 3, k ∈ N. (73)

However, regardless of the balancing and reordering of the weight vectors aki , i ∈ [3], we have that

‖Θk − Γk‖∞ ≥ k. (74)

By Lemma A.3, up to balancing and reordering, there does not exist any other parametrization of Θk

with the same realization.
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A.3 Section 3

A.3.1 Additional Material

Lemma A.6. Let d,m,D ∈ N and Θ ∈ P(d,m,D). Then there exists Γ ∈ N ∗(d+2,m+1,D) such that
for all x ∈ Rd it holds that

R(Γ)(x1, . . . , xd, 1,−1) = R(Θ)(x). (75)

Proof. Since Θ ∈ P(d,m,D) it can be written as

Θ =
((
A, b

)
,
(
c, e
))

=
((

[a1| . . . |am]T , b
)
, ([c1| . . . |cm], e)

)
(76)

with

R(Θ)(x) =
m∑
i=1

ciρ(〈ai, x〉+ bi) + e, x ∈ Rd, (77)

where A ∈ Rm×d, b ∈ Rm, C ∈ RD×m, and e ∈ RD. We define for i ∈ [m]

b+i :=

{
bi + 1 : bi ≥ 0

1 : bi < 0
, and b−i :=

{
1 : bi ≥ 0

−bi + 1 : bi < 0
(78)

and observe that b+i > 0, b−i > 0, and b+i − b
−
i = bi. For i ∈ [m] let

c∗i :=

{
ci : ‖ci‖∞ 6= 0

(1, . . . , 1) : ‖ci‖∞ = 0
(79)

and

a∗i :=

{
(ai,1, . . . , ai,d, b

+
i , b
−
i ) : ‖ci‖∞ 6= 0

(0, . . . , 0, 1, 1) : ‖ci‖∞ = 0
. (80)

Note that we have

R(Θ)(x) =
m∑
i=1

c∗i ρ(〈a∗i , (x1, . . . , xd, 1,−1)〉) + e, x ∈ Rd. (81)

To include the second bias e let

c∗m+1 :=

{
e : e 6= 0

(1, . . . , 1) : e = 0
, and a∗m+1 :=

{
(0, . . . , 0, 2, 1) : e 6= 0

(0, . . . , 0, 1, 1) : e = 0
. (82)

In order to balance the network, let aΓ
i = a∗i (

‖c∗i ‖∞
‖a∗i ‖∞

)1/2 and cΓi = c∗i (
‖a∗i ‖∞
‖c∗i ‖∞

)1/2 for every i ∈ [m+1].
Then the claim follows by direct computation.

A.3.2 Proofs

Proof of Theorem 3.1. Without loss of generality6, we can assume for all i ∈ [m] that aΘ
i = 0 if and

only if cΘi = 0. We now need to show that there always exists a way to reparametrize R(Θ) such
that the architecture remains the same and (35) is satisfied. For simplicity of notation we will write
r := |g −R(Γ)|W 1,∞ throughout the proof. Let fΓ

i : Rd → R resp. fΘ
i : Rd → R be the part that is

contributed by the i-th neuron, i.e.

R(Γ) =
m∑
i=1

fΓ
i with fΓ

i (x) := cΓi ρ(〈aΓ
i , x〉), (83)

g =R(Θ) =
m∑
i=1

fΘ
i with fΘ

i (x) := cΘi ρ(〈aΘ
i , x〉). (84)

6In case one of them is zero, the other one can be set to zero without changing the realization.
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Further let
H+

Γ,i := {x ∈ Rd : 〈aΓ
i , x〉 > 0},

H0
Γ,i := {x ∈ Rd : 〈aΓ

i , x〉 = 0},
H−Γ,i := {x ∈ Rd : 〈aΓ

i , x〉 < 0}.
(85)

By conditions C.2 and C.3a we have for all i, j ∈ IΓ that

i 6= j =⇒ H0
Γ,i 6= H0

Γ,j . (86)

Further note that we can reparametrizeR(Θ) such that the same holds there. To this end observe that

cρ(〈a, x〉) + c′ρ(〈a′, x〉) = (c+ c′ ‖a
′‖∞
‖a‖∞ )ρ(〈a, x〉), (87)

given that a′ is a positive multiple of a. Specifically, let (Jk)Kk=1 be a partition of IΘ (i.e. Jk 6= ∅,
∪Kk=1Jk = IΘ and Jk ∩ Jk′ = ∅ if k 6= k′), such that for all k ∈ [K] it holds that

i, j ∈ Jk =⇒
aΘ
j

‖aΘ
j ‖∞

=
aΘ
i

‖aΘ
i ‖∞

. (88)

We denote by jk the smallest element in Jk and make the following replacements, for all i ∈ IΘ,
without changing the realization of Θ:

aΘ
i 7→ aΘ

i , c
Θ
i 7→

∑
j∈Jk

cΘj
‖aΘ

j ‖∞
‖aΘ

jk
‖∞
, if i ∈ Jk and i = jk, (89)

aΘ
i 7→ 0, cΘi 7→ 0, if i ∈ Jk and i 6= jk. (90)

Note that we also update the set IΘ := {i ∈ [m] : aΘ
i 6= 0} accordingly. Let now

H+
Θ,i := {x ∈ Rd : 〈aΘ

i , x〉 > 0},

H0
Θ,i := {x ∈ Rd : 〈aΘ

i , x〉 = 0},
H−Θ,i := {x ∈ Rd : 〈aΘ

i , x〉 > 0}.
(91)

By construction and condition C.3a, we have for all i, j ∈ IΘ that

i 6= j =⇒ H0
Θ,i 6= H0

Θ,j . (92)

Note that we now have a parametrization Θ of g, where all weight vectors aΘ
i are either zero (in

which case the corresponding cΘi are also zero) or pairwise linearly independent to each other nonzero
weight vector.
Next, for s ∈ {0, 1}m, let

Hs
Γ :=

⋂
i∈[m] : si=1

H+
Γ,i ∩

⋂
i∈[m] : si=0

H−Γ,i,

Hs
Θ :=

⋂
i∈[m] : si=1

H+
Θ,i ∩

⋂
i∈[m] : si=0

H−Θ,i,
(93)

and

SΓ := {s ∈ {0, 1}m : Hs
Γ 6= ∅}, SΘ := {s ∈ {0, 1}m : Hs

Θ 6= ∅}. (94)

The Hs
Γ, s ∈ SΓ, and Hs

Θ, s ∈ SΘ, are the interiors of the different linear regions ofR(Γ) andR(Θ)
respectively. Next observe that the derivatives of fΓ

i , f
Θ
i are (a.e.) given by

DfΓ
i (x) = 1H+

Γ,i
(x) cΓi a

Γ
i , DfΘ

i (x) = 1H+
Θ,i

(x) cΘi a
Θ
i . (95)

Note that for every x ∈ Hs
Γ, y ∈ Hs

Θ we have

DR(Γ)(x) =
∑
i∈[m]

DfΓ
i (x) =

∑
i∈[m]

sic
Γ
i a

Γ
i =: ΣΓ

s ,

DR(Θ)(y) =
∑
i∈[m]

DfΘ
i (y) =

∑
i∈[m]

sic
Θ
i a

Θ
i =: ΣΘ

s .
(96)
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Next we use that for s ∈ SΓ, t ∈ SΘ we have |ΣΓ
s − ΣΘ

t | ≤ r if HΓ
s ∩ HΘ

t 6= ∅, and compare
adjacent linear regions ofR(Γ)−R(Θ). Let now i ∈ IΓ and consider the following cases:
Case 1: We have H0

Γ,i 6= H0
Θ,j for all j ∈ IΘ. This means that the DfΘ

k , k ∈ [m], and the DfΓ
k ,

k ∈ [m]\{i}, are the same on both sides near the hyperplane H0
Γ,i, while the value of DfΓ

i is 0 on
one side and cΓi a

Γ
i on the other. Specifically, there exist s+, s− ∈ SΓ and s∗ ∈ SΘ such that s+

i = 1,
s−i = 0, s+

j = s−j for all j ∈ [m]\{i}, and Hs+

Γ ∩Hs∗

Θ 6= ∅, Hs−

Γ ∩Hs∗

Θ 6= ∅, which implies

‖cΓi aΓ
i ‖∞ = ‖(ΣΓ

s+ − ΣΘ
s∗)− (ΣΓ

s− − ΣΘ
s∗)‖∞ ≤ 2r. (97)

Case 2: There exists j ∈ IΘ such that H0
Γ,i = H0

Θ,j . Note that (86) ensures that H0
Γ,i 6= H0

Γ,k for
k ∈ [m] \ {i} and (92) ensures that H0

Θ,j 6= H0
Γ,k for k ∈ [m] \ {j}. Moreover, Condition C.3b

implies H+
Γ,i = H+

Θ,j . This means that the DfΘ
k , k ∈ [m]\{j}, and the DfΓ

k , k ∈ [m]\{i}, are the
same on both sides near the hyperplane H0

Γ,i = H0
Θ,j , while the values of DfΓ

i and DfΘ
j change.

Specifically there exist s+, s− ∈ SΓ and t+, t− ∈ SΘ such that s+
i = 1, s−i = 0, s+

k = s−k for all
k ∈ [m]\{i}, t+j = 1, t−j = 0, t+k = t−k for all k ∈ [m]\{j} and HΓ

s+ ∩H
Θ
t+ 6= ∅, H

Γ
s− ∩H

Θ
t− 6= ∅,

which implies

‖cΓi aΓ
i − cΘj aΘ

j ‖∞ = ‖(ΣΓ
s+ − ΣΘ

t+)− (ΣΓ
s− − ΣΘ

t−)‖∞ ≤ 2r. (98)

Analogously we get for i ∈ IΘ that H0
Θ,i 6= H0

Γ,j for all j ∈ IΓ implies ‖cΘi aΘ
i ‖∞ ≤ 2r. Next let

I1 := {i ∈ [m] : H0
Γ,i 6= H0

Θ,j for all j ∈ IΘ} ∪ {i ∈ [m] : aΓ
i = 0} (99)

and

I2 := [m] \ I1 = {i ∈ [m] : ∃ j ∈ IΘ such that H+
Γ,i = H+

Θ,j}. (100)

Colloquially speaking, this shows that for every fΓ
i with i ∈ I2 there is a fΘ

j with exactly matching
half-spaces, i.e. H+

Γ,i = H+
Θ,j , and approximately matching gradients (Case 2). Moreover, all

unmatched fΓ
i and fΘ

j must have a small gradient (Case 1).
Specifically, the above establishes that there exists a permutation π : [m]→ [m] such that for every
i ∈ I1 it holds that

‖cΓi aΓ
i ‖∞, ‖cΘπ(i)a

Θ
π(i)‖∞ ≤ 2r, (101)

and for every i ∈ I2 that

‖cΓi aΓ
i − cΘπ(i)a

Θ
π(i)‖∞ ≤ 2r. (102)

We make the following replacements, for all i ∈ [m], without changing the realization of Θ:

aΘ
i → aΘ

π(i), cΘi → cΘπ(i). (103)

In order to balance the weights of Θ for I1, we further make the following replacements, for all i ∈ I1
with aΘ

i 6= 0, without changing the realization of Θ:

aΘ
i → (

|cΘi |
‖aΘ

i ‖∞
)1/2 aΘ

i , cΘi → (
‖aΘ

i ‖∞
|cΘi |

)1/2 cΘi . (104)

This implies for every i ∈ I1 that

|cΘi |, ‖aΘ
i ‖∞ ≤ (2r)1/2. (105)

Moreover, due to Condition C.1, we get for every i ∈ I1 that

|cΓi |, ‖aΓ
i ‖∞ ≤ β. (106)

Thus we get for every i ∈ I1 that

|cΘi − cΓi |, ‖aΘ
i − aΓ

i ‖∞ ≤ β + (2r)1/2. (107)
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Next we (approximately) match the balancing of (cΘi , a
Θ
i ) to the balancing of (cΓi , a

Γ
i ) for i ∈ I2,

in order to derive estimates on |cΘi − cΓi | and ‖aΘ
i − aΓ

i ‖∞ from (102). Specifically, we make the
following replacements, for all i ∈ I2, without changing the realization of Θ:

aΘ
i → (

|cΘi |
‖aΘ

i ‖∞
)1/2 aΘ

i , cΘi → (
‖aΘ

i ‖∞
|cΘi |

)1/2 cΘi , if ‖cΓi aΓ
i ‖∞ ≤ 2r, (108)

aΘ
i →

cΘi
cΓi
aΘ
i , cΘi → cΓi , if ‖cΓi aΓ

i ‖∞ > 2r, |cΓi | > ‖aΓ
i ‖∞, (109)

aΘ
i → aΓ

i , cΘi →
‖aΘ
i ‖∞
‖aΓ
i ‖∞

cΘi , if ‖cΓi aΓ
i ‖∞ > 2r, |cΓi | < ‖aΓ

i ‖∞, (110)

aΘ
i → (

|cΘi |
‖aΘ

i ‖∞
)1/2 aΘ

i , cΘi → (
‖aΘ

i ‖∞
|cΘi |

)1/2 cΘi , if ‖cΓi aΓ
i ‖∞ > 2r, |cΓi | = ‖aΓ

i ‖∞. (111)

Let now i ∈ I2 and consider the following cases:
Case A: We have ‖cΓi aΓ

i ‖∞ ≤ 2r which, together with (102), implies ‖cΘi aΘ
i ‖∞ ≤ 4r. Due to (108)

and Condition C.1 it follows that

|cΘi − cΓi |, ‖aΘ
i − aΓ

i ‖∞ ≤ β + 2r1/2. (112)

Case B.1: We have ‖cΓi aΓ
i ‖∞ > 2r and |cΓi | > ‖aΓ

i ‖∞ which ensures |cΓi | > ‖cΓi aΓ
i ‖

1/2
∞ . Due to

(109) we get cΘi = cΓi and it follows that

‖aΘ
i − aΓ

i ‖∞ =
1

|cΓi |
‖cΘi aΘ

i − cΓi aΓ
i ‖∞ ≤

2r

‖cΓi aΓ
i ‖

1/2
∞
≤ (2r)1/2. (113)

Case B.2: We have ‖cΓi aΓ
i ‖∞ > 2r and |cΓi | < ‖aΓ

i ‖∞ which ensures ‖aΓ
i ‖ > ‖cΓi aΓ

i ‖
1/2
∞ . Due to

(110) we get aΘ
i = aΓ

i and it follows that

|cΘi − cΓi | =
1

‖aΓ
i ‖∞

‖cΘi aΘ
i − cΓi aΓ

i ‖∞ ≤
2r

‖cΓi aΓ
i ‖

1/2
∞
≤ (2r)1/2. (114)

Case B.3: We have ‖cΓi aΓ
i ‖∞ > 2r and |cΓi | = ‖aΓ

i ‖∞. Note that ‖cΓi aΓ
i ‖∞ > 2r and (102) ensure

that sgn(cΘi ) = sgn(cΓi ), and that for x, y > 0 it holds that |x− y| ≤ |x2 − y2|1/2. Combining this
with the definition of I2, the reverse triangle inequality, and (111) implies that

‖aΘ
i − aΓ

i ‖∞ ≤ (2r)1/2 and |cΘi − cΓi
∣∣ ≤ (2r)1/2. (115)

Combining (107), (112), (113), (114), and (115) establishes that

‖Θ− Γ‖∞ ≤ β + 2r
1
2 , (116)

which completes the proof.

Proof of Theorem 3.3. Let Θ ∈ N ∗N be a parametrization of g, i.e.R(Θ) = g. We write

Γ =
(

aΓ
1
...

aΓ
m

 , [cΓ1 ∣∣ . . . ∣∣cΓm]), Θ =
(

aΘ
1
...

aΘ
m

 , [cΘ1 ∣∣ . . . ∣∣cΘm]) ∈ N ∗(d,m,D) (117)

and r := |g −R(Γ)|W 1,∞ . For convenience of notation we consider the weight vectors aΓ
i , aΘ

i here
as row vectors in order to write the derivatives of the ridge functions as cΓi a

Γ
i , c

Θ
i a

Θ
i ∈ RD×d without

transposing.
We will now adjust the approach used in the proof of Theorem 3.1 to work for multi-dimensional
outputs in the case of balanced networks. By definition of N ∗N , the (aΘ

i )mi=1 are pairwise linearly
independent and we can skip the first reparametrization step in (89) and (90).
The following “hyperplane-jumping” argument, which was used to get the estimates (97) and (98),
works analogously since Conditions C.2 and C.3 are fulfilled by definition of N ∗N . This establishes
the existence of a permutation π : [m]→ [m] and sets I1, I2 ⊆ [m], as defined as in (99) and (100),
such that for every i ∈ I1 it holds that

‖cΓi aΓ
i ‖∞, ‖cΘπ(i)a

Θ
π(i)‖∞ ≤ 2r, (118)
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and for every i ∈ I2 that

‖cΓi aΓ
i − cΘπ(i)a

Θ
π(i)‖∞ ≤ 2r. (119)

As in (103), we make the following replacements, for all i ∈ [m], without changing the realization of
Θ:

aΘ
i → aΘ

π(i), cΘi → cΘπ(i). (120)

Note that the weights of Θ are already balanced, i.e. we have for every i ∈ [m] that

‖cΘi ‖∞ = ‖aΘ
i ‖∞ = ‖cΘi ‖1/2∞ ‖aΘ

i ‖1/2∞ = ‖cΘi aΘ
i ‖1/2∞ . (121)

Thus, we can skip the reparametrization step in (104) and get directly for every i ∈ I1 that

‖cΘi − cΓi ‖∞ ≤ ‖cΘi ‖∞ + ‖cΓi ‖∞ = ‖cΘi aΘ
i ‖1/2∞ + ‖cΓi aΓ

i ‖1/2∞ ≤ 2(2r)1/2 (122)

and analogously ‖aΘ
i − aΓ

i ‖∞ ≤ 2(2r)1/2.
For i ∈ I2 we need to slightly deviate from the proof of Theorem 3.1. We can skip the reparametriza-
tion step in (108)-(111) due to balancedness and need to distinguish three cases:
Case A.1: We have ‖cΓi aΓ

i ‖∞ ≤ 2r which, together with (119), implies ‖cΘi aΘ
i ‖∞ ≤ 4r. Due to

balancedness it follows that

‖cΘi − cΓi ‖∞, ‖aΘ
i − aΓ

i ‖∞ ≤ 4r1/2. (123)

Case A.2: We have ‖cΘi aΘ
i ‖∞ ≤ 2r which, together with (119), implies ‖cΓi aΓ

i ‖∞ ≤ 4r. Again it
follows that

‖cΘi − cΓi ‖∞, ‖aΘ
i − aΓ

i ‖∞ ≤ 4r1/2. (124)

Case B: We have ‖cΘi aΘ
i ‖∞ > 2r and ‖cΓi aΓ

i ‖∞ > 2r. Due to the definition of I2 there exists
ei ∈ Rd, λΓ

i , λ
Θ
i ∈ (0,∞) with ‖ei‖∞ = 1, aΘ

i = λΘ
i ei, and aΓ

i = λΓ
i ei. As in (115) we obtain that

‖aΘ
i − aΓ

i ‖∞ = ‖ei‖∞|λΘ
i − λΓ

i | ≤ |(λΘ
i )2 − (λΓ

i )2|1/2

= |‖cΘi ‖∞‖aΘ
i ‖∞ − ‖cΓi ‖∞‖aΓ

i ‖∞|1/2

≤ ‖cΘi aΘ
i − cΓi aΓ

i ‖1/2∞ ≤ (2r)1/2.

(125)

Let now w.l.o.g. ‖aΓ
i ‖∞ ≥ ‖aΘ

i ‖∞ (otherwise we switch their roles in the following) which implies
that λΓ

i = ∆i + λΘ
i with ∆i = λΓ

i − λΘ
i ≥ 0. Then it holds that

‖cΘi − cΓi ‖∞ =
‖cΘi aΓ

i − cΓi aΓ
i ‖∞

‖aΓ
i ‖∞

≤ ‖c
Θ
i a

Γ
i − cΘi aΘ

i ‖∞ + ‖cΘi aΘ
i − cΓi aΓ

i ‖∞
‖aΓ
i ‖∞

≤ ‖c
Θ
i ‖∞|λΓ

i − λΘ
i |+ 2r

λΓ
i

=
λΘ
i ∆i + 2r

∆i + λΘ
i

=
(2r)1/2(∆i + λΘ

i )− (λΘ
i − (2r)1/2)((2r)1/2 −∆i)

∆i + λΘ
i

≤ (2r)1/2.

(126)

The last step holds due to (125) and the balancedness of Θ which ensure that

λΘ
i = ‖cΘi aΘ

i ‖1/2∞ > (2r)1/2 ≥ |λΘ
i − λΓ

i | = ∆i. (127)

This completes the proof.

A.4 Section 4

A.4.1 Additional Material

Lemma A.7 (Inverse stability for fixed weight vectors). Let N = (d,m,D) ∈ N3, let A =
[a1| . . . |am]T ∈ Rm×d with

ai
‖ai‖∞

6= aj
‖aj‖∞

and (ai)d−1, (ai)d > 0 (128)
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for all i ∈ [m], j ∈ [m] \ {i}, and define

NA
N :=

{
Γ ∈ NN : aΓ

i = λiai with λi ∈ (0,∞) and ‖cΓi ‖∞ = ‖aΓ
i ‖∞ for all i ∈ [m]

}
. (129)

Then for every B ∈ (0,∞) there is CB ∈ (0,∞) such that we have uniform (CB , 1/2) inverse sta-
bility w.r.t. ‖ · ‖L∞((−B,B)d). That is, for all Γ ∈ NA

N and g ∈ R(NA
N ) there exists a parametrization

Φ ∈ NA
N with

R(Φ) = g and ‖Φ− Γ‖∞ ≤ CB‖g −R(Γ)‖
1
2

L∞((−B,B)d)
. (130)

Proof. Note that the non-zero angle between the hyperplanes given by the weight vectors (ai)
m
i=1

establishes that the minimal perimeter inside each linear region intersected with (−B,B)d is lower
bounded. As the realization is linear on each region, this implies the existence of a constant
C ′B ∈ (0,∞), such that for every Θ ∈ NA

N it holds that

|R(Θ)|W 1,∞ ≤ C ′B‖R(Θ)‖L∞((−B,B)d). (131)

Now note that for NA
N we can get the same uniform (4, 1/2) inverse stability result w.r.t. | · |W 1,∞

as in Theorem 3.3 by choosing π to be the identity in (118). Together with (131) this implies the
claim.
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ABSTRACT

Statistical learning theory provides bounds on the necessary number of training
samples needed to reach a prescribed accuracy in a learning problem formulated
over a given target class. This accuracy is typically measured in terms of a gen-
eralization error, that is, an expected value of a given loss function. However, for
several applications — for example in a security-critical context or for problems in
the computational sciences — accuracy in this sense is not sufficient. In such cases,
one would like to have guarantees for high accuracy on every input value, that is,
with respect to the uniform norm. In this paper we precisely quantify the number
of training samples needed for any conceivable training algorithm to guarantee a
given uniform accuracy on any learning problem formulated over target classes
containing (or consisting of) ReLU neural networks of a prescribed architecture.
We prove that, under very general assumptions, the minimal number of training
samples for this task scales exponentially both in the depth and the input dimension
of the network architecture.

1 INTRODUCTION

The basic goal of supervised learning is to determine a function1 u : r0, 1sd Ñ R from (possibly
noisy) samples pupx1q, . . . , upxmqq. As the function u can take arbitrary values between these
samples, this problem is, of course, not solvable without any further information on u. In practice,
one typically leverages domain knowledge to estimate the structure and regularity of u a priori, for
instance, in terms of symmetries, smoothness, or compositionality. Such additional information
can be encoded via a suitable target class U Ă Cpr0, 1sdq that u is known to be a member of. We
are interested in the optimal accuracy for reconstructing u that can be achieved by any algorithm
which utilizes m point samples. To make this mathematically precise, we assume that this accuracy
is measured by a norm } ¨ }Y of a suitable Banach space Y Ą U . Formally, an algorithm can thus
be described by a map A : U Ñ Y that can query the function u at m points xi and that outputs a
function Apuq with Apuq « u (see Section 2.1 for a precise definition that incorporates adaptivity
and stochasticity). We will be interested in upper and lower bounds on the accuracy that can be
reached by any such algorithm — equivalently, we are interested in the minimal number m of point
samples needed for any algorithm to achieve a given accuracy ε for every u P U . This m would then
establish a fundamental benchmark on the sample complexity (and the algorithmic complexity) of
learning functions in U to a given accuracy.

The choice of the Banach space Y — in other words how we measure accuracy — is very crucial
here. For example, statistical learning theory provides upper bounds on the optimal accuracy in terms
of an expected loss, i.e., with respect to Y “ L2pr0, 1sd,dPq, where P is a (generally unknown)

1In what follows, the input domain r0, 1sd could be replaced by more general domains (for example Lipschitz
domains) without any change in the later results. The unit cube r0, 1sd is merely chosen for concreteness.
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Figure 1: Even though the training of neural networks from data samples may achieve a small error
on average, there are typically regions in the input space where the pointwise error is large. The target
function in this plot is given by x ÞÑ logpsinp50xq` 2q` sinp5xq (based on Adcock & Dexter, 2021)
and the model is a feed-forward neural network. It is trained on m “ 1000 uniformly distributed
samples according to the hyperparameters in Tables 1 and 2 and achieves final L1 and L8 errors of
2.8 ¨ 10´3 and 0.19, respectively. The middle and right plots are zoomed versions of the left plot.

data generating distribution (Devroye et al., 2013; Shalev-Shwartz & Ben-David, 2014; Mohri et al.,
2018; Kim et al., 2021). This offers a powerful approach to ensure a small average reconstruction
error. However, there are many important scenarios where such bounds on the accuracy are not
sufficient and one would like to obtain an approximation of u that is close to u not only on average,
but that can be guaranteed to be close for every x P r0, 1sd. This includes several applications in
the sciences, for example in the context of the numerical solution of partial differential equations
(Raissi et al., 2019; Han et al., 2018; Richter & Berner, 2022), any security-critical application, for
example, facial ID authentication schemes (Guo & Zhang, 2019), as well as any application with
a distribution-shift, i.e., where the data generating distribution is different from the distribution in
which the accuracy is measured (Quiñonero-Candela et al., 2008). Such applications can only be
efficiently solved if there exists an efficient algorithm A that achieves uniform accuracy, i.e., a small
error supuPU }u´Apuq}L8pr0,1sdq with respect to the uniform norm given by Y “ L8pr0, 1sdq, i.e.,
}f}L8pr0,1sdq :“ esssupxPr0,1sd |fpxq|.

Inspired by recent successes of deep learning across a plethora of tasks in machine learning (LeCun
et al., 2015) and also increasingly the sciences (Jumper et al., 2021; Pfau et al., 2020), we will be
particularly interested in the case where the target class U consists of — or contains — realizations
of (feed-forward) neural networks of a specific architecture2. Neural networks have been proven and
observed to be extremely powerful in terms of their expressivity, that is, their ability to accurately
approximate large classes of complicated functions with only relatively few parameters (Elbrächter
et al., 2021; Berner et al., 2022). However, it has also been repeatedly observed that the training of
neural networks (e.g., fitting a neural network to data samples) to high uniform accuracy presents a big
challenge: conventional training algorithms (such as SGD and its variants) often find neural networks
that perform well on average (meaning that they achieve a small generalization error), but there are
typically some regions in the input space where the error is large (Fiedler et al., 2023); see Figure 1
for an illustrative example. This phenomenon has been systematically studied on an empirical level
by Adcock & Dexter (2021). It is also at the heart of several observed instabilities in the training
of deep neural networks, including adversarial examples (Szegedy et al., 2013; Goodfellow et al.,
2015) or so-called hallucinations emerging in generative modeling, e.g., tomographic reconstructions
(Bhadra et al., 2021) or machine translation (Müller et al., 2020).

Note that additional knowledge on the target functions could potentially help circumvent these issues,
see Remark 1.3. However, for many applications, it is not possible to precisely describe the regularity
of the target functions. We thus analyze the case where no additional information is given besides the
fact that one aims to recover a (unknown) neural network of a specified architecture and regularization
from given samples – i.e., we assume that U contains a class of neural networks of a given architecture,
subject to various regularization methods. This is satisfied in several applications of interest, e.g.,
model extraction attacks (Tramèr et al., 2016; He et al., 2022) and teacher-student settings (Mirzadeh
et al., 2020; Xie et al., 2020). It is also in line with standard settings in the statistical query literature,

2By architecture we mean the number of layers L, as well as the number of neurons in each layer.
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in neural network identification, and in statistical learning theory (Anthony & Bartlett, 1999; Mohri
et al., 2018), see Section 1.1.

For such settings we can rigorously show that learning a class of neural networks is prone to
instabilities. Specifically, any conceivable learning algorithm (in particular, any version of SGD),
which recovers the neural network to high uniform accuracy, needs intractably many samples.
Theorem 1.1. Suppose that U contains all neural networks with d-dimensional input, ReLU activa-
tion function, L layers of width up to 3d, and coefficients bounded by c in the `q norm. Assume that
there exists an algorithm that reconstructs all functions in U to uniform accuracy ε from m point
samples. Then, we have

m ě

ˆ

Ω

32d

˙d

¨ ε´d, where Ω :“

$

&

%

1
8¨32{q

¨ cL ¨ d1´ 2
q if q ď 2

1
48 ¨ c

L ¨ p3dqpL´1qp1´ 2
q q if q ě 2.

Theorem 1.1 is a special case of Theorem 2.2 (covering Y “ Lppr0, 1sdq for all p P r1,8s, as well
as network architectures with arbitrary width) which will be stated and proven in Section 2.3.

To give a concrete example, we consider the problem of learning neural networks with ReLU
activation function, L layers of width at most 3d, and coefficients bounded by c to uniform accuracy
ε “ 1{1024. According to our results we would need at least

m ě 2d ¨ cdL ¨ p3dqdpL´2q

many samples — the sample complexity thus depends exponentially on the input dimension d, the
network width, and the network depth, becoming intractable even for moderate values of d, c, L (for
d “ 15, c “ 2, and L “ 7, the sample size m would already have to exceed the estimated number of
atoms in our universe). If, on the other hand, reconstruction only with respect to the L2 norm were
required, standard results in statistical learning theory (see, for example, Berner et al., 2020) show
that m only needs to depend polynomially on d. We conclude that uniform reconstruction is vastly
harder than reconstruction with respect to the L2 norm and, in particular, intractable. Our results are
further corroborated by numerical experiments presented in Section 3 below.
Remark 1.2. For other target classes U , uniform reconstruction is tractable (i.e., the number of
required samples for recovery does not massively exceed the number of parameters defining the class).
A simple example are univariate polynomials of degree less than m which can be exactly determined
from m samples. One can show similar results for sparse multivariate polynomials using techniques
from the field of compressed sensing (Rauhut, 2007). Further, one can show that approximation rates
in suitable reproducing kernel Hilbert spaces with bounded kernel can be realized using point samples
with respect to the uniform norm (Pozharska & Ullrich, 2022). Our results uncover an opposing
behavior of neural network classes: There exist functions that can be arbitrarily well approximated
(in fact, exactly represented) by small neural networks, but these representations cannot be inferred
from samples. Our results are thus highly specific to classes of neural networks.
Remark 1.3. Our results do not rule out the possibility that there exist training algorithms for neural
networks that achieve high accuracy on some restricted class of target functions, if the knowledge
about the target class can be incorporated into the algorithm design. For example, if it were known
that the target function can be efficiently approximated by polynomials one could first compute an
approximating polynomial (using polynomial regression which is tractable) and then represent the
approximating polynomial by a neural network. The resulting numerical problem would however be
very different from the way deep learning is used in practice, since most neural network coefficients
(namely those corresponding to the approximating polynomial) would be fixed a priori. Our results
apply to the situation where such additional information on the target class U is not available and no
problem specific knowledge is incorporated into the algorithm design besides the network architecture
and regularization procedure.

We also complement the lower bounds of Theorem 1.1 with corresponding upper bounds.
Theorem 1.4. Suppose that U consists of all neural networks with d-dimensional input, ReLU
activation function, L layers of width at most B, and coefficients bounded by c in the `q norm. Then,
there exists an algorithm that reconstructs all functions in U to uniform accuracy ε from m point
samples with

m ď Cd ¨ ε´d, where C :“

#?
d ¨ cL if q ď 2

d1´ 1
q ¨ cL ¨BpL´1qp1´ 2

q q if q ě 2.
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Theorem 1.4 follows from Theorem 2.4 that will be stated in Section 2.4. We refer to Remark B.4 for
a discussion of the gap between the upper and lower bounds.

Remark 1.5. Our setting allows for an algorithm to choose the sample points px1, . . . , xmq in
an adaptive way for each u P U ; see Section 2.1 for a precise definition of the class of adaptive
(possibly randomized) algorithms. This implies that even a very clever sampling strategy (as would
be employed in active learning) cannot break the bounds established in this paper.

Remark 1.6. Our results also shed light on the impact of different regularization methods. While
picking a stronger regularizer (e.g., a small value of q) yields quantitative improvements (in the sense
of a smaller Ω), the sample size m required for approximation in L8 can still increase exponentially
with the input dimension d. However, this scaling is only visible for very small ε.

1.1 RELATED WORK

Several other works have established “hardness” results for neural network training. For example, the
seminal works by Blum & Rivest (1992); Vu (1998) show that for certain architectures the training
process can be NP-complete. By contrast, our results do not directly consider algorithm runtime at
all; our results are stronger in the sense of showing that even if it were possible to efficiently learn a
neural network from samples, the necessary number of data points would be too large to be tractable.

We also want to mention a series of hardness results in the setting of statistical query (SQ) algorithms,
see, e.g., Chen et al. (2022); Diakonikolas et al. (2020); Goel et al. (2020b); Reyzin (2020); Song
et al. (2017). For instance, Chen et al. (2022) shows that any SQ algorithm capable of learning ReLU
networks with two hidden layers and width polypdq up to L2 error 1{polypdq must use a number
of samples that scales superpolynomially in d, or must use SQ queries with tolerance smaller than
the reciprocal of any polynomial in d. In such SQ algorithms, the learner has access to an oracle
that produces approximations (potentially corrupted by adversarial noise) of certain expectations
ErhpX,upXqqs, where u is the unknown function to be learned, X is a random variable representing
the data, and h is a function chosen by the learner (potentially subject to some restrictions, e.g. Lips-
chitz continuity). The possibility of the oracle to inject adversarial (instead of just stochastic) noise
into the learning procedure — which does not entirely reflect the typical mathematical formulation of
learning problems — is crucial for several of these results. We also mention that due to this possibility
of adversarial noise, not every gradient-based optimization method (for instance, SGD) is strictly
speaking an SQ algorithm; see also the works by Goel et al. (2020a, Page 3) and Abbe et al. (2021)
for a more detailed discussion.

There also exist hardness results for learning algorithms based on label queries (i.e., noise-free
point samples), which constitutes a setting similar to ours. More precisely, Chen et al. (2022) show
that ReLU neural networks with constant depth and polynomial size constraints are not efficiently
learnable up to a small squared loss with respect to a Gaussian distribution. However, the existing
hardness results are in terms of runtime of the algorithm and are contingent on several (difficult and
unproven) conjectures from the area of cryptography (the decisional Diffie-Hellmann assumption
or the “Learning with Errors” assumption); the correctness of these conjectures in particular would
imply that P ‰ NP. By contrast, our results are completely free of such assumptions and show that
the considered problem is information-theoretically hard, not just computationally.

As already hinted at in the introduction, our results further extend the broad literature on statistical
learning theory (Anthony & Bartlett, 1999; Vapnik, 1999; Cucker & Smale, 2002b; Bousquet et al.,
2003; Vapnik, 2013; Mohri et al., 2018). Specifically, we provide fully explicit upper and lower
bounds on the sample complexity of (regularized) neural network hypothesis classes. In the context
of PAC learning, we analyze the realizable case, where the target function is contained in the
hypothesis class (Mohri et al., 2018, Theorem 3.20). Contrary to standard results, we do not pose any
assumptions, such as IID, on the data distribution, and even allow for adaptive sampling. Moreover,
we analyze the complexity for all Lp norms with p P r1,8s, whereas classical results mostly deal
with the squared loss. As an example of such classical results, we mention that (bounded) hypothesis
classes with finite pseudodimension D can be learned to squared L2 loss ε with OpDε´2q point
samples; see e.g., Mohri et al. (2018, Theorem 11.8). Bounds for the pseudodimension of neural
networks are readily available in the literature; see e.g., Bartlett et al. (2019). These bounds imply
that learning ReLU networks in L2 is tractable, in contrast to the L8 setting.
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Another related area is the identification of (equivalence classes of) neural network parameters from
their input-output maps. While most works focus on scenarios where one has access to an infinite
number of queries (Fefferman & Markel, 1993; Vlačić & Bölcskei, 2022), there are recent results
employing only finitely many samples (Rolnick & Kording, 2020; Fiedler et al., 2023). Robust
identification of the neural network parameters is sufficient to guarantee uniform accuracy, but it
is not a necessary condition. Specifically, proximity of input-output maps does not necessarily
imply proximity of corresponding neural network parameters (Berner et al., 2019). More generally,
our results show that efficient identification from samples cannot be possible unless (as done in the
previously mentioned works) further prior information is incorporated. In the same spirit, this restricts
the applicability of model extraction attacks, such as model inversion or evasion attacks (Tramèr
et al., 2016; He et al., 2022).

Our results are most closely related to recent results by Grohs & Voigtlaender (2021) where target
classes consisting of neural network approximation spaces are considered. The results of Grohs &
Voigtlaender (2021), however, are purely asymptotic. Since the asymptotic behavior incurred by the
rate is often only visible for very fine accuracies, the results of Grohs & Voigtlaender (2021) cannot
be applied to obtain concrete lower bounds on the required sample size. Our results are completely
explicit in all parameters and readily yield practically relevant bounds. They also elucidate the role of
adaptive sampling and different regularization methods.

1.2 NOTATION

For d P N, we denote by Cpr0, 1sdq the space of continuous functions f : r0, 1sd Ñ R. For a finite set
I and paiqiPI P RI , we write

ř

iPI ai :“ 1
|I|

ř

iPI ai. For m P N, we write rms :“ t1, . . . ,mu. For
A Ă Rd, we denote by Ao the set of interior points of A. For any subset A of a vector space V , any
c P R, and any y P V , we further define y ` c ¨A :“ ty ` ca : a P Au. For a matrix W P Rnˆk and
q P r1,8q, we write }W }`q :“

`
ř

i,j |Wi,j |
q
˘1{q

, and for q “ 8 we write }W }`8 :“ maxi,j |Wi,j |.
For vectors b P Rn, we use the analogously defined notation }b}`q .

2 MAIN RESULTS

This section contains our main theoretical results. We introduce the considered classes of algorithms
in Section 2.1 and target classes in Section 2.2. Our main lower and upper bounds are formulated and
proven in Section 2.3 and Section 2.4, respectively.

2.1 ADAPTIVE (RANDOMIZED) ALGORITHMS BASED ON POINT SAMPLES

As described in the introduction, our goal is to analyze how well one can recover an unknown
function u from a target class U in a Banach space Y based on point samples. This is one of the main
problems in information-based complexity (Traub, 2003), and in this section we briefly recall the
most important related notions.

Given U Ă Cpr0, 1sdq X Y for a Banach space Y , we say that a map A : U Ñ Y is an adaptive
deterministic method using m P N point samples if there are f1 P r0, 1s

d and mappings

fi :
`

r0, 1sd
˘i´1

ˆ Ri´1 Ñ r0, 1sd, i “ 2, . . . ,m, and Q :
`

r0, 1sd
˘m
ˆ Rm Ñ Y

such that for every u P U , using the point sequence xpuq “ px1, . . . , xmq Ă r0, 1s
d defined as

x1 “ f1, xi “ fipx1, . . . , xi´1, upx1q, . . . , upxi´1qq, i “ 2, . . . ,m, (1)

the map A is of the form Apuq “ Qpx1, . . . , xm, upx1q, . . . , upxmqq P Y .

The set of all deterministic methods using m point samples is denoted by AlgmpU, Y q. In addition to
such deterministic methods, we also study randomized methods defined as follows: A tuple pA,mq
is called an adaptive random method using m P N point samples on average if A “ pAωqωPΩ where
pΩ,F ,Pq is a probability space, and where m : Ω Ñ N is such that the following conditions hold:

1. m is measurable, and Erms ď m;
2. @u P U : ω ÞÑ Aωpuq is measurable with respect to the Borel σ-algebra on Y ;
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3. @ω P Ω : Aω P AlgmpωqpU, Y q.

The set of all random methods using m point samples on average will be denoted by AlgMC
m pU, Y q,

since such methods are sometimes called Monte-Carlo (MC) algorithms.

For a target class U , we define the optimal (randomized) error as

errMC
m pU, Y q :“ inf

pA,mqPAlgMC
m pU,Y q

sup
uPU

E r}u´Aωpuq}Y s . (2)

We note that AlgmpU, Y q Ă AlgMC
m pU, Y q, since each deterministic method can be interpreted as a

randomized method over a trivial probability space.

2.2 NEURAL NETWORK CLASSES

We will be concerned with target classes related to ReLU neural networks. These will be defined in
the present subsection. Let % : RÑ R, %pxq “ maxt0, xu, be the ReLU activation function. Given a
depth L P N, an architecture pN0, N1, . . . , NLq P NL`1, and neural network coefficients

Φ “
`

pW i, biq
˘L

i“1
P
ŚL

i“1

`

RNiˆNi´1 ˆ RNi
˘

,

we define their realization RpΦq P CpRN0 ,RNLq as

RpΦq :“ φL ˝ % ˝ φL´1 ˝ ¨ ¨ ¨ ˝ % ˝ φ1

where % is applied componentwise and φi : RNi´1 Ñ RNi , x ÞÑW ix` bi, for i P rLs. Given c ą 0
and q P r1,8s, define the class

Hq
pN0,...,NLq,c

:“
!

RpΦq : Φ P
ŚL

i“1

`

RNiˆNi´1 ˆ RNi
˘

and }Φ}`q ď c
)

,

where }Φ}`q :“ max1ďiďL maxt}W i}`q , }b
i}`qu.

To study target classes related to neural networks, the following definition will be useful.
Definition 2.1. Let U,H Ă Cpr0, 1sdq. We say that U contains a copy of H, attached to u0 P U with
constant c0 P p0,8q, if u0 ` c0 ¨H Ă U.

2.3 LOWER BOUND

The following result constitutes the main result of the present paper. Theorem 1.1 readily follows
from it as a special case.
Theorem 2.2. Let L P Ně3, d,B P N, p, q P r1,8s, and c P p0,8q. Suppose that the target
class U Ă Cpr0, 1sdq contains a copy of Hq

pd,B...,B,1q,c with constant c0 P p0,8q, where the B in

pd,B, . . . , B, 1q appears L´ 1 times. Then, for any s P N with s ď min
 

B
3 , d

(

we have

errMC
m pU,Lppr0, 1sdqq ě c0 ¨

Ω

p32sq1`
s
p
¨m´

1
p´

1
s ,

where

Ω :“

#

1
8¨32{q

¨ cL ¨ s1´ 2
q if q ď 2

1
48 ¨ c

L ¨BpL´1qp1´ 2
q q if q ě 2.

Proof. This follows by combining Theorem A.5 with Lemmas A.2 and A.3 in the appendix.

Remark 2.3. For p ! 8, the bound from above does not necessarily imply that an intractable
number of training samples is needed. This is a reflection of the fact that efficient learning is possible
(at least if one only considers the number of training samples and not the runtime of the algorithm) in
this regime. Indeed, it is well-known in statistical learning theory that one obtains learning bounds
based on the entropy numbers (w.r.t. the L8 norm) of the class of target functions, when the error is
measured in L2, see, for instance, Cucker & Smale (2002a, Proposition 7). The ε-entropy numbers
of a class of neural networks with L layers and w (bounded) weights scale linearly in w,L and
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logarithmically in 1{ε, so that one gets tractable L2 learning bounds. By interpolation for Lp norms
(noting that in our case the target functions are bounded, so that the L8 reconstruction error is
bounded, even though the decay with m is very bad), this also implies Lp learning bounds, but these
get worse and worse as pÑ8. We remark that these learning bounds are based on empirical risk
minimization, which might be computationally infeasible (Vu, 1998); since our lower bounds should
hold for any feasible algorithm (irrespective of its computational complexity), this means that one
cannot expect to get an intractable lower bound for p ! 8 in our setting.

The idea of the proof of Theorem 2.2 (here only presented for u0 “ 0 and s “ d, which implies that
B ě 3d) is as follows:

1. We first show (see Lemmas A.2 and A.3) that the neural network set Hq
pd,B,...,B,1q,c contains

a large class of “bump functions” of the form λ ¨ ϑM,y. Here, ϑM,y is supported on the set
y ` r´ 1

M , 1
M s

d and satisfies }ϑM,y}Lppr0,1sdq — M´d{p, where M P N and y P r0, 1sd can be
chosen arbitrarily; see Lemma A.1. The size of the scaling factor λ “ λpM, c, q, d, Lq depends
crucially on the regularization parameters c and q. This is the main technical part of the proof,
requiring to construct suitable neural networks adhering to the imposed `q restrictions on the
weights for which λ is as big as possible.

2. If one learns using m points samples x1, . . . , xm and if M “ Opm1{dq, then a volume packing
argument shows that there exists y P r0, 1sd such that ϑM,ypxiq “ 0 for all i P rms. This means
that the learner cannot distinguish the function λ ¨ ϑM,y P Hq

pd,B,...,B,1q,c from the zero function

and will thus make an error of roughly }λ ¨ ϑM,y}Lp — λ ¨M´d{p. This already implies the lower
bound in Theorem 2.2 for the case of deterministic algorithms.

3. To get the lower bound for randomized algorithms using m point samples on average, we
employ a technique from information-based complexity (see, e.g., Heinrich, 1994): We again
set M “ Opm1{dq and define py`q`PrM{2sd as the nodes of a uniform grid on r0, 1sd with width
2{M . Using a volume packing argument, we then show that for any choice of m sampling points
x1, . . . , xm, “at least half of the functions ϑM,y` avoid all the sampling points”, i.e., for at least
half of the indices `, it holds that ϑM,y`pxiq “ 0 for all i P rms. A learner using the samples
x1, . . . , xm can thus not distinguish between the zero function and λ ¨ ϑM,y` P Hq

pd,B,...,B,1q,c

for at least half of the indices `. Therefore, any deterministic algorithm will make an error of
Ωpλ ¨M´d{pq on average with respect to `.

4. Since each randomized algorithm A “ pAωqωPΩ is a collection of deterministic algorithms and
since taking an average commutes with taking the expectation, this implies that any randomized
algorithm will have an expected error of Ωpλ ¨M´d{pq on average with respect to `. This easily
implies the stated bound.

As mentioned in the introduction, we want to emphasize that well-trained neural networks can indeed
exhibit such bump functions, see Figure 1 and Adcock & Dexter (2021); Fiedler et al. (2023).

2.4 UPPER BOUND

In this section we present our main upper bound, which directly implies the statement of Theorem 1.4.

Theorem 2.4. Let L, d P N, q P r1,8s, c P p0,8q, and N1, . . . , NL´1 P N. Then, we have

errMC
m

`

Hq
pd,N1,...,NL´1,1q,c

, L8pr0, 1sdq
˘

ď

#?
d ¨ cL ¨m´

1
d if q ď 2

?
d ¨ cL ¨ p

?
d ¨N1 ¨ ¨ ¨NL´1q

1´ 2
q ¨m´

1
d if q ě 2.

Proof. This follows by combining Lemmas B.2 and B.3 in the appendix.

Let us outline the main idea of the proof. We first show that each neural network
RpΦq P Hq

pN0,...,NLq,c
is Lipschitz-continuous, where the Lipschitz constant can be conveniently

bounded in terms of the parametersN0, . . . , NL, c, q, see Lemma B.2 in the appendix. In Lemma B.3,
we then show that any function with moderate Lipschitz constant can be reconstructed from samples
by piecewise constant interpolation.
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3 NUMERICAL EXPERIMENTS

Having established fundamental bounds on the performance of any learning algorithm, we want
to numerically evaluate the performance of commonly used deep learning methods. To illustrate
our main result in Theorem 2.2, we estimate the error in (2) by a tractable approximation in a
student-teacher setting. Specifically, we estimate the minimal error over neural network target
functions (“teachers”) pU Ă Hq

pd,N1,...,NL´1,1q,c
for deep learning algorithms pA Ă AlgMC

m pU,Lpq

via Monte-Carlo sampling, i.e.,

xerrm

´

pU,Lp; pA
¯

:“ inf
pA,mqP pA supuP pU

ř

ωPpΩ

´

ř

jPrJs

`

upXjq ´AωpuqpXjq
˘p
¯1{p

, (3)

where pXjq
J
j“1 are independent evaluation samples uniformly distributed on3 r´0.5, 0.5sd and pΩ

represents the seeds for the algorithms.

We obtain teacher networks u P H8
pd,N1,...,NL´1,1q,c

by sampling their coefficients Φ componentwise

according to a uniform distribution on r´c, cs. For every algorithm pA,mq P pA and seed ω P pΩ
we consider point sequences xpuq uniformly distributed in r´0.5, 0.5sd with mpωq “ m. The
corresponding point samples are used to train the coefficients of a neural network (“student”) using
the Adam optimizer (Kingma & Ba, 2015) with exponentially decaying learning rate. We consider
input dimensions d “ 1 and d “ 3, for each of which we compute the error in (3) for 4 different
sample sizes m over 40 teacher networks u. For each combination, we train student networks
with 3 different seeds, 3 different widths, and 3 different batch-sizes. In summary, this yields
2 ¨ 4 ¨ 40 ¨ 3 ¨ 3 ¨ 3 “ 8640 experiments each executed on a single GPU. The precise hyperparameters
can be found in Tables 1 and 3 in Appendix C.

Figure 2 shows that there is a clear gap between the errors xerrmppU,L
p; pAq for p P t1, 2u and p “ 8.

Especially in the one-dimensional case, the rate xerrmppU,L
8; pAq w.r.t. the number of samples m also

seems to stagnate at a precision that might be insufficient for certain applications. Figure 3 illustrates
that the errors are caused by spikes of the teacher network which are not covered by any sample.
Note that this is very similar to the construction in the proof of our main result, see Section 2.3.

In general, the rates worsen when considering more teacher networks pU and improve when consider-
ing further deep learning algorithms pA, including other architectures or more elaborate training and
sampling schemes. Note, however, that each setting needs to be evaluated for a number of teacher net-
works, sample sizes, and seeds. We provide an extensible implementation4 in PyTorch (Paszke et al.,
2019) featuring multi-node experiment execution and hyperparameter tuning using Ray Tune (Liaw
et al., 2018), experiment tracking using Weights & Biases and TensorBoard, and flexible experiment
configuration. Building upon our work, research teams with sufficient computational resources can
provide further numerical evidence on an even larger scale.

4 DISCUSSION AND LIMITATIONS

Discussion. We derived fundamental upper and lower bounds for the number of samples needed
for any algorithm to reconstruct an arbitrary function from a target class containing realizations of
neural networks with ReLU activation function of a given architecture and subject to `q regularization
constraints on the network coefficients, see Theorems 2.2 and 2.4. These bounds are completely
explicit in the network architecture, the type of regularization, and the norm in which the reconstruc-
tion error is measured. We observe that our lower bounds are severely more restrictive if the error is
measured in the uniform L8 norm rather than the (more commonly studied) L2 norm. Particularly,
learning a class of neural networks with ReLU activation function with moderately high accuracy
in the L8 norm is intractable for moderate input dimensions, as well as network widths and depths.
We anticipate that further investigations into the sample complexity of neural network classes can
eventually contribute to a better understanding of possible circumstances under which it is possible to
design reliable deep learning algorithms and help explain well-known instability phenomena such

3To have centered input data, we consider the hypercube r´0.5, 0.5sd in our experiments. Note that this does
not change any of the theoretical results.

4The code can be found at https://github.com/juliusberner/theory2practice.
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Figure 2: Evaluation of the error in (3) for p P t1, 2,8u, input dimensions d P t1, 3u, sample sizes
m P t102, 103, 104, 105u, and hyperparameters given in Tables 1 and 3.

−0.3 0.0 0.3

0.00

0.04

0.08

0.12

−0.38 −0.36 −0.34

0.112

0.116

0.120

−0.200 −0.175 −0.150

0.052

0.056

0.060

0.064
model

target

samples

Figure 3: Target function (“teacher”), samples, and model of the deep learning algorithm (“student”)
attaining the min-max value in (3) for m “ 100 and p “ 8 in the experiment depicted in Figure 2.
The middle and right plots are zoomed versions of the left plot. The L8 error p2.7 ¨ 10´3q is about
one magnitude larger than the L2 and L1 errors p3.9 ¨10´4 and 2.4 ¨10´4q, which is caused by spikes
of the teacher network between samples.

as adversarial examples. Such an understanding can be beneficial in assessing the potential and
limitations of machine learning methods applied to security- and safety-critical scenarios.

Limitations and Outlook. We finally discuss some possible implications and also limitations of
our work. First of all, our results are highly specific to neural networks with the ReLU activation func-
tion. We expect that obtaining similar results for other activation functions will require substantially
new methods. We plan to investigate this in future work.

The explicit nature of our results reveal a discrepancy between the lower and upper bound, especially
for high dimensions. We conjecture that both the current upper and lower bounds are not quite
optimal. Determining to which extent one can tighten the bounds is an interesting open problem.

Our analysis is a worst-case analysis in the sense that we show that for any given algorithm A, there
exists at least one u in our target class U on which A performs poorly. The question of whether
this poor behavior is actually generic will be studied in future work. One way to establish such
generic results could be to prove that our considered target classes contain copies of neural network
realizations attached to many different u’s.

Finally, we consider target classes U that contain all realizations of neural networks with a given
architecture subject to different regularizations. This can be justified as follows: Whenever a deep
learning method is employed to reconstruct a function u by representing it approximately by a neural
network (without further knowledge about u), a natural minimal requirement is that the method
should perform well if the sought function is in fact equal to a neural network. However, if additional
problem information about u can be incorporated into the learning problem it may be possible to
overcome the barriers shown in this work. The degree to which this is possible, as well as the
extension of our results to other architectures, such as convolutional neural networks, transformers,
and graph neural networks will be the subject of future work.
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Figure 4: Plots of the function ΛM,σ in Equation (4) for pM,σq P tp2, 1q, p4, 1q, p4, 3
2 qu.

A PROOF OF THE LOWER BOUND IN SECTION 2.3

A.1 CONSTRUCTION OF HAT FUNCTIONS IMPLEMENTED BY RELU NETWORKS

For d P N, M ą 0, σ P R, s P rds, and y P Rd, define

ΛM,σ : RÑ p´8, 1s, t ÞÑ

"

0 if t ď σ ´ 1
M

1´M ¨ |t´ σ| if t ě σ ´ 1
M ,

(4)

and furthermore

∆
psq
M,y : Rd Ñ p´8, 1s, x ÞÑ

˜

s
ÿ

i“1

ΛM,yipxiq

¸

´ ps´ 1q,

ϑ
psq
M,y : Rd Ñ r0, 1s, x ÞÑ %p∆

psq
M,ypxqq,

where, as before, % : R Ñ R, x ÞÑ maxt0, xu, denotes the ReLU activation function. A plot of
ΛM,σ is shown in Figure 4.

With these definitions, the function ϑpsqM,y satisfies the following properties:

Lemma A.1. For d P N, s P rds, M ě 1, y P r0, 1sd, and p P p0,8s, we have

suppϑ
psq
M,y Ă y ` pM´1 ¨ r´1, 1ss ˆ Rd´sq

and
1

2
¨ p2sq´s{p ¨M´s{p ď }ϑ

psq
M,y}Lppr0,1sdq ď 2s{p ¨M´s{p.

Proof. Let us first give a quick overview of the proof. The statement on the support of ϑpsqM,y follows

by observing that ∆
psq
M,ypxq ą 0 can only happen if ΛM,yipxiq ą 0 for all i P rss. As 0 ď ϑ

psq
M,y ď 1,

the upper bound on the Lppr0, 1sdq norm can then be estimated by the Lebesgue measure of the
intersection of the support of ϑpsqM,y and the hypercube r0, 1sd. For the lower bound we compute the

measure of the intersection with a subset of the support on which it holds that ϑpsqM,y ě
1
2 .

We start by proving the statement on the support of ϑpsqM,y. If 0 ‰ ϑ
psq
M,ypxq, then ∆

psq
M,ypxq ą 0,

meaning
řs
i“1 ΛM,yipxiq ą s ´ 1. Because of ΛM,yipxiq P p´8, 1s for all i P rss, this is only

possible if ΛM,yipxiq ą 0 for all i P rss. Directly from the definition of ΛM,yi (see also Figure 4),
this implies |xi ´ yi| ď 1

M for all i P rss, meaning x P y ` pM´1r´1, 1ss ˆRd´sq. This proves the
first claim.

Regarding the second claim, define y˚ :“ py1, . . . , ysq P Rs, and, for k P N, denote by λk the
Lebesgue measure on Rk. Then, since r0, 1sd X suppϑ

psq
M,y Ă py

˚ `M´1r´1, 1ssq ˆ r0, 1sd´s and

0 ď ϑ
psq
M,y ď 1, we see that

}ϑ
psq
M,y}Lppr0,1sdq ď

`

λs
`

y˚ `M´1 r´1, 1ss
˘˘1{p

“

ˆ

2

M

˙s{p

“ 2s{pM´s{p.
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For the converse estimate, let us also write x˚ “ px1, . . . , xsq for x P Rd. Then, if x P Rd satisfies
x˚ P y˚ ` 1

2Ms r´1, 1ss, we see

yi ´
1

M
ď yi ´

1

2Ms
ď xi ď yi `

1

2Ms
for i P rss.

By definition of ΛM,yi , this implies ΛM,yipxiq “ 1´M ¨ |xi ´ yi| ě 1´ 1
2s and hence

∆
psq
M,ypxq “

˜

s
ÿ

i“1

ΛM,yipxiq

¸

´ ps´ 1q ě s´
1

2
´ ps´ 1q “

1

2
,

so that ϑpsqM,ypxq ě
1
2 .

Finally, it is not difficult to show, that

λd
` 

x P r0, 1sd : x˚ P y˚ ` 1
2Ms r´1, 1ss

(˘

“ λs
`

r0, 1ss X py˚ ` 1
2Ms r´1, 1ssq

˘

ě p2Msq´s,

see Grohs & Voigtlaender (2021, Equation (A.1)) for the details. Overall, we thus see

}ϑ
psq
M,y}Lppr0,1sdq ě

1

2
¨ p2Msq´s{p.

Note that a compactly supported (non-trivial) function such as ϑpsqM,y can only be represented by
ReLU networks with more than two layers, see Blum & Li (1991, Section 3). For this reason, we
focus on the case L P Ně3 in this paper. Next, we show that scaled versions of the hat functions
ϑ
psq
M,y can be represented using neural networks of a suitable architecture and with a suitable bound

on the magnitude of the coefficients. We begin with the (more interesting) case where the exponent q
that determines the regularization of the weights satisfies q ě 2.

Lemma A.2. Let d P N, L P Ně3, B P Ně3, c ą 0, q P r2,8s, and s P N with s ď mintB3 , du.
Then, there exists a constant

λ ě cL ¨BpL´1qp1´ 2
q q{12

such that

ν ¨
λ

Ms
¨ ϑ
psq
M,y P H

q
pd,B,...,B,1q,c @M P N, ν P t˘1u, and y P r0, 1sd,

where the B in pd,B, . . . , B, 1q appears L´ 1 times.

Proof. Let M P N, y P r0, 1sd, and ν P t˘1u be fixed. We will now construct the coefficients
ppW 1, b1q, . . . , pWL, bLqq of a neural network with the following properties:

1. The first two layers ppW 1, b1q, pW 2, b2qq output at any of their B output dimensions the function
C1 ¨ Λ

psq
M,y for a suitable scaling factor C1 “ C1pc,M, s,B, qq ą 0.

2. The following activation function yields C1 ¨ ϑ
psq
M,y “ %

`

C1 ¨ Λ
psq
M,y

˘

for all output dimensions.

3. Each of the layers ppW 3, b3q, . . . , pWL´1, bL´1qq scales the previous output by another factor
C2 “ C2pc,B, qq ą 0, leading to the output C1C

L´3
2 ¨ ϑ

psq
M,y in any of the B output dimensions.

This construction uses the fact that all intermediate outputs are positive by construction such that
the intermediate ReLU activation functions % just act as identities.

4. The last layer pWL, bLq now computes the sum of the previous outputs scaled by another
factor C3 “ C3pc,B, qq ą 0 and multiplied by ν, such that the final one-dimensional output
equals νBC1C

L´3
2 C3 ¨ ϑ

psq
M,y . The result follows by setting λ “ BC1C

L´3
2 C3Ms and choosing

the scaling factors C1, C2, and C3 as large as possible, constrained by the width B and the
regularization given by c and q.
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Define r :“ tB{p3squ, noting that r ě 1, since s ď B{3. We first introduce a few notations: We
write 0kˆn for the k ˆ n matrix with all entries being zero; similarly, we write 1kˆn for the k ˆ n
matrix with all entries being one. Furthermore, we denote by pe1, . . . , edq the standard basis of Rd,
and define

Is :“ pe1 | ¨ ¨ ¨ | esq P Rdˆs,

α :“
´

M´1
´y1

2

ˇ

ˇ

ˇ

M´1
´y2

2

ˇ

ˇ

ˇ
¨ ¨ ¨

ˇ

ˇ

ˇ

M´1
´ys

2

¯

P R1ˆs,

β :“
`

´ y1 | ´y2 | ¨ ¨ ¨ | ´ysq P R1ˆs,

γ :“
´

s´1
s

1
2M

ˇ

ˇ

ˇ
¨ ¨ ¨

ˇ

ˇ

ˇ

s´1
s

1
2M

¯

“
s´ 1

s

1

2M
¨ 11ˆs P R1ˆs.

(5)

We note that all entries of these matrices and vectors are elements of r´1, 1s. Using these matrices
and vectors, we now define

W 1 :“
c

p3srq1{q

´

Is{2
ˇ

ˇIs
ˇ

ˇ0dˆs
ˇ

ˇ ¨ ¨ ¨
ˇ

ˇIs{2
ˇ

ˇIs
ˇ

ˇ0dˆs

r blocks of pIs{2|Is|0dˆsq

ˇ

ˇ0dˆpB´3rsq

¯T

P RBˆd,

b1 :“
c

p3srq1{q

´

α | β | γ | ¨ ¨ ¨ | α | β | γ

r blocks of pα|β|γq

| 0 | ¨ ¨ ¨ | 0
¯T

P RB ,

and furthermore
W 2 :“

c

p3srBq1{q

´

1Bˆs | ´1Bˆs | ´1Bˆs | ¨ ¨ ¨ | 1Bˆs | ´1Bˆs | ´1Bˆs

r blocks of p1Bˆs|´1Bˆs|´1Bˆsq

| 0BˆpB´3rsq

¯

PRBˆB,

b2 :“ p0 | ¨ ¨ ¨ | 0qT P RB ,
where we note that B ´ 3rs ě 0 since r “ tB{p3squ. It is straightforward to verify that
}W 1}`q , }W

2}`q , }b
1}`q , }b

2}`q ď c. Furthermore, we define

W i :“
c

B2{q
1BˆB and bi :“ p0| ¨ ¨ ¨ |0qT P RB for 3 ď i ď L´ 1,

and finally WL :“ ν¨c
B1{q p1| ¨ ¨ ¨ |1q P R1ˆB and bL :“ p0q P R1. Again, it is straightforward to

verify that }W i}`q , }b
i}`q ď c for 3 ď i ď L ´ 1 and also that }WL}`q , }b

L}`q ď c. Therefore,
setting Φ :“ ppW 1, b1q, . . . , pWL, bLqq, we have RpΦq P Hq

pd,B,...,B,1q,c; it thus remains to verify

that RpΦq “ ν ¨ λ
Ms ¨ ϑ

psq
M,y for a constant λ as in the statement of the lemma.

To see this, we note for any x P Rd and j P rds that

%
`xj

2 `
M´1

´yj
2

˘

´ %pxj ´ yjq “
1
2%
`

xj ´ yj `M
´1

˘

´ %pxj ´ yjq

“

$

’

’

&

’

’

%

0 if xj ď yj ´M
´1

1
2M ¨ p1´M ¨ |xj ´ yj |q if yj ´M´1 ă xj ď yj

1
2M ¨ p1´M ¨ |xj ´ yj |q if xj ą yj

“ 1
2MΛM,yj pxjq.

(6)

For notational convenience we further define φipxq :“ %pW ix` biq for i P rLs. Then, we observe
for x P RB and i P rBs that

rφ2pxqsi “
c

p3rsBq1{q

r´1
ÿ

b“0

s
ÿ

j“1

´

x3sb`j ´ x3sb`s`j ´ x3sb`2s`j

¯

.

Therefore, we see for arbitrary x P Rd and i P rBs that
“`

φ2 ˝ % ˝ φ1
˘

pxq
‰

i
“

c2

p3rsq2{qB1{q

r´1
ÿ

b“0

s
ÿ

j“1

´

%
`xj

2 `
M´1

´yj
2

˘

´ %pxj ´ yjq ´ %
`

s´1
s

1
2M

˘

¯

“
c2

2Mp3rsq2{qB1{q

r´1
ÿ

b“0

s
ÿ

j“1

´

ΛM,yj pxjq ´
s´1
s

¯

“
c2r

2Mp3rsq2{qB1{q
∆
psq
M,ypxq.
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Hence, it holds that

`

% ˝ φ2 ˝ % ˝ φ1
˘

pxq “
c2r

2Mp3rsq2{qB1{q
¨ ϑ
psq
M,ypxq ¨ p1| ¨ ¨ ¨ |1q

T P RB .

Next, for 3 ď i ď L´ 1, we see for arbitrary κ ě 0 and j P rBs that
“`

% ˝ φi
˘`

κ ¨ p1| ¨ ¨ ¨ |1qT
˘‰

j
“ %

`
řB
`“1rW

isj,` κ
˘

“ %pcB1´ 2
q κq “ cB1´ 2

q κ,

meaning
`

% ˝ φi
˘`

κp1 | ¨ ¨ ¨ | 1qT
˘

“ cB1´ 2
q κ ¨ p1 | ¨ ¨ ¨ | 1qT .

Therefore, we conclude

`

% ˝ φL´1 ˝ % ˝ φL´2 ˝ ¨ ¨ ¨ ˝ % ˝ φ1
˘

pxq “
cL´1 r pB1´ 2

q qL´3

2Mp3rsq2{qB1{q
ϑ
psq
M,ypxq ¨ p1 | ¨ ¨ ¨ | 1qT P RB .

All in all, this easily implies

RpΦqpxq “
ν

B1{q

B
ÿ

i“1

cLr pB1´ 2
q qL´3

2Mp3rsq2{qB1{q
ϑ
psq
M,ypxq “ ν ¨

cL pB1´ 2
q qL´2p3rsq1´

2
q

6Ms
ϑ
psq
M,ypxq.

It therefore remains to recall that r “ tB{p3squ ě 1, so that 2r ě 1` r ą B
3s and hence 3rs ě B

2 .
Since also 1´ 2

q ě 0, this implies p3rsq1´
2
q ě pB{2q1´

2
q ě B1´ q

2 {2, which finally shows

λ :“
cL pB1´ 2

q qL´2p3rsq1´
2
q

6
ě
cL ¨BpL´1qp1´ 2

q q

12
.

Now, we also consider the case q ď 2. We remark that in the case q “ 2, the next lemma only
agrees with Lemma A.2 up to a constant factor. This is a proof artifact and is inconsequential for the
questions we are interested in.
Lemma A.3. Let d P N, L P Ně3, B P Ně3, c ą 0, q P r1, 2s, and s P N with s ď mintd, B3 u.
Then, we have

ν ¨
cLs1´ 2

q {p2 ¨ 32{qq

Ms
ϑ
psq
M,y P H

q
pd,B,...,B,1q,c @M P N, ν P t˘1u, and y P r0, 1sd,

where the B in pd,B, . . . , B, 1q appears L´ 1 times.

Proof. The proof idea is similar to the one of Lemma A.2. However, we only realize a scaled version
of the function ϑpsqM,y in the first coordinate of the outputs after the first two layers. As in the proof of
Lemma A.2, we denote by pe1, . . . , edq the standard basis of Rd, and we write 0kˆn and 1kˆn for
the k ˆ n matrices which have all entries equal to zero or one, respectively. Moreover, we use the
matrices and vectors Is, α, β, γ defined in Equation (5). With this setup, define

W 1 :“
c

p3sq1{q
¨
`

Is{2
ˇ

ˇ Is
ˇ

ˇ 0dˆpB´2sq

˘T
P RBˆd,

b1 :“
c

p3sq1{q
¨
`

α
ˇ

ˇβ
ˇ

ˇ γ
ˇ

ˇ 01ˆpB´3sq

˘T
P RB .

Note that these definitions make sense since 2s ď 3s ď B. Further, define b2 :“ p0| ¨ ¨ ¨ |0qT P RB
and

W 2 :“
c

p3sq1{q

ˆ

11ˆs ´11ˆ2s 01ˆpB´3sq

0pB´1qˆs 0pB´1qˆ2s 0pB´1qˆpB´3sq

˙

P RBˆB .

Next, for 3 ď i ď L´ 1, define bi :“ p0| ¨ ¨ ¨ |0qT P RB and

W i :“ c ¨

¨

˚

˚

˝

1 0 ¨ ¨ ¨ 0
0 0 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ 0

˛

‹

‹

‚

P RBˆB ,
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and finally let WL :“ ν ¨ c ¨ p1|0| ¨ ¨ ¨ |0q P R1ˆB and bL :“ p0q P R1. It is straightforward to
verify that }W j}`q ď c and }bj}`q ď c for all 1 ď j ď L. Therefore, RpΦq P Hq

pd,B,...,B,1q,c for

Φ :“ ppW 1, b1q, . . . , pWL, bLqq. It therefore remains to show that RpΦq “ ν ¨ c
Ls

1´ 2
q {p2¨32{q

q

Ms ϑ
psq
M,y.

For notational convenience we define φipxq :“ %pW ix ` biq for i P rLs. Then we note for
3 ď i ď L´ 1 that

`

% ˝ φi
˘

pxq “
`

c ¨ %px1q | 0 | ¨ ¨ ¨ | 0
˘T

. This easily implies
`

% ˝ φL´1 ˝ % ˝ φL´2 ˝ ¨ ¨ ¨ ˝ % ˝ φ3
˘

pxq “
`

cL´3 ¨ %px1q | 0 | ¨ ¨ ¨ | 0
˘T
,

and therefore
`

φL ˝ % ˝ φL´1 ˝ ¨ ¨ ¨ ˝ % ˝ φ3
˘

pxq “ ν ¨ cL´2 %px1q for x P RB .

Finally, an application of Equation (6) shows that

rp% ˝ φ2 ˝ % ˝ φ1qpxqs1 “
c2

p3sq2{q
%

ˆ s
ÿ

i“1

ˆ

%
`

xi

2 `
M´1

´yi
2

˘

´ %pxi ´ yiq ´ %
`

s´1
s

1
2M

˘

˙˙

“
c2

2M ¨ p3sq2{q
%

ˆˆ s
ÿ

i“1

ΛM,yipxiq

˙

´ ps´ 1q

˙

“
c2

2M ¨ p3sq2{q
%p∆

psq
M,ypxqq “

c2

2M ¨ p3sq2{q
ϑ
psq
M,ypxq.

Overall, we thus see as claimed that

RpΦqpxq “ ν ¨ cL´2 ¨
c2

2M ¨ p3sq2{q
¨ ϑ
psq
M,ypxq “ ν ¨

cLs1´ 2
q {p2 ¨ 32{qq

Ms
¨ ϑ
psq
M,ypxq.

Remark A.4. A straightforward adaptation of the proof shows that the same statement holds for
Hq
pd,B,N2,...,NL´1,1q,c

instead of Hq
pd,B,...,B,1q,c, for arbitrary N2, . . . , NL´1 P N.

A.2 A GENERAL LOWER BOUND

We now show that any target class containing a large number of (shifted) hat functions has a large
optimal error.

Theorem A.5. Let d,m P N, s P rds, and M :“ 8rm1{ss. Assume that U Ă Cpr0, 1sdq satisfies

u0 ` ν ¨
λ

Ms
ϑ
psq
M,y P U @ ν P t˘1u and y P r0, 1sd

for certain λ ą 0 and u0 P Cpr0, 1s
dq. Then,

errMC
m pU,Lppr0, 1sdqq ě

λ{4

p32sq1`
s
p
¨m´

1
p´

1
s @ p P r1,8s.

The general idea of the proof is sketched in Section 2.3. In what follows we provide the technical
details.

Proof. The proof is divided into five steps.

Step 1: Define k :“ rm1{ss and let y` :“ p1,...,1q
8k `

`´p1,...,1q
4k P r0, 1sd for ` P r4ksd. Furthermore,

let Γ :“ r4kss ˆ tp1, . . . , 1qu Ă r4ksd. With

f`,ν :“ u0 ` ν ¨
λ

Ms
ϑ
psq

M,y`
for p`, νq P Γˆ t˘1u, (7)

it holds by assumption that
f`,ν P U @ p`, νq P Γˆ t˘1u. (8)

Furthermore, since M “ 8k, Lemma A.1 and a moment’s thought reveal that

@ p`, νq, p`1, ν1q P Γˆ t˘1u : ` ‰ `1 ñ supppf`,ν ´ u0q
o
X supppf`1,ν1 ´ u0q

o
“ H, (9)
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where we note that supppf`,ν ´ u0q “ suppϑ
psq

M,y`
.

Step 2: Let5 A P Alg2mpU,L
pq be arbitrary and x “ xpu0q “ px1, . . . , x2mq P

`

r0, 1sd
˘2m

as
described before Equation (1). Put

Ix :“
!

` P Γ : @ i P r2ms : ϑ
psq

M,y`
pxiq “ 0

)

.

We now show that
|Ix| ě p4kq

s ´ 2m. (10)

To see this we will estimate the cardinality of the complement set Icx :“ ΓzIx from above. For
` P Icx there must exist i` P r2ms with ϑpsq

M,y`
pxi`q ‰ 0 and hence xi` P supp

`

ϑ
psq

M,y`

˘o
. The map

Icx Ñ r2ms, ` ÞÑ i`, is thus injective due to (9). Therefore |Icx| ď 2m and thus |Ix| ě |Γ| ´ 2m,
which is (10). Furthermore, the definition of Ix, combined with the definition of f`,ν in (7) and the
condition that A can only depend on the samples x and the values of the input function at these
samples, directly imply that

@ p`, νq P Γˆ t˘1u : ` P Ix ñ Apf`,νq “ Apu0q. (11)

Step 3: Recalling our notation for the average in Section 1.2, it holds that

ÿ

`PΓ
νPt˘1u

}f`,ν ´Apf`,νq}Lp “
1

p4kqs

ÿ

`PΓ

ˆ

1

2
}f`,´1 ´Apf`,´1q}Lp `

1

2
}f`,1 ´Apf`,1q}Lp

˙

ě
1

p4kqs

ÿ

`PIx

ˆ

1

2
}f`,´1 ´Apf`,´1q}Lp `

1

2
}f`,1 ´Apf`,1q}Lp

˙

(12)

“
|Ix|

p4kqs

ÿ

`PIx

ˆ

1

2
}f`,´1 ´Apf`,´1q}Lp `

1

2
}f`,1 ´Apf`,1q}Lp

˙

ě
1

2

ÿ

`PIx

ˆ

1

2
}f`,´1 ´Apf`,´1q}Lp `

1

2
}f`,1 ´Apf`,1q}Lp

˙

(13)

“
1

2

ÿ

`PIx

ˆ

1

2
}f`,´1 ´Apu0q}Lp `

1

2
}f`,1 ´Apu0q}Lp

˙

(14)

ě
1

2

ÿ

`PIx

›

›

›

›

λ

Ms
ϑ
psq

M,y`

›

›

›

›

Lp

(15)

ě
1

2
¨ p2sq´

s
p´1

¨ λ ¨M´ s
p´1 (16)

ě
1

2
¨ p2sq´

s
p´1

¨ λ ¨ 16´
s
p´1

¨m´
1
p´

1
s (17)

“
λ

2 ¨ p32sq
s
p`1

¨m´
1
p´

1
s .

Here, (12) follows since Ix Ă Γ; (13) follows from k “ rm
1
s s and (10); (14) follows from (11); (15)

follows from the triangle inequality and (7); (16) follows from Lemma A.1; and (17) follows from
the definition of M , which implies that M ď 8m1{s ` 8 ď 16m1{s.

Step 4: Let pA,mq P AlgMC
m pU,Lpq be arbitrary with A “ pAωqωPΩ for a probability space

pΩ,F ,Pq. Put Ω0 :“ tω P Ω : mpωq ď 2mu. Since the Markov inequality implies that

m ě Erms ě 2m ¨ PpΩc0q,

it follows that

PpΩ0q ě
1

2
. (18)

5For notational convenience, we abbreviate Lp
pr0, 1sdq by Lp in this proof.
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Step 5: We finally estimate for pA,mq as in Step 4 that

sup
uPU

E r}u´Aωpuq}Lps ě
ÿ

`PΓ
νPt˘1u

E r}f`,ν ´Aωpf`,νq}Lps (19)

ě E

»

—

–

1Ω0
pωq

ÿ

`PΓ
νPt˘1u

}f`,ν ´Aωpf`,νq}Lp

fi

ffi

fl

ě PpΩ0q ¨
λ

2 ¨ p32sq
s
p`1

¨m´
1
p´

1
s (20)

ě
λ{4

p32sq
s
p`1

¨m´
1
p´

1
s . (21)

Here, (19) follows from (8); (20) follows from Step 3 (note that Aω P Alg2mpU,L
pq for ω P Ω0);

and (21) follows from (18).

Since pA,mq P AlgMC
m pU,Lpq was arbitrary, this implies the desired statement.

Remark A.6. Close inspection of the proof of Theorem 2.2 shows that one can replace the point
samples upxiq by Tupxiq, where T : U Ñ Cpr0, 1sdq is any local operator6. Since any differential
operator is a local operator, our lower bounds also hold if we measure point samples of a differential
operator applied to u, as it is commonly done in the context of so-called physics-informed neural
networks (Raissi et al., 2019).

B PROOF OF THE UPPER BOUND IN SECTION 2.4

We first provide an auxiliary result which bounds the spectral norm }W }`2Ñ`2 of a matrix W by its
entry-wise `q norm.
Lemma B.1. Let W P RNˆM and q P r1,8s. Then it holds that

}W }`2Ñ`2 ď

#

}W }`q if q ď 2

p
?
NMq1´

2
q ¨ }W }`q if q ě 2.

Proof. We first note that }W }`2 “ }W }F , the Frobenius norm of the matrix W . It is well-known that
the Frobenius norm satisfies }W }`2Ñ`2 ď }W }F . Since we could not locate a convenient reference,
we reproduce the elementary proof: The Cauchy-Schwarz inequality implies that

}Wx}2`2 “
N
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

M
ÿ

j“1

Wi,jxj

ˇ

ˇ

ˇ

ˇ

2

ď

N
ÿ

i“1

ˆ M
ÿ

j“1

|Wi,j |
2
M
ÿ

j“1

|xj |
2

˙

“ }W }2`2 ¨ }x}
2
`2 ,

which implies the claim. Thus, we see for q ď 2 that }W }`2Ñ`2 ď }W }`2 ď }W }`q . Clearly, the
same estimate holds for complex-valued matrices and vectors as well.

Now, to handle the case q ě 2, we first note for q “ 8 and W P CNˆM and x P CM that

}Wx}2`2 “
N
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

M
ÿ

j“1

Wi,j xj

ˇ

ˇ

ˇ

ˇ

2

ď

N
ÿ

i“1

ˆ M
ÿ

j“1

|Wi,j |
2
M
ÿ

j“1

|xj |
2

˙

ď }x}2`2 ¨ }W }
2
`8 ¨NM.

This proves the claim in case of q “ 8. Finally, for q P p2,8q, we choose θ “ 2
q , so that 1

q “
θ
2`

1´θ
8

.
Thus, applying the Riesz-Thorin interpolation theorem (see, e.g., Folland, 1999, Theorem 6.27) to the
linear map pCNˆM , } ¨ }`q q Ñ pCN , } ¨ }`2q, W ÞÑWx, shows for each x P CM that

}Wx}`2 ď p
?
NMq1´θ ¨ }W }`q “ p

?
NMq1´

2
q ¨ }W }`q ,

which completes the proof7.
6This means that if f “ g on a neighborhood of x P r0, 1sd, then pTfqpxq “ pTgqpxq.
7We consider complex matrices and vectors, since the Riesz-Thorin theorem applies as stated only for the

complex setting.
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Next, let us define the Lipschitz constant Lip`q pφq of a function φ : Rd Ñ Rk with respect to the `2
norm by

Lip`q pφq :“ sup
x,yPRd,x‰y

}φpxq ´ φpyq}`q

}x´ y}`q
.

Note that the Lipschitz constant of an affine-linear mapping x ÞÑWx` b equals the spectral norm
}W }`2Ñ`2 . Thus, we can use the previous lemma to bound the Lipschitz constant of neural network
realizations RpΦq P Hq

pN0,...,NLq,c
in terms of their architecture pN0, . . . , NLq and the regularization

on their weights (given by max1ďiďL maxt}W i}`q , }b
i}`qu ď c).

Lemma B.2. Let L P N, q P r1,8s, c ą 0, and N0, . . . , NL P N. Then, each RpΦq P Hq
pN0,...,NLq,c

satisfies

Lip`2pRpΦqq ď

#

cL if q ď 2

cL ¨ p
?
N0NL ¨N1 ¨ ¨ ¨NL´1q

1´2{q if q ě 2.

Proof. Let RpΦq P Hq
pN0,...,NLq,c

be arbitrary. By definition, this means

RpΦq “ φL ˝ % ˝ φL´1 ˝ ¨ ¨ ¨ ˝ % ˝ φ1,

where % acts componentwise, and where the affine-linear maps φi : RNi´1 Ñ RNi are of the form
φipxq “W ix` bi, with W i P RNiˆNi´1 and }W i}`q ď c.

The ReLU activation function % : RÑ R, x ÞÑ maxt0, xu, is easily seen to satisfy |%pxq ´ %pyq| ď
|x´ y| for x, y P R. This implies that

Lip`2pRpΦqq “ Lip`2pφ
L ˝ % ˝ φL´1 ˝ ¨ ¨ ¨ ˝ % ˝ φ1q ď

L
ź

i“1

Lip`2pφ
iq. (22)

Lemma B.1 establishes for i P rLs that

Lip`2pφ
iq ď

#

c if q ď 2

c ¨ p
a

Ni´1Niq
1´ 2

q if q ě 2,

which, together with (22), proves the claim.

Note that we can estimate the error of reconstructing Lipschitz continuous functions from samples
by piecewise constant interpolation. Together with Lemma B.2, this allows us to construct a (non-
adaptive, deterministic) algorithm for reconstructing neural networks from samples.

Lemma B.3. Let d P N. Then, for every m P N, there exist points x1, . . . , xm P r0, 1s
d and a map

Θm : Rm Ñ L8pr0, 1sdq satisfying
›

›Θm

`

upx1q, . . . , upxmq
˘

´ u
›

›

L8pr0,1sdq
ď Lip`2puq ¨ 2

?
d ¨m´1{d (23)

for every function u : r0, 1sd Ñ R with Lip`2puq ă 8.

Proof. Let m P N be arbitrary and choose K :“ tm1{du ě 1. Write

tx1, . . . , xKdu “
p1,...,1q

2K `
 

0
K ,

1
K , . . . ,

K´1
K

(d
noting that r0, 1sd “

Kd
ď

i“1

xi ` r´
1

2K ,
1

2K s
d.

Hence, choosing Qi :“ pxi ` r´
1

2K ,
1

2K s
dqz

Ťi´1
j“1pxj ` r´

1
2K ,

1
2K s

dq, we get r0, 1sd “
ŢKd

i“1Qi,
where the union is disjoint.

Note that Kd ď m and choose arbitrary points xKd`1, . . . , xm P r0, 1s
d. Furthermore, define

Θm : Rm Ñ L8pr0, 1sdq, pa1, . . . , amq ÞÑ
Kd
ÿ

i“1

ai ¨ 1Qi
.
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To prove Equation (23), let u : r0, 1sd Ñ R be arbitrary with Lip`2puq ă 8. For arbitrary
x P r0, 1sd, there then exists a unique i P rKds satisfying x P Qi Ă xi ` r´

1
2K ,

1
2K s

d, and in
particular }x´ xi}`2 ď

?
d{p2Kq. Therefore,

ˇ

ˇΘm

`

upx1q, . . . , upxmq
˘

pxq ´ upxq
ˇ

ˇ “ |upxiq ´ upxq|

ď Lip`2puq ¨ }xi ´ x}`2 ď Lip`2puq ¨

?
d

2K
.

Since x P r0, 1sd was arbitrary, this implies

›

›Θmpupx1q, . . . , upxmqq ´ u
›

›

L8pr0,1sdq
ď Lip`2puq ¨

?
d

2K
.

Finally, we note that K “ tm1{du ě 1 implies 2K ě 1`K ą m1{d, which proves the claim.

Note that the proof above requires to convert a Lipschitz constant with respect to the `2 norm to an
`8 estimate which costs a factor

?
d and contributes to the gap between our lower and upper bound.

Remark B.4. Note that our upper and lower bounds in Theorems 1.1 and 1.4 are asymptotically
sharp with respect to the number of samples m, the regularization parameter c, and the network
depth L but not fully sharp with respect to the multiplicative factor depending on d and q only.
Given m many samples, a combination of Theorems 1.1 and 1.4 shows that the optimal achievable
L8 reconstruction error ε for reconstructing neural networks with L layers up to width 3d and
coefficients bounded by c in the `q norm satisfies
#

1
256¨32{q

¨ cL ¨ d´
2
q ¨m´

1
d

1
1536¨d ¨ c

L ¨ p3dqpL´1qp1´ 2
q q ¨m´

1
d

ď ε ď

?
d ¨ cL ¨m´

1
d if q ď 2

d1´ 1
q ¨ cL ¨ p3dqpL´1qp1´ 2

q q ¨m´
1
d if q ą 2.

+

For moderate input dimensions d the upper and lower bounds are quite tight, but for larger d there
remains a gap. However, in that case the lower bound for m is already intractable (at least if ε ! 1{d
or if c " 1 and L is large) so that the upper bound is merely of academic interest.
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C HYPERPARAMETERS USED IN THE NUMERICAL EXPERIMENTS

Table 1: General hyperparameters for the experiments in Figure 1 and Section 3.
Description Value Variable
Experiment
precision float64
GPUs per training 1 (NVIDIA GTX-1080, RTX-2080Ti, A40, or A100)
Deep learning algorithms
optimizer Adam
initialization of coefficients pW `, b`q Upr´

a

1{N`´1,
a

1{N`´1sq

activation function ReLU %
learning rate scheduler exponential decay
initial / final learning rate 10´4 / 10´6

decay frequency every epoch
Evaluation
number of samples 224 J
distribution of samples Upr´0.5, 0.5sdq
evaluation norm t1, 2,8u p
number of evaluations 5 (evenly spaced over all epochs)

Table 2: Hyperparameters specific to the experiment in Figure 1.
Description Value Variable
Experiment
samples 103 m
dimension 1 d
Target function
sinusoidal function x ÞÑ logpsinp50xq ` 2q ` sinp5xq u
Deep learning algorithm
depth of architecture 22 L
width of architecture 50 N1, . . . , NL´1

batch-size 20
number of epochs 5000

Table 3: Hyperparameters specific to the experiments in Section 3.
Description Value Variable
Experiment
samples t102, 103, 104, 105u m
dimension t1, 3u d
Target functions
number of teachers 40 |pU |
depth of teacher architecture 5 L
width of teacher architecture 32 N1, . . . , NL´1

activation of teacher ReLU %
teacher coefficient norm 8 q
teacher coefficient norm bound 0.5 c
distribution of coefficients Upr´0.5, 0.5sq
Deep learning algorithms
number of seeds 3 |pΩ|
depth of student architecture 5 L
width of student architecture t32, 512, 2048u N1, . . . , NL´1

batch-size t100,m{5,m{50u
number of epochs 500 (if batch-size “ 100), 5000 (else)
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