

Towards a regularity theory for ReLU networks – chain rule and global error estimates

Julius Berner joint work with Dennis Elbrächter, Philipp Grohs, and Arnulf Jentzen

> Faculty of Mathematics, University of Vienna, Austria

> > October 9, 2019

• parametrization of neural network with architecture (N_0, \ldots, N_L) :

$$\Phi = ((A_\ell, b_\ell))_{\ell=1}^L$$

where $A_\ell \in \mathbb{R}^{N_\ell imes N_{\ell-1}}$ and $b_\ell \in \mathbb{R}^{N_\ell}$

• parametrization of neural network with architecture (N_0, \dots, N_L) :

$$\Phi = ((A_\ell, b_\ell))_{\ell=1}^L$$

where $A_\ell \in \mathbb{R}^{N_\ell imes N_{\ell-1}}$ and $b_\ell \in \mathbb{R}^{N_\ell}$

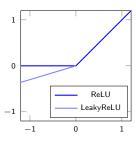
• activation function ϱ : locally Lipschitz continuous with at most countably many points of non-differentiability

• parametrization of neural network with architecture (N_0, \dots, N_L) :

$$\Phi = ((A_\ell, b_\ell))_{\ell=1}^L$$

where $A_\ell \in \mathbb{R}^{N_\ell \times N_{\ell-1}}$ and $b_\ell \in \mathbb{R}^{N_\ell}$

- activation function ϱ : locally Lipschitz continuous with at most countably many points of non-differentiability, e.g.
 - $ReLU(x) = max\{x, 0\}$
 - LeakyReLU(x) = max{ $\alpha x, x$ }, $\alpha \in (0, 1)$

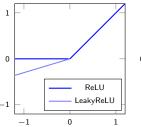


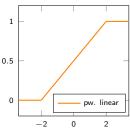
• parametrization of neural network with architecture (N_0, \dots, N_L) :

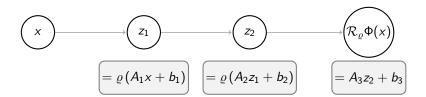
$$\Phi = ((A_\ell,b_\ell))_{\ell=1}^L$$

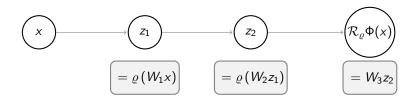
where $A_\ell \in \mathbb{R}^{N_\ell imes N_{\ell-1}}$ and $b_\ell \in \mathbb{R}^{N_\ell}$

- activation function ϱ : locally Lipschitz continuous with at most countably many points of non-differentiability, e.g.
 - $ReLU(x) = max\{x, 0\}$
 - LeakyReLU(x) = max{ $\alpha x, x$ }, $\alpha \in (0, 1)$









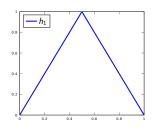
Definition (realization of a parametrization)

Realization
$$\mathcal{R}\Phi\in\mathcal{W}^{1,\infty}_{loc}(\mathbb{R}^{N_0},\mathbb{R}^{N_L})$$
 of parametrization $\Phi=((A_\ell,b_\ell))_{\ell=1}^L$:

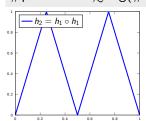
$$\mathcal{R}\Phi:=\textit{W}_{\textit{L}}\circ \varrho \circ \textit{W}_{\textit{L}-1}\circ \ldots \circ \varrho \circ \textit{W}_{1}$$

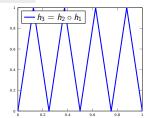
where $W_k(x) := A_k x + b_k$ and ϱ is applied component-wise.

• sawtooth function

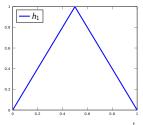


 $\#\mathsf{parameters} \lesssim \log(\#\mathit{teeth})$

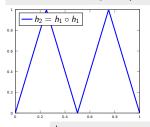


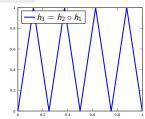


sawtooth function

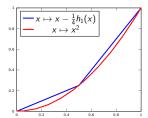


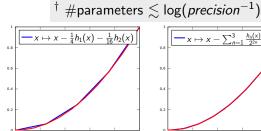
#parameters $\lesssim \log(\# teeth)$

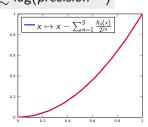




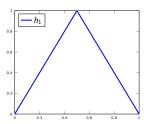
squaring function[†]



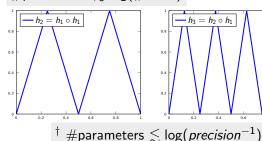


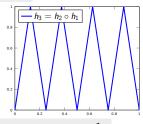


sawtooth function



- squaring function[†]
- multiplication[†]





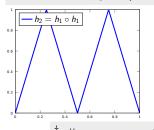
$$xy = \left| \frac{x+y}{2} \right|^2 - \left| \frac{x-y}{2} \right|^2$$

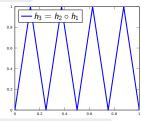
sawtooth function



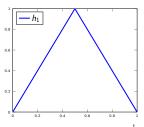
- ⇒ squaring function[†]
- ⇒ multiplication[†]
- ⇒ polynomials[†]

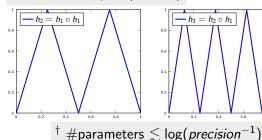
 $\#\mathsf{parameters} \lesssim \mathsf{log}(\#\mathit{teeth})$

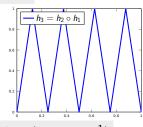




sawtooth function

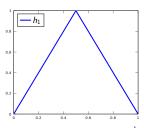


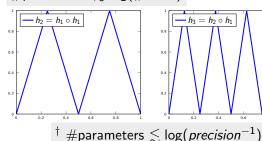


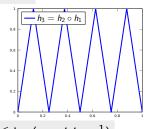


- squaring function[†]
- multiplication[†]
- polynomials[†]
- Sobolev-regular functions Yarotsky '16

sawtooth function

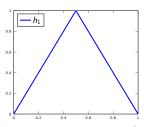




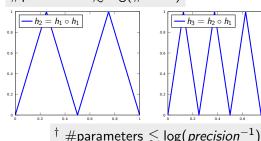


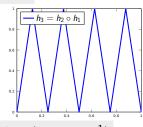
- squaring function[†]
- multiplication[†]
- polynomials[†]
- ⇒ Sobolev-regular functions Yarotsky '16
 - in particular $x \mapsto \cos(2\pi x)$
- [‡] #parameters $\leq \log^2(precision^{-1})$

sawtooth function



squaring function[†]



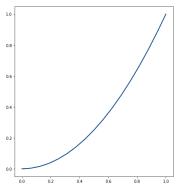


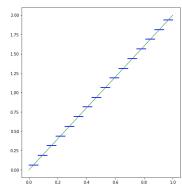
- multiplication[†]
- polynomials[†]
- ⇒ Sobolev-regular functions Yarotsky '16
- in particular $^{\ddagger} x \mapsto cos(2\pi x)$ $^{\ddagger} \# parameters \leq log^2(precision^{-1})$
- ⇒ high-frequent cosine[‡] Perekrestenko, Grohs, Elbrächter, Bölcskei '18

$$\cos(2\pi 2^n x) = \cos(2\pi h_n(x))$$

Goal

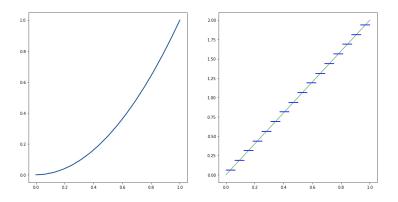
- ReLU networks approximating previous functions in the $\mathcal{W}^{1,\infty}$ norm (applications in the numerical solution of PDEs)
- ⇒ same construction for squaring function



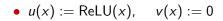


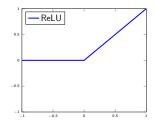
Goal

- ReLU networks approximating previous functions in the $\mathcal{W}^{1,\infty}$ norm (applications in the numerical solution of PDEs)
- ⇒ same construction for squaring function



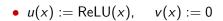
Problem: classical chain rule fails!

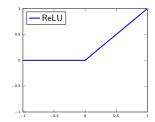




• chain rule (formally):

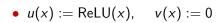
$$D(u \circ v)(x) = Du(v(x)) \cdot Dv(x)$$

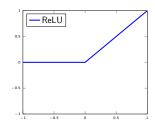




• chain rule (formally):

$$D(u \circ v)(x) = \underbrace{Du(v(x))}_{\text{not defined}} \cdot Dv(x)$$



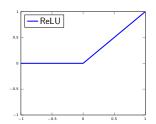


• chain rule (formally):

$$D(u \circ v)(x) = \underbrace{Du(v(x))}_{\text{not defined}} \cdot Dv(x)$$

$$\Rightarrow$$
 define $ar{D}[\mathsf{ReLU}](x) := egin{cases} 1, & x > 0 \\ c, & x = 0 \\ 0, & x < 0 \end{cases}$ $(c \in \mathbb{R})$

• $u(x) := ReLU(x), \quad v(x) := 0$



• chain rule (formally):

$$D(u \circ v)(x) = \underbrace{Du(v(x))}_{\text{not defined}} \cdot Dv(x)$$

$$\Rightarrow$$
 define $ar{D}[\mathsf{ReLU}](x) := egin{cases} 1, & x > 0 \\ c, & x = 0 \\ 0, & x < 0 \end{cases}$ $(c \in \mathbb{R})$

• deep learning libraries (TensorFlow, PyTorch): c = 0 \Rightarrow sparsity

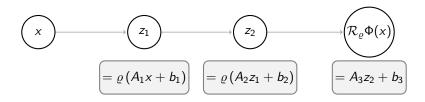
Definition of the Neural Network Derivative

Definition (ReLU network derivative)

Derivative $\mathcal{D}\Phi \in \mathcal{L}^{\infty}(\mathbb{R}^{N_0}, \mathbb{R}^{N_L \times N_0})$ of parametrization $\Phi = ((A_\ell, b_\ell))_{\ell=1}^L$:

$$\mathcal{D}\Phi := A_L \cdot \Delta_{L-1} \cdot A_{L-1} \cdot \ldots \cdot \Delta_1 \cdot A_1$$

where $\Delta_k := \operatorname{diag}(\bar{D}[\operatorname{ReLU}] \circ \mathcal{R}((A_\ell, b_\ell))_{\ell=1}^k)$ and $\bar{D}[\operatorname{ReLU}]$ is applied component-wise.



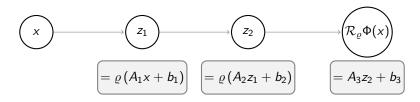
Definition of the Neural Network Derivative

Definition (network derivative with activation ϱ)

Derivative $\mathcal{D}\Phi \in \mathcal{L}^{\infty}_{loc}(\mathbb{R}^{N_0}, \mathbb{R}^{N_L \times N_0})$ of parametrization $\Phi = ((A_{\ell}, b_{\ell}))_{\ell=1}^L$:

$$\mathcal{D}\Phi := A_L \cdot \Delta_{L-1} \cdot A_{L-1} \cdot \ldots \cdot \Delta_1 \cdot A_1$$

where $\Delta_k := \operatorname{diag}(\bar{D}\varrho \circ \mathcal{R}((A_\ell, b_\ell))_{\ell=1}^k)$ and $\bar{D}\varrho$ is applied component-wise.



Definition of the Neural Network Derivative

Definition (network derivative with activation ϱ)

Derivative $\mathcal{D}\Phi \in \mathcal{L}^{\infty}_{loc}(\mathbb{R}^{N_0}, \mathbb{R}^{N_L \times N_0})$ of parametrization $\Phi = ((A_{\ell}, b_{\ell}))_{\ell=1}^L$:

$$\mathcal{D}\Phi:=A_L\cdot\Delta_{L-1}\cdot A_{L-1}\cdot\ldots\cdot\Delta_1\cdot A_1$$

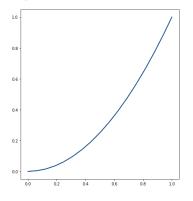
where $\Delta_k := \operatorname{diag}(\bar{D}\varrho \circ \mathcal{R}((A_\ell, b_\ell))_{\ell=1}^k)$ and $\bar{D}\varrho$ is applied component-wise.

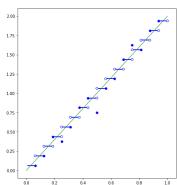
Lemma (properties - B., Elbrächter, Grohs, Jentzen '19)

- well-defined: $\mathcal{D}\Phi = D[\mathcal{R}\Phi]$ a.e.
- chain-rule: $\mathcal{D}(\Psi \circ \Phi) = \mathcal{D}\Psi(\mathcal{R}\Phi) \cdot \mathcal{D}\Phi$
- stability: $\mathcal{D}(\Psi \circ \Phi)(x) = \lim_{y \to \mathcal{R}\Phi(x)} \mathcal{D}\Psi(y) \cdot \mathcal{D}\Phi(x)$ a.e. $x \in \mathbb{R}^{N_0}$

Behaviour of the Derivative on Nullsets

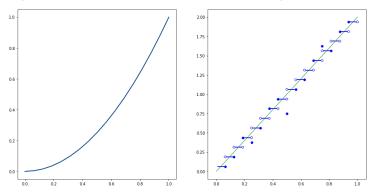
• $\mathcal{D}\Phi$ does not necessarily lie in the subdifferential regardless of choice of c (derivative at points of non-differentiability)





Behaviour of the Derivative on Nullsets

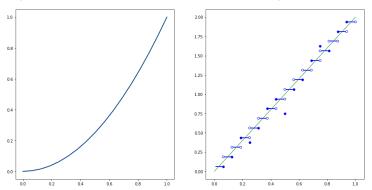
• $\mathcal{D}\Phi$ does not necessarily lie in the subdifferential regardless of choice of c (derivative at points of non-differentiability)



• similar behavior during back-propagation for derivative of $\Phi \mapsto \mathcal{R}\Phi(x^*)$ (fixed sample x^*)

Behaviour of the Derivative on Nullsets

• $\mathcal{D}\Phi$ does not necessarily lie in the subdifferential regardless of choice of c (derivative at points of non-differentiability)



- similar behavior during back-propagation for derivative of Φ → RΦ(x*) (fixed sample x*)
- Problems for neural network training? ⇒ Correct Automatic Subdifferentiation - Kakade, Lee '18

Theorem (multivariate polynomials - B., Elbrächter, Grohs, Jentzen '19)

For every $\varepsilon \in (0,1)$ and polynomial

$$p(x) = \sum_{\alpha \in I} c_{\alpha} x^{\alpha} \quad \left(I = \left\{\alpha \in \mathbb{N}_{0}^{d} : |\alpha| \leq n\right\}, \quad c \in \mathbb{R}^{I}\right)$$

there is a parametrization Φ with

$$\|p - \mathcal{R}\Phi\|_{\mathcal{W}^{1,\infty}((0,1)^d)} \leq \varepsilon$$

Theorem (multivariate polynomials - B., Elbrächter, Grohs, Jentzen '19)

For every $arepsilon \in (0,1)$ and polynomial

$$p(x) = \sum_{\alpha \in I} c_{\alpha} x^{\alpha} \quad \left(I = \left\{\alpha \in \mathbb{N}_{0}^{d} : |\alpha| \leq n\right\}, \quad c \in \mathbb{R}^{I}\right)$$

there is a parametrization Φ with

• $\|\Phi\|_{\infty} \le 4$

$$\| p - \mathcal{R} \Phi \|_{\mathcal{W}^{1,\infty}((0,1)^d)} \leq \underline{\varepsilon}$$

Theorem (multivariate polynomials - B., Elbrächter, Grohs, Jentzen '19)

For every $arepsilon \in (0,1)$ and polynomial

$$p(x) = \sum_{\alpha \in I} c_{\alpha} x^{\alpha} \quad \left(I = \left\{ \alpha \in \mathbb{N}_{0}^{d} \colon |\alpha| \leq n \right\}, \quad c \in \mathbb{R}^{I} \right)$$

there is a parametrization Φ with

- $\|\Phi\|_{\infty} \le 4$
- $\operatorname{depth}(\Phi) \lesssim \log^3(dn) \left[\log(\|c\|_1) + \log(\varepsilon^{-1}) \right]$

$$\|p - \mathcal{R}\Phi\|_{\mathcal{W}^{1,\infty}((0,1)^d)} \leq \varepsilon$$

Theorem (multivariate polynomials - B., Elbrächter, Grohs, Jentzen '19)

For every $arepsilon \in (0,1)$ and polynomial

$$p(x) = \sum_{\alpha \in I} c_{\alpha} x^{\alpha} \quad \left(I = \left\{ \alpha \in \mathbb{N}_{0}^{d} \colon |\alpha| \le n \right\}, \quad c \in \mathbb{R}^{I} \right)$$

there is a parametrization Φ with

- $\|\Phi\|_{\infty} \le 4$
- $\operatorname{depth}(\Phi) \lesssim \log^3(dn) \left[\log(\|c\|_1) + \log(\varepsilon^{-1})\right]$
- width(Φ) $\lesssim d(\|c\|_0 + n)$

$$\|p - \mathcal{R}\Phi\|_{\mathcal{W}^{1,\infty}((0,1)^d)} \leq \varepsilon$$

Theorem (multivariate polynomials - B., Elbrächter, Grohs, Jentzen '19)

For every $\varepsilon \in (0,1)$ and polynomial

$$p(x) = \sum_{\alpha \in I} c_{\alpha} x^{\alpha} \quad \left(I = \left\{ \alpha \in \mathbb{N}_{0}^{d} \colon |\alpha| \le n \right\}, \quad c \in \mathbb{R}^{I} \right)$$

there is a parametrization Φ with

- $\|\Phi\|_{\infty} \le 4$
- $\operatorname{depth}(\Phi) \lesssim \log^3(dn) \left[\log(\|c\|_1) + \log(\varepsilon^{-1}) \right]$
- width(Φ) $\lesssim d(\|c\|_0 + n)$
- $\|\Phi\|_0 \lesssim \operatorname{depth}(\Phi) \cdot \operatorname{width}(\Phi)$

$$\|p - \mathcal{R}\Phi\|_{\mathcal{W}^{1,\infty}((0,1)^d)} \leq \varepsilon$$

Theorem (multivariate polynomials - B., Elbrächter, Grohs, Jentzen '19)

For every $\varepsilon \in (0,1)$ and polynomial

$$p(x) = \sum_{\alpha \in I} c_{\alpha} x^{\alpha} \quad \left(I = \left\{ \alpha \in \mathbb{N}_{0}^{d} \colon |\alpha| \le n \right\}, \quad c \in \mathbb{R}^{I} \right)$$

there is a parametrization Φ with

- $\|\Phi\|_{\infty} \le 4$
- $\operatorname{depth}(\Phi) \lesssim \log^3(dn) \left[\log(\|c\|_1) + \log(\varepsilon^{-1})\right]$
- width(Φ) $\lesssim d(\|c\|_0 + n)$
- $\|\Phi\|_0 \lesssim \operatorname{depth}(\Phi) \cdot \operatorname{width}(\Phi)$

$$\|\mathbf{c}\|_0 \leq \binom{n+d}{d}$$

$$\| \boldsymbol{p} - \mathcal{R} \boldsymbol{\Phi} \|_{\mathcal{W}^{1,\infty}((0,1)^d)} \leq \boldsymbol{\varepsilon}$$

Lemma (chain-rule in $\mathcal{W}^{1,\infty}$ - Gühring, Kutyniok, Petersen '19)

$$|g \circ f|_{\mathcal{W}^{1,\infty}} \le C|g|_{\mathcal{W}^{1,\infty}}|f|_{\mathcal{W}^{1,\infty}} \qquad (f,g \in \mathcal{W}^{1,\infty})$$

Lemma (chain-rule in $\mathcal{W}^{1,\infty}$ - Gühring, Kutyniok, Petersen '19)

$$|g \circ f|_{\mathcal{W}^{1,\infty}} \le C|g|_{\mathcal{W}^{1,\infty}}|f|_{\mathcal{W}^{1,\infty}} \qquad (f,g \in \mathcal{W}^{1,\infty})$$

drawback: C depends on input dimensions of f and g and can be avoided

Lemma (chain-rule in $\mathcal{W}^{1,\infty}$ - Gühring, Kutyniok, Petersen '19)

$$|g \circ f|_{\mathcal{W}^{1,\infty}} \le C|g|_{\mathcal{W}^{1,\infty}}|f|_{\mathcal{W}^{1,\infty}} \qquad (f,g \in \mathcal{W}^{1,\infty})$$

drawback: C depends on input dimensions of f and g and can be avoided

Theorem (Sobolev-regular functions - Gühring, Kutyniok, Petersen '19)

For every $\varepsilon \in (0,1)$ and $f \in \mathcal{W}^{n,\infty}((0,1)^d)$ with $\|f\|_{\mathcal{W}^{n,\infty}((0,1)^d)} \leq B$ there exists a parametrization Φ with

$$||f - \mathcal{R}\Phi||_{\mathcal{W}^{1,\infty}((0,1)^d)} \leq \varepsilon$$

Lemma (chain-rule in $\mathcal{W}^{1,\infty}$ - Gühring, Kutyniok, Petersen '19)

$$|g \circ f|_{\mathcal{W}^{1,\infty}} \le C|g|_{\mathcal{W}^{1,\infty}}|f|_{\mathcal{W}^{1,\infty}} \qquad (f,g \in \mathcal{W}^{1,\infty})$$

drawback: C depends on input dimensions of f and g and can be avoided

Theorem (Sobolev-regular functions - Gühring, Kutyniok, Petersen '19)

For every $\varepsilon \in (0,1)$ and

$$f \in \mathcal{W}^{n,\infty}((0,1)^d)$$
 with $||f||_{\mathcal{W}^{n,\infty}((0,1)^d)} \le B$

there exists a parametrization Φ with

- depth(Φ) $\leq \log(\varepsilon^{-n/(n-1)})$
- $\|\Phi\|_0 \lesssim \varepsilon^{-d/(n-1)} \cdot \log^2(\varepsilon^{-n/(n-1)})$

$$||f - \mathcal{R}\Phi||_{\mathcal{W}^{1,\infty}((0,1)^d)} \leq \varepsilon$$

Lemma (chain-rule in $\mathcal{W}^{1,\infty}$ - Gühring, Kutyniok, Petersen '19)

$$|g \circ f|_{\mathcal{W}^{1,\infty}} \le C|g|_{\mathcal{W}^{1,\infty}}|f|_{\mathcal{W}^{1,\infty}} \qquad (f,g \in \mathcal{W}^{1,\infty})$$

drawback: C depends on input dimensions of f and g and can be avoided

Theorem (Sobolev-regular functions - Gühring, Kutyniok, Petersen '19)

For every $\varepsilon \in (0,1)$ and

$$f \in \mathcal{W}^{n,\infty}((0,1)^d)$$
 with $\|f\|_{\mathcal{W}^{n,\infty}((0,1)^d)} \le B$

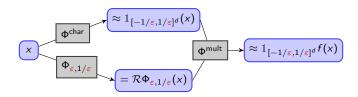
there exists a parametrization Φ with

- depth(Φ) $\leq \log(\varepsilon^{-n/(n-s)})$
 - $\|\Phi\|_0 \lesssim \varepsilon^{-d/(n-s)} \cdot \log^2(\varepsilon^{-n/(n-s)})$

$$||f - \mathcal{R}\Phi||_{\mathcal{W}^{s,\infty}((0,1)^d)} \leq \varepsilon$$

Applications - Global Estimates for ReLU networks

• given local approximations $\|f - \mathcal{R}\Phi_{\varepsilon,B}\|_{\mathcal{W}^{1,\infty}((-B,B)^d)} \leq \varepsilon$ for f with at most polynomially (with degree κ) growing derivative



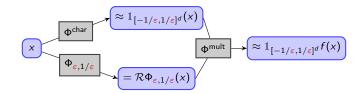
Applications - Global Estimates for ReLU networks

• given local approximations $\|f - \mathcal{R}\Phi_{\varepsilon,B}\|_{\mathcal{W}^{1,\infty}((-B,B)^d)} \leq \varepsilon$ for f with at most polynomially (with degree κ) growing derivative

Theorem (global estimates - B., Elbrächter, Grohs, Jentzen '19)

For every $arepsilon \in (0,1)$ there exists a parametrization Ψ with

- $|f(x) \mathcal{R}\Psi(x)| \le \varepsilon (1 + ||x||^{\kappa+2}) \quad \forall x \in \mathbb{R}^d$
- $||Df(x) \mathcal{D}\Psi(x)|| \le \varepsilon (1 + ||x||^{\kappa+2})$ a.e. $x \in \mathbb{R}^d$



Applications - Global Estimates for ReLU networks

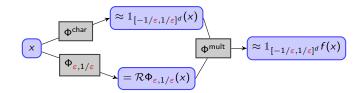
• given local approximations $\|f - \mathcal{R}\Phi_{\varepsilon,B}\|_{\mathcal{W}^{1,\infty}((-B,B)^d)} \leq \varepsilon$ for f with at most polynomially (with degree κ) growing derivative

Theorem (global estimates - B., Elbrächter, Grohs, Jentzen '19)

For every ${\color{blue} arepsilon} \in (0,1)$ there exists a parametrization Ψ with

• $\operatorname{size}(\Psi) \lesssim \operatorname{size}(\Phi_{\varepsilon,1/\varepsilon}) + \log(d + \varepsilon^{-1})$

- $|f(x) \mathcal{R}\Psi(x)| \le \varepsilon (1 + ||x||^{\kappa+2}) \quad \forall x \in \mathbb{R}^d$
- $||Df(x) \mathcal{D}\Psi(x)|| \le \varepsilon (1 + ||x||^{\kappa+2})$ a.e. $x \in \mathbb{R}^d$



Thank you for your Attention!

Julius Berner, Dennis Elbrächter, Philipp Grohs, and Arnulf Jentzen. "Towards a regularity theory for ReLU networks—chain rule and global error estimates". In: *arXiv:1905.04992* (2019).