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Artificial Feed-Forward Neural Network

e parametrization of neural network with architecture (Np, ...

& = ((Ar, br))j—s
where A, € RNexNe-1 gnd p, € RMe
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Artificial Feed-Forward Neural Network

e parametrization of neural network with architecture (N, ..., Np):
L
® = ((A, b))
where A, € RNexNe-1 gnd p, € RMe

e activation function p: locally Lipschitz continuous with at most
countably many points of non-differentiability
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Artificial Feed-Forward Neural Network

e parametrization of neural network with architecture (N, ..., Np):
L
® = ((Ar; b))
where A, € RNexNe-1 gnd p, € RMe
e activation function o: locally Lipschitz continuous with at most
countably many points of non-differentiability, e.g.

o RelLU(x) = max{x,0}
o LeakyRelLU(x) = max{ax,x}, a€(0,1)
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Artifical Feed-Forward Neural Network

O @ O =
[:Q(Alx-l-bl)] [ZQ(A221+b2)]
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Artifical Feed-Forward Neural Network

O O O
SO

Definition (realization of a parametrization)

Realization R® € Wlifo(RNO,RNL) of parametrization ® = ((As, by))5_;:

R =W, o0p0 Wi_10...000 W

where Wi (x) := Axx + bk and o is applied component-wise.
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Motivation - Approximation Results for ReLU networks

e sawtooth function

#parameters < log(#teeth)
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—h=hoh
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Motivation - Approximation Results for ReLU networks

e sawtooth function  #parameters < log(#teeth)

—h —h=hoh —h3=hyohy
= squaring function® T 4 parameters < log(precision™1)
— x> x = thi(x) [—x = x = Ih(x) = £m(0) | — s x— Y0, )
0.8 [+ — X = x? B 08 |- - 08 |- 4
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Motivation - Approximation Results for ReLU networks

e sawtooth function  #parameters < log(#teeth)

—h —h=hoh —h3=hyohy

08 B 08| 08 |-

L o L L L L o L L L L
04 06 08 1 0 02 0.4 06 08 1 o 02 04 06 08

= squaring function® T 4 parameters < log(precision™1)
= multiplicationf
_ | x+y|? x—y |2
xy =[5 = [
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Motivation - Approximation Results for ReLU networks

e sawtooth function  #parameters < log(#teeth)

—h —h=hoh —h3=hyohy

08 B 08| - 08 |-
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= squaring function® T #parameters < log(precision™?!)
= multiplicationf

= polynomials’
= Sobolev-regular functions - Yarotsky '16
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Motivation - Approximation Results for ReLU networks

e sawtooth function  #parameters < log(#teeth)

—h —h=hoh —h3=hyohy

08 B 08| - 08 |-

L o L L L L o L L
04 06 08 1 0 02 0.4 06 08 1 o 02 04 06 08

squaring function® T #parameters < log(precision™?!)
multiplication®
polynomials’

P4l

Sobolev-regular functions - Yarotsky '16

e in particulart x — cos(27x) ! Uparameters < log?(precision—1)
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Motivation - Approximation Results for ReLU networks

e sawtooth function  #parameters < log(#teeth)

—n /\ —memoh]| J\ — = hoh
= squaring function® T #parameters < log(precision™?!)
= multiplicationf
= polynomials’
= Sobolev-regular functions - Yarotsky '16
e in particulart x — cos(27x) ! Uparameters < log?(precision—1)
= high-frequent cosinet - Perekrestenko, Grohs, Elbrichter, Bolcskei '18

cos(2m2"x) = cos(2mhp(x))
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Goal

e RelU networks approximating previous functions in the YW1 norm
(applications in the numerical solution of PDEs)

=- same construction for squaring function
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Goal

e RelU networks approximating previous functions in the YW1 norm
(applications in the numerical solution of PDEs)

=- same construction for squaring function

Problem: classical chain rule fails!
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Motivation - Failure of the Classical Chain Rule

’

e u(x):=ReLU(x), v(x):=0

e chain rule (formally):
D(uo v)(x) = Du(v(x)) - Dv(x)
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Motivation - Failure of the Classical Chain Rule

’

e u(x):=ReLU(x), v(x):=0

e chain rule (formally):
D(u o v)(x) = Du(v(x))-Dv(x)

not defined
1, x>0
= define D[ReLU](x) =< ¢, x=0 (c €R)
0, x<0
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Motivation - Failure of the Classical Chain Rule

’

e u(x):=ReLU(x), v(x):=0

e chain rule (formally):
D(u o v)(x) = Du(v(x))-Dv(x)

not defined
1, x>0
= define D[ReLU](x) =< ¢, x=0 (c €R)
0, x<0

e deep learning libraries (TensorFlow, PyTorch): ¢ =0 = sparsity

Julius Berner Towards a regularity theory for ReLU networks 6 /12



Definition of the Neural Network Derivative

Definition (ReLU network derivative)
Derivative D® € £>°(RNo, RN:XNo) of parametrization ® = ((Ar, by))5_;:

D(bZ:AL-AL_l-AL_1~...~A1-A1

where Ay := diag(D[ReLU] o R((Ar, br))5_;) and D[ReLU] is applied
component-wise.

@ @ @ R ,®(x)
[= o (Ax + bl)] [= 0(Aoz + bz)]
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Definition of the Neural Network Derivative

Definition (network derivative with activation p)

Derivative D® € £ (RNe, RN.xNo) of parametrization ® = ((Ay, be))E_;:

D(bZ:AL-AL_l-AL_1~...~A1-A1

where A, := diag(Dp o R((A, bg))éle) and Do is applied
component-wise.

[= o (Ax + bl)] [= 0(Aoz + bz)]
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Definition of the Neural Network Derivative

Definition (network derivative with activation p)

Derivative D® € £ (RNe, RN.xNo) of parametrization ® = ((Ay, be))E_;:

D(bZ:AL-AL_l-AL_l-...~A1-A1

where A, := diag(Dp o R((A, bg))éle) and Do is applied
component-wise.

Lemma (properties - B., Elbrachter, Grohs, Jentzen '19)
o well-defined: D® = D[R] a.e.
e chain-rule: D(V o ®) = DU(RD) - DP

e stability: D(V o ®)(x) = lim,_,gex) DV(y) - DO(x) a.e. x € R
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Behaviour of the Derivative on Nullsets

e D& does not necessarily lie in the subdifferential regardless of choice
of ¢ (derivative at points of non-differentiability)
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Behaviour of the Derivative on Nullsets

e D& does not necessarily lie in the subdifferential regardless of choice
of ¢ (derivative at points of non-differentiability)

e similar behavior during back-propagation for derivative of
® — RP(x*) (fixed sample x*)
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Behaviour of the Derivative on Nullsets

e D& does not necessarily lie in the subdifferential regardless of choice
of ¢ (derivative at points of non-differentiability)

e similar behavior during back-propagation for derivative of
® — RP(x*) (fixed sample x*)

e Problems for neural network training? = Correct Automatic
Subdifferentiation - Kakade, Lee '18
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Applications - W' Approximation for ReLU networks

Theorem (multivariate polynomials - B., Elbrachter, Grohs, Jentzen '19)
For every € € (0,1) and polynomial
p(x) = anxa (l ={ac Ng: || < n}, ce R')

a€l
there is a parametrization ® with

P = R®[lyyroo((0,1)e) < €
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Applications - W' Approximation for ReLU networks

Theorem (multivariate polynomials - B., Elbrachter, Grohs, Jentzen '19)

For every € € (0,1) and polynomial

p(x) = anxa (l ={ac Ng: || < n}, ce R')
a€l
there is a parametrization ® with

o [Pl <4
o depth(®) < log?(dn)[log(|[c|l1) + log(c )]

and

P = R®[lyyroo((0,1)e) < €
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Applications - W' Approximation for ReLU networks

Theorem (multivariate polynomials - B., Elbrachter, Grohs, Jentzen '19)

For every € € (0,1) and polynomial
p(x) = anxa (l ={ac Ng: || < n}, ce R')

ael
there is a parametrization ¢ with

o [|Pfloc <4

o depth(®) < log®(dn)[log(]|c[l1) + log(c )]
e width(®) < d(||cllo + 1)

and

P = R®[lyyroo((0,1)e) < €
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Applications - W' Approximation for ReLU networks

Theorem (multivariate polynomials - B., Elbrachter, Grohs, Jentzen '19)

For every € € (0,1) and polynomial
p(x) = anxa (l ={ac Ng: || < n}, ce R')

ael
there is a parametrization ¢ with

o [Pl <4

o depth(®) < log*(dn)[log([[cll1) + log(= )]
o width(®) < d(||cllo + )

e |0 < depth(®) - width(®)

and

P = R®[lyyroo((0,1)e) < €
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Applications - W' Approximation for ReLU networks

Theorem (multivariate polynomials - B., Elbrachter, Grohs, Jentzen '19)

For every € € (0,1) and polynomial
p(x) = anxa (l ={ac Ng: || < n}, ce R')

ael
there is a parametrization ¢ with

o [Pl <4

o depth(®) < log®(dn)[log(l|c[l1) + log(= )]

o width(®) < d(||cllo + )

o [®]lo < depth(®) - width(®) lello < ("59)

and

P = R®[lyyroo((0,1)e) < €
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Applications - W' Approximation for ReLU networks

Lemma (chain-rule in W1~ Giihring, Kutyniok, Petersen '19)

lg o flpyree < Clglyroo|flppree (f,g € WhH™)
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Applications - W' Approximation for ReLU networks

Lemma (chain-rule in W1°- Giihring, Kutyniok, Petersen '19)

lg o flpyree < Clglyroo|flppree (f,g € WhH™)

drawback: C depends on input dimensions of f and g and can be avoided
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Applications - W' Approximation for ReLU networks

Lemma (chain-rule in W1°- Giihring, Kutyniok, Petersen '19)

lg o flpyree < Clglyroo|flppree (f,g € WhH™)

drawback: C depends on input dimensions of f and g and can be avoided

Theorem (Sobolev-regular functions - Giihring, Kutyniok, Petersen '19)

For every ¢ € (0,1) and
FeW™((0,1)%) with |[fllyyoe(orys) < B

there exists a parametrization ¢ with

[f = RO[[yyroo((0,1)0) < €
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Applications - W' Approximation for ReLU networks

Lemma (chain-rule in W1°- Giihring, Kutyniok, Petersen '19)

lg o flpyree < Clglyroo|flppree (f,g € WhH™)

drawback: C depends on input dimensions of f and g and can be avoided

Theorem (Sobolev-regular functions - Giihring, Kutyniok, Petersen '19)
For every ¢ € (0,1) and
FeW™™((0,1)7) with [|fllyynee(o1)) < B
there exists a parametrization ¢ with
e depth(®) < log(e~"/("=1)
o [[®lo S e/ log?(e= /7))

and

[f = RO[[yyroo((0,1)0) < €
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Applications - W' Approximation for ReLU networks

Lemma (chain-rule in W1°- Giihring, Kutyniok, Petersen '19)

lg o flpyree < Clglyroo|flppree (f,g € WhH™)

drawback: C depends on input dimensions of f and g and can be avoided

Theorem (Sobolev-regular functions - Giihring, Kutyniok, Petersen '19)
For every ¢ € (0,1) and
FeW™™((0,1)7) with [|fllyynee(o1)) < B
there exists a parametrization ¢ with
e depth(®) < log(e="/("=2))
o [[®lo S e W) - log? (/7))

and

”f = Rd)HWS,oo((OJ_)d) <e s e [0, 1]
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Applications - Global Estimates for ReLU networks

e given local approximations ||f — R®. g|lyy1.00((—g,8)¢) < € for f with
at most polynomially (with degree ) growing derivative

& ﬂ[—l/s,l/s]d(x)

R L_q)e1/:4f (%)

= R¢S,I/S(X)

Julius Berner Towards a regularity theory for ReLU networks 11 /12



Applications - Global Estimates for ReLU networks

e given local approximations ||f — R®. g|lyy1.00((—g,8)¢) < € for f with
at most polynomially (with degree ) growing derivative

Theorem (global estimates - B., Elbrachter, Grohs, Jentzen '19)

For every € € (0, 1) there exists a parametrization W with

o |f(x)—RU(x)| < (1 +]|x]"T3) V¥xeR?

o |Df(x) = DVU(x)|| < e(1+|x||"T?) ae xeR

& ﬂ[—l/s,l/s]d(x)

R Lq)e1/:4f (%)

= R¢s,l/a(X)
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Applications - Global Estimates for ReLU networks

e given local approximations ||f — R®. g|lyy1.00((—g,8)¢) < € for f with
at most polynomially (with degree ) growing derivative

Theorem (global estimates - B., Elbrachter, Grohs, Jentzen '19)
For every € € (0, 1) there exists a parametrization W with

o size(V) <size(d. q/.) + log(d + 1)
and

o |f(x)—RW(x)| <e(1+|x]|"?) vxeRd

o |Df(x) = DVU(x)|| < e(1+ |x||"T?) ae xeR

& ﬂ[—l/s,l/s]d(x)

R L)e1/:4f (%)

= R¢€,1/8(X)
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Thank you for your Attention!

ﬁ Julius Berner, Dennis Elbrachter, Philipp Grohs, and Arnulf Jentzen.
“Towards a regularity theory for ReLU networks—chain rule and global
error estimates”. In: arXiv:1905.04992 (2019).
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