
 
 

 

MASTERARBEIT / MASTER’S THESIS 

Titel der Masterarbeit / Title of the Master‘s Thesis 

„Solving stochastic differential equations and Kolmogorov 
equations by means of deep learning and Multilevel Monte 

Carlo simulation“ 

 

verfasst von / submitted by 

Julius Konstantin Berner, BSc 
 

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of 

Master of Science (MSc) 

Wien, 2018 / Vienna 2018  

Studienkennzahl lt. Studienblatt / 
degree programme code as it appears on 
the student record sheet: 

A 066 821 

Studienrichtung  lt. Studienblatt / 
degree programme as it appears on 
the student record sheet: 

Master’s programme in Mathematics 

Betreut von / Supervisor: 

 

 

 

Assoz. Prof. Dr. Philipp Grohs 
 

 

  

 



Abstract

This thesis links mathematical learning theory with stochastic calculus in order to employ deep

neural networks for efficiently solving a class of high-dimensional partial differential equations

on a given domain. The connection between certain linear parabolic partial differential equa-

tions, so-called Kolmogorov equations, and stochastic differential equations via the Feynman-

Kac formula is exploited and reformulated into an equivalent minimization problem. By way

of sampling a temporal discretization of the stochastic differential equation this leads to an

empirical Learning Problem for a neural network and a new way of Multilevel Learning is pro-

posed for better performance. The latter approach is motivated by Multilevel Monte Carlo

simulations and the given examples reveal encouraging success. The proposed algorithm is

based on mathematical theory of numerical stochastic analysis, statistical learning and neural

networks, which is presented and proven in a broad context. This general framework allows

for further applications and extensions and seeks to be an important step in overcoming the

curse of dimensionality, when solving high-dimensional problems involving stochastic or partial

differential equations.



Zusammenfassung

Die vorliegende Arbeit vereinigt die mathematische Theorie des maschinellen Lernens mit

stochastischer Analysis, um unter Verwendung von tiefen neuronalen Netzwerken eine Klas-

se an hochdimensionalen partiellen Differentialgleichungen auf einem gegebenen Gebiet zu

lösen. Mittels der Feynman-Kac Formel wird eine Verbindung zwischen bestimmten linea-

ren, parabolischen partiellen Differentialgleichungen, sogenannten Kolmogorov Gleichungen,

und stochastischen Differentialgleichungen hergestellt und in ein äquivalentes Minimierungs-

problem überführt. Nach einer temporalen Diskretisierung der stochastischen Differentialglei-

chung können Stichproben für ein empirisches Lernproblem simuliert werden, wobei mehrere

Lernprobleme auf Basis verschiedener Diskretisierungsstufen kombiniert werden. Diese Idee ent-

stammt sogenannten Multilevel Monte Carlo Simulationen und die numerischen Beispiele sind

sehr erfolgsversprechend. Der Algorithmus stützt sich auf Resultate aus numerischer stochasti-

scher Analysis, statistischer Lerntheorie und Theorie neuronaler Netzwerke, welche in großem

Umfang präsentiert und bewiesen werden. Damit schafft die Arbeit den Rahmen für weitere

Anwendungen und Forschungsarbeiten und stellt einen wichtigen Teil zur Überwindung des

Fluchs der Dimensionalität bei der Lösung hochdimensionaler Probleme dar.



Contents

1 Introduction 1

2 The Mathematical Learning Problem 4
2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Multilevel Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Stochastic Interpretation of Kolmogorov Equations 22
3.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Feynman-Kac Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Connection to the Learning Problem . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Approximation by the Euler-Maruyama Scheme . . . . . . . . . . . . . . . . . . 31
3.5 Multilevel Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Neural Networks as Hypothesis Space 45
4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Numerical Results 54
5.1 Toy Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Rainbow European Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Conclusion 61

Appendix 62
.1 Source Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Bibliography 75



Chapter 1

Introduction

In many applications, especially in financial engineering, one is interested in the expected
value of an output E

[
ϕ(SxT )

]
which depends on the terminal state of a solution to a stochastic

differential equation of the generic form

Sxt = x+

∫ t

0

µ(Sxs ) ds+

∫ t

0

σ(Sxs ) dBs , 0 ≤ t ≤ T . (1.1)

Using a temporal discretization of the stochastic differential equation and simple Monte Carlo
methods this problem can be numerically solved and is well-studied in the literature (cf. Glasser-
man [32], Graham [34], Kloeden [53] and Hutzenthaler [44]). Furthermore by performing Multi-
level Monte Carlo simulations, that is combining results with different discretization precisions,
one can significantly reduce the computational cost (cf. Giles [29] & [30], Heinrich [40] and
Cliffe [20]). Based on this method one can develop efficient algorithms to evaluate solutions of
Kolmogorov equations, a class of linear parabolic partial differential equations,{

∂f
∂t

(t, x) = 1
2

TraceRd
(
σ(x)[σ(x)]∗(Hessx f)(t, x)

)
+
〈
µ(x), (∇xf)(t, x)

〉
Rd

f(0, x) = ϕ(x) .
(1.2)

at any given space-time locations exploiting the Feynman-Kac formula

f(T, x) = E
[
ϕ(SxT )

]
. (1.3)

Due to the dimension independent convergence rate of the Monte Carlo method this approach
is particularly attractive for high-dimensional problems, where there are only a limited number
of practical other algorithms.
In this thesis we want to go one step further and aim to approximate not only the solution at
a given space-time location, but the entire solution function

[a, b]d 3 x 7→ f(T, x) (1.4)

at a given time T . For this purpose we merge the theory above with classical learning theory
(cf. Cucker [21], Poggio [67], Hastie [37] and James [46]) and show that the solution function
above is the unique minimizer of the least squares error

min
F∈C ([a,b]d,R)

E
[
|F (X)− Y |2

]
(1.5)

with respect to suitable data (X, Y ) =
(
X,ϕ

(
SXT
))

where X is uniformly distributed in [a, b]d.

Taking realizations
(
(xi, yi)

)m
i=1

of independent samples drawn from the distribution of the data

1



by a temporal discretization of the stochastic differential equation, such as the Euler-Maruyama
scheme, we arrive at the empirical Learning problem

min
F∈H

1

m

m∑
i=1

|F (xi)− yi|2 (1.6)

over a hypothesis space H . This allows us to tackle the problem with machine learning al-
gorithms and we will make use of deep neural networks due to their great success in dealing
with a large class of high-dimensional problems (cf. Hinton [41], Krizhevsky [55], LeCun [56]
and Silver [77]). Motivated by the Multilevel Monte Carlo simulations we furthermore propose
to combine empirical Learning Problems with different discretization precisions in order to de-
crease the computational cost of calculating the realizations. Despite the incomplete theoretical
understanding of neural networks we hope that following this approach we can overcome the

”
curse of dimensionality“. This expression was coined by Bellman [7] and describes the problem

that the complexity of algorithms for solving partial differential equations are usually exponen-
tially scaling with the dimension. Instead of directly pursuing our goal of solving Kolmogorov
equations we will present the learning theory in more generality to give the reader a complete
and expandable framework, which is also applicable to other problems.
In this thesis a good understanding of measure-theoretic probability theory, stochastic analy-
sis and functional analysis will be assumed. References are for instance Ash [4], Klenke [52],
Athreya [5], Pollard [68], Le Gall [27], Kloeden [54], Schilling [75], Billingsley [10], Alipran-
tis [2], Cannarsa [17], Bobwroski [13] and Protter [69]. To begin with let us fix some notation,
mostly straightforward generalizations for vector-valued functions. Note that we could extend
most of the content of this thesis even to Banach space-valued functions (cf., for example, Da
Prato [23]).

Definition 1.0.1 (Notation). We will follow the convention that N represents the positive
integers and N0 = N ∪ {0}. Let d, n ∈ N, let D ⊆ Rd, let (Ω,G,P) be a probability space and
let H be a metrizable space, then we denote

(i) by B(H ) the Borel σ-algebra of H (cf. Aliprantis [2, Section 4.4]),

(ii) by ‖·‖Rd, 〈·, ·〉Rd and ‖·‖Rd×n the euclidean norm and inner product on Rd and the Frobenius
(also known as Hilbert-Schmidt) norm on Rd×n respectively

and we say that

(i) a function X = (Xi)
d
i=1 : Ω→ D is a random vector if it is G/B(D)-measurable and

(ii) a function F : D → Rn is Borel measurable if it is B(D)/B(Rn)-measurable.

For a random vector X : Ω→ D we denote by PX the law (also known as image or push forward
measure) of X under P on the measurable space (D,B(D)) (cf. Klenke [52, Definition 1.98]).
For p ∈ [1,∞) we define Lp(P; ‖·‖Rn) to be the Banach space of random vectors Y : Ω → Rn

with finite norm

‖Y ‖Lp(P;‖·‖Rn ) =

(∫
Ω

‖Y ‖pRn dP
) 1

p

=
(
E
[
‖Y ‖pRn

]) 1
p <∞ , (1.7)

where random vectors which agree P-a.s. are identified as usual (cf. Da Prato [23, Section
1.1]). In the case p = 2 the norm is induced by the inner product

〈Y, Z〉L2(P;‖·‖Rn ) =

∫
Ω

〈Y, Z〉Rn dP = E
[
〈Y, Z〉Rn

]
(1.8)

2



for Y, Z ∈ L2(P; ‖·‖Rn). The expectation of a random vector Y ∈ L1(P; ‖·‖Rn) is given
component-wise, i.e.

E[Y ] =
(
E[Yi]

)n
i=1
∈ Rn , (1.9)

the bias of Y with respect to (w.r.t.) ỹ ∈ Rn is defined by

Bias ỹ(Y ) = E[Y ]− ỹ ∈ Rn (1.10)

and the variance is given by the trace of the covariance matrix

V[Y ] = TraceRn
(

Cov[Y ]
)

= E
[
‖Y −E[Y ]‖2

Rn
]

= ‖Y −E[Y ]‖2
L2(P;‖·‖Rn ) ∈ [0,∞] . (1.11)

Analogously we define the conditional expectation of Y given a σ-algebra H ⊆ G component-
wise, i.e.

E[Y |H] =
(
E[Yi|H]

)n
i=1

, (1.12)

and for Y ∈ L2(P; ‖·‖Rn) we define the conditional variance of Y given H by

V[Y |H] = E
[
‖Y −E[Y |H]‖2

Rn
∣∣H] . (1.13)

Let J be an arbitrary index set, let Zj : Ω→ D, j ∈ J , be a family of mappings, then we denote
by

σ
(
Zj, j ∈ J

)
(1.14)

the smallest σ-algebra H on Ω such that for every j ∈ J the mapping Zj is H/B(D)-measurable
(cf., for instance, Klenke [52, Definition 1.79]). Furthermore we follow the convention of
writing upper case letters for random vectors X : Ω → D and the corresponding lower case
letters for their realizations

x = X(ω) ∈ D (1.15)

for a given outcome ω ∈ Ω. Finally for t, s ∈ R let us define the abbreviation

t ∧ s = min{t, s} ∈ R . (1.16)

3



Chapter 2

The Mathematical Learning Problem

2.1 Formulation

The definitions and notions in this chapter are based on Cucker [21], Poggio [67] and the
first chapters in Hastie [37] and James [46]. Our goal is to learn a relationship among data
Z = (X, Y ) which occurs as a random vector on some probability space (Ω,G,P). We call X the
input variables (also known as predictors, features or independent variables) and Y the output
variables (also response, criterion or dependent variables) and we assume that the relationship
between X and Y can be expressed by a function F via

Y ≈ F (X) . (2.1)

We seek to understand the effect of the predictors on the response variables in terms of statistical
inference and estimate the output value for a given input. More precisely, observing X(ω) (for
some outcome ω ∈ Ω) we want to predict the value of Y (ω) by F (X(ω)). This can model many
situations in areas of science, finance and industry.

Definition 2.1.1 (The (Mathematical) Learning Problem). Let d, n ∈ N, D ⊆ Rd, let (Ω,G,P)
be a probability space and let X : Ω → D and Y : Ω → Rn be random vectors. For a Borel
measurable function F : D → Rn define the least squares error of F w.r.t. the data Z = (X, Y )
by

E(X,Y )(F ) =

∫
Ω

‖F (X)−Y ‖2
Rn dP = E

[
‖F (X)−Y ‖2

Rn
]

= ‖F (X)−Y ‖2
L2(P;‖·‖Rn ) ∈ [0,∞] . (2.2)

The (Mathematical) Learning Problem asks for a function F which minimizes E(X,Y )(F ).

Note that the integrand ‖F (X)−Y ‖2
Rn is G/B(R)-measurable due to the facts that compositions

of measurable functions are measurable, continuous functions are Borel measurable and the
collection of measurable real-valued functions is closed under most point-wise operations (cf.
Aliprantis [2, Section 4.5 & 4.6]). If it is clear from the context, we will use the abbreviation

E(F ) = E(X,Y )(F ) . (2.3)

One could also consider other loss functions to penalize the errors in prediction, but we will stick
to the most common and convenient squared loss. In this case we get the following solution
to the Mathematical Learning Problem subject to a natural assumption in order to obtain
finiteness of the least squares error.

4



2.2 Solution

Recall the notation in Definition 1.0.1 and in particular denote by PX the law of X under P
on the measurable space (D,B(D)).

Theorem 2.2.1 (Solution to the Learning Problem). Assume that Y has finite variance and
let F̂ ∈ L2(PX ; ‖·‖Rn) be the PX-unique function defined by

D 3 x 7→ F̂ (x) = E[Y |X = x] ∈ Rn . (2.4)

Then for every F ∈ L2(PX ; ‖·‖Rn) it holds that

E(X,Y )(F ) =

∫
D

∥∥F (x)− F̂ (x)
∥∥2

Rn dPX(x) + E(X,Y )

(
F̂
)
∈ [0,∞) . (2.5)

The function F̂ is called the regression function w.r.t. the data Z = (X, Y ) and solves the
Mathematical Learning Problem.

Proof. First let us define

L2(P|σ(X); ‖·‖Rn) =
{
V ∈ L2(P; ‖·‖Rn) : V is σ(X)/B(Rn)-measurable

}
. (2.6)

and note that the assumption implies that Y ∈ L2(P; ‖·‖Rn). We will show that for all V ∈
L2(P|σ(X); ‖·‖Rn) it holds that

E
[
‖V − Y ‖2

Rn
]

= E
[
‖V −E[Y |X]‖2

Rn
]

+E
[
‖Y − E[Y |X]‖2

Rn
]
. (2.7)

This is often referred to as the least squares property of the conditional expectation and states
that E[Y |X] is the orthogonal projection of Y onto the linear subspace L2(P|σ(X); ‖·‖Rn) ⊆
L2(P; ‖·‖Rn). First we calculate

E
[
‖V − Y ‖2

Rn
]

= E
[
‖(V − E[Y |X]) + (E[Y |X]− Y )‖2

Rn
]

= E
[
‖V −E[Y |X]‖2

Rn
]

+E
[
‖E[Y |X]− Y ‖2

Rn
]

+ 2E
[
〈V − E[Y |X], E[Y |X]− Y 〉Rn

] (2.8)

and then apply the tower property of the conditional expectation (cf., for instance, Klenke [52,
Theorem 8.14]) to show that the last term equals zero

E
[
〈V − E[Y |X], E[Y |X]− Y 〉Rn

]
= E

[
E
[
〈V − E[Y |X], E[Y |X]− Y 〉Rn

∣∣σ(X)
]]

= E
[
〈V −E[Y |X],E[Y |X]− E[Y |X]〉Rn

]
= 0 .

(2.9)

This proves the least squares property of the conditional expectation (2.7) and for every F ∈
L2(PX ; ‖·‖Rn) we can apply the latter to the random vector V = F (X) ∈ L2(P|σ(X); ‖·‖Rn)
which yields

E(X,Y )(F ) = E
[
‖F (X)− Y ‖2

Rn
]

= E
[
‖F (X)−E[Y |X]‖2

Rn
]

+E
[
‖Y − E[Y |X]‖2

Rn
]
. (2.10)

The function F̂ is the PX-unique function such that for each A ∈ B(D) it holds that∫
Ω

1{X∈A}E[Y |X] dP =

∫
Ω

1{X∈A}Y dP =

∫
A

F̂ (x) dPX(x) (2.11)

5



and thus satisfies F̂ (X) = E[Y |X] (cf. Ash [4, Theorem 5.3.3 and Section 5.4]). We conclude
that for every F ∈ L2(PX ; ‖·‖Rn) it holds that

E(X,Y )(F ) = E

[∥∥F (X)− F̂ (X)
∥∥2

Rn

]
+E

[∥∥Y − F̂ (X)
∥∥2

Rn

]
=

∫
D

∥∥F (x)− F̂ (x)
∥∥2

Rn dPX(x) + E(X,Y )

(
F̂
)
.

(2.12)

Under a natural assumption on the output variable Y Theorem 2.2.1 implies that E(X,Y )

(
F̂
)

constitutes a lower bound on the least squares error, which only depends on the distribution of
X and Y . Moreover, every Borel measurable function attaining that lower bound must coincide
PX-a.s. with the regression function F̂ . The number E(X,Y )

(
F̂
)

can therefore be interpreted
as a condition number associated to our Learning Problem with data Z = (X, Y ) and is also
referred to as the irreducible error (see later in Proposition 2.3.7). Due to the fact that

E
[
V[Y |X]

]
= E

[
E
[
‖Y −E[Y |X]‖2

Rn
∣∣X]] = E(X,Y )

(
F̂
)

(2.13)

it can also be called the expected conditional variance of Y given X. Using the tower property
one can further investigate properties of the random vector F̂ (X)− Y , namely

E
[
F̂ (X)− Y

]
= 0

V
[
F̂ (X)− Y

]
= E(X,Y )

(
F̂
)
.

(2.14)

In order to speak of the regression function w.r.t. the data (X, Y ) let us in the rest of the
chapter assume that Y has finite variance.

2.3 Sampling

Usually one lacks knowledge about the distributions of X and Y or cannot explicitly calculate
the conditional expectation in order to obtain the regression function F̂ . Consequently we
aim to find a suitable approximation of F̂ (i.e.

”
learn“ F̂ ) from random samples of our data

Z = (X, Y ).

Definition 2.3.1 (Empirical Error). Let

z =
(
(xi, yi)

)m
i=1

(2.15)

be m ∈ N realizations of samples independently drawn from the distribution of (X, Y ). For a
function F : D → Rn we define the empirical error of F w.r.t. the realizations z by

Ez(F ) = E((xi,yi))mi=1
(F ) =

1

m

m∑
i=1

‖F (xi)− yi‖2
Rn ∈ [0,∞) . (2.16)

For the sake of mathematical accuracy we reformulate Definition 2.3.1 in a more precise and
general way.

6



Definition 2.3.2 (Empirical Error as Random Variable). Let m ∈ N, let Xi : Ω→ D, i ∈ N0,
and Yi : Ω→ Rn, i ∈ N0, be random vectors such that it holds that (Xi, Yi) : Ω→ D×Rn, i ∈ N0,
are independent and identically distributed (i.i.d) random vectors with (X0, Y0) = (X, Y ). In
particular we get m independent samples

Z =
(
(Xi, Yi)

)m
i=1

(2.17)

drawn from the distribution of our data (X, Y ). We define the empirical error of a function
F : D → Rn w.r.t. to the samples Z by

EZ(F ) = E((Xi,Yi))mi=1
(F ) =

1

m

m∑
i=1

‖F (Xi)− Yi‖2
Rn

=
1

m

∥∥[F (X1)− Y1

∣∣F (X2)− Y2

∣∣ . . . ∣∣F (Xm)− Ym
]∥∥2

Rn×m .

(2.18)

For a Borel measurable function F : D → Rn the empirical error EZ of F w.r.t. Z can therefore
be interpreted as a random variable

Ω 3 ω 7→ EZ(ω)(F ) ∈ [0,∞) . (2.19)

For a given outcome ω ∈ Ω we obtain m realizations of samples independently drawn from the
distribution of (X, Y ) by

Z(ω) =
(
(Xi(ω), Yi(ω))

)m
i=1

=
(
(xi, yi)

)m
i=1

= z (2.20)

and the notion of the empirical error EZ(ω)(F ) = Ez(F ) reduces to Definition 2.3.1. Note that
we can always find a collection of independent samples drawn from the distribution of (X, Y )
by enlarging our probability space to the product space

(
ΩN0 ,F⊗N0 ,P⊗N0

)
(cf. Ash [4, chapter

2.7]). For every i ∈ N0 let πi : ΩN0 → Ω be the projection onto the i-th coordinate given by

πi
(
(ωj)j∈N0

)
= ωi (2.21)

for every (ωj)j∈N0 ∈ ΩN0 . Then it holds that(
(Xi, Yi)

)
i∈N0

=
(
(X ◦ πi, Y ◦ πi)

)
i∈N0

(2.22)

indeed constitutes such a collection of samples and we can redefine our data Z = (X ◦π0, Y ◦π0)
on
(
ΩN0 ,F⊗N0 ,P⊗N0

)
. Nevertheless we will keep writing (Ω,G,P) for our probability space and

assume that it is chosen in an appropriate way.

Remark 2.3.3 (Empirical Error as Monte Carlo Approximation). For fixed F ∈ L2(PX ; ‖·‖Rn)
we obtain that EZ(F ) is a Monte Carlo approximation of E(F ) with order m (cf. Graham [34],
Kloeden [53], Keller [48], Müller-Gronbach [60] and Glasserman [32] for literature on Monte
Carlo methods). Due to the strong law of large numbers (cf. Klenke [52, Theorem 5.17] and
Athreya [5, Example 8.2.2]) the empirical error EZ(F ) P-a.s. converges to

E
[
EZ(F )

]
=

1

m

m∑
i=1

E
[
‖F (Xi)− Yi‖2

Rn
]

= E(F ) (2.23)

as the number of samples m tends to infinity. Notice that we seek to make the defect EZ(F )−
E(F ) as small as possible for every suitable F in order to assure that by minimizing the empirical
error we also minimize the least squares error. If the variance of ‖F (X)− Y ‖2

Rn is finite, i.e.

σ2 = V
[
‖F (X)− Y ‖2

Rn
]
<∞ , (2.24)

7



one can make additional statements about the rate of convergence. Due to the independence of
the samples it follows that the mean squared error of the defect equals

E
[
|EZ(F )− E(F )|2

]
= V

[
EZ(F )

]
=

1

m2

m∑
i=1

V
[
‖F (Xi)− Yi‖2

Rn
]

=
σ2

m
(2.25)

and by Chebyshev’s inequality (cf., for instance, Billingsley [10, Section 5]) it holds for every
ε > 0 that

P
[
|EZ(F )− E(F )| ≥ ε

]
≤ σ2

mε2
. (2.26)

If further there exists M ∈ (0,∞) such that it holds P-a.s. that ‖F (X) − Y ‖Rn ≤ M (which
implies σ2 ≤M4), we could employ Hoeffding’s inequality (cf. Boucheron [15, Theorem 2.8])

P
[
|EZ(F )− E(F )| ≥ ε

]
≤ 2 exp

(
−2mε2

M4

)
(2.27)

or alternatively Bernstein’s inequality (cf. Boucheron [15, Corollary 2.11])

P
[
|EZ(F )− E(F )| ≥ ε

]
≤ 2 exp

(
− mε2

2
(
σ2 + 1

3
M2ε

)) . (2.28)

Whereas for sufficient small m Chebyshev’s inequality can yield better bounds, for larger values
of m Bernstein’s inequality is superior to Hoeffding’s if σ2 is significantly smaller than M4 (cf.
Cucker [21]).

Since any function F vanishing on the realization points, i.e.

F (xi)− yi = 0 (2.29)

for every i ∈ {1, 2, . . . ,m}, has zero empirical error, one needs to restrict the class of allowed
functions first in order to have a well-posed empirical Learning Problem. Informally

”
Learning

processes do not take place in a vacuum. Some structure needs to be present at the beginning
of the process“ (Cucker [21]). We define B(D,Rn) to be the Banach space of bounded Borel
measurable functions F : D → Rn equipped with the norm

‖F‖∞ = sup
x∈D
‖F (x)‖Rn (2.30)

(cf. Bobrowski [13, Definition 2.2.15 & Exercise 2.2.17]).

Definition 2.3.4 (Hypothesis space, (Empirical) Target Function). Let H be a compact (topo-
logical) subspace of B(D,Rn) and let

z =
(
(xi, yi)

)m
i=1

(2.31)

be m realizations of samples independently drawn from the distribution of (X, Y ). We call H
the hypothesis space and seek to find minimizers of the empirical error in that space. Accordingly
we define the empirical target function F̂z in the hypothesis space H w.r.t. the realizations z
to be a function minimizing the empirical error Ez(F ) over F ∈H , i.e. a minimizer of

min
F∈H

1

m

m∑
i=1

‖F (xi)− yi‖2
Rn . (2.32)

As the regression function F̂ is in general not an element of our hypothesis space H , we define
the target function F̂H to be a function minimizing the least squares error E(F ) over F ∈H ,
i.e. a minimizer of

min
F∈H

E
[
‖F (X)− Y ‖2

Rn
]
. (2.33)

8



Let us show that the minima in the definition are well-defined. First note that F ∈ H ⊆
B(D,Rn) implies F ∈ L2(PX ; ‖·‖Rn). Together with the assumption that Y has finite variance
the least squares error and the empirical error represent continuous functions from

(
H , ‖·‖∞

)
to(

[0,∞), |·|
)
. Indeed the square root of each error can be written as a norm and the corresponding

inverse triangle inequality yields the claim. Since the space H is compact, the minima will
be attained (cf., for instance, Aliprantis [2, Corollary 2.35]). However for uniqueness one
would need to consider a convex compact subspace of B(D,Rn). Although the minimizer is
not necessarily unique, we define the empirical target function F̂z by abuse of notation to be
one (not further specified) minimizer of the empirical error in the hypothesis space H (and
analogously for the target function F̂H ). The optimization algorithm used for minimizing the
empirical error over H depends on the given hypothesis space and we will see two versions
in Example 2.3.10 and Section 4.4. In accordance with Definition 2.3.2 we want to stress the
dependency of the empirical target function on different realizations of the samples and state
the following more elaborated definition.

Definition 2.3.5 (Empiricial Target Function as Random Function). Let

Z =
(
(Xi, Yi)

)m
i=1

(2.34)

be m ∈ N independent samples drawn from the distribution of (X, Y ). For every outcome ω ∈ Ω
we define the empirical target function F̂Z(ω) in the hypothesis space H w.r.t. the samples Z to
be a function minimizing the empirical error EZ(ω)(F ) over F ∈H , i.e. a minimizer of

min
F∈H

1

m

m∑
i=1

‖F (Xi(ω))− Yi(ω)‖2
Rn . (2.35)

Therefore the empricial target function w.r.t. the samples Z can be interpreted as a random
function

Ω 3 ω 7→ F̂Z(ω) ∈H (2.36)

and the next lemma deals with its measurability.

Lemma 2.3.6 (Measurability of the Empirical Target Function). For every ω ∈ Ω one can
choose the empirical target function F̂Z(ω) in a way, such that it holds that

(i) the mapping
Ω 3 ω 7→ F̂Z(ω) ∈H (2.37)

is G/B(H )-measurable and

(ii) the mapping
Ω×D 3 (ω, x) 7→ F̂Z(ω)(x) ∈ Rn (2.38)

is (G ⊗ B(D))/B(Rn)-measurable.

Proof. First observe that H is a separable metric space induced by the uniform norm. Defini-
tion 2.3.2 indicates that for every F ∈H the function

Ω 3 ω 7→ EZ(ω)(F ) ∈ [0,∞) (2.39)

is G/B([0,∞))-measurable and the discussion after Definition 2.3.4 shows that for every ω ∈ Ω
the function

H 3 F 7→ EZ(ω)(F ) ∈ [0,∞) (2.40)

9



is continuous, thus B(H )/B([0,∞))-measurable. This implies that the function

Ω×H 3 (ω, F ) 7→ EZ(ω)(F ) ∈ [0,∞) (2.41)

is in the class of Carathéodory functions and (G ⊗ B(H ))/B([0,∞))-measurable (cf. Alipran-
tis [2, Lemma 4.51]). The Measurable Maximum Theorem in Aliprantis [2, Theorem 18.19 with
(S,Σ) = (Ω,G), X = H , f(s, x) = EZ(s)(x) and ϕ(s) = H for every s ∈ S] assures that the
set-valued function of minimizers of

min
F∈H

EZ(ω)(F ) (2.42)

admits a measurable selector. That is to say, there exists a G/B(H )-measurable mapping
F̂Z : Ω → H such that for every ω ∈ Ω the function F̂Z(ω) is a minimizer of (2.42). This
establishes item (i). For the proof of the second item observe that the evaluation functional

D ×H 3 (x, F ) 7→ evalx(F ) = F (x) ∈ Rn (2.43)

is also a Carathéodory function and therefore (B(D)⊗B(H ))/B(Rn)-measurable. This yields
the claim as compositions of measurable functions are again measurable.

For the subsequent analysis we will assume that the empirical target function is chosen in the
sense of Lemma 2.3.6. This and Theorem 2.2.1 allow us to view the least squares error of the
empirical target function F̂Z(ω) as a random variable

Ω 3 ω 7→ E
(
F̂Z(ω)

)
=

∫
D

∥∥F̂Z(ω)(x)− F̂ (x)
∥∥2

Rn dPX(x) + E
(
F̂
)
∈ [0,∞) (2.44)

depending on the different realizations of our samples. With the following proposition it is
possible to analyze the (expected) generalization error we make by only using samples of our
data and by the assumption that the dependency between the input and output variables can
be expressed by functions in some hypothesis space.

Proposition 2.3.7 (Least Squares Error Decompositions). The (expected) least squares error
of our empirical target function E

(
F̂Z

)
can be decomposed into three nonnegative quantities,

namely

(i) a sample error S(Z,H ) or variance term,

(ii) a model error (also known as approximation error) M(H ) or squared bias term and

(iii) an irreducible error by

E
(
F̂Z

)
=
(
E
(
F̂Z

)
− E

(
F̂H

))
︸ ︷︷ ︸

S(Z,H )

+
(
E
(
F̂H

)
− E

(
F̂
))

︸ ︷︷ ︸
M(H )

+ E
(
F̂
)

︸ ︷︷ ︸
irred. error

(2.45)

or

E
[
E
(
F̂Z

)]
=

∫
D
V
[
F̂Z(x)

]
+
∥∥BiasF̂ (x)

(
F̂Z(x)

)∥∥2

Rn dPX(x) + E
(
F̂
)

(2.46)

respectively.

10



Proof. Note that in view of equation (2.44) the sample error is again a random variable and
there is nothing to proof for the first decomposition. For the second claim let us denote by PZ

the law of the random vector

Z =
(
(Xi, Yi)

)m
i=1

: Ω→ (D × Rn)m (2.47)

on the measurable space (
(D × Rn)m,B((D × Rn)m)

)
. (2.48)

An application of Theorem 2.2.1 and Tonelli’s Theorem (cf. Athreya [5, Theorem 5.2.1]) yield

E
[
E
(
F̂Z

)]
=

∫
(D×Rn)m

∫
D

∥∥F̂ζ(x)− F̂ (x)
∥∥2

Rn dPX(x) dPZ(ζ) + E
(
F̂
)

=

∫
D
E

[∥∥F̂Z(x)− F̂ (x)
∥∥2

Rn

]
dPX(x) + E

(
F̂
)
.

(2.49)

Finally we employ a special version of the least squares property (2.7) to rewrite the expectation

E

[∥∥F̂Z(x)− F̂ (x)
∥∥2

Rn

]
= E

[∥∥F̂ (x)−E
[
F̂Z(x)

]∥∥2

Rn

]
+E

[∥∥F̂Z(x)−E
[
F̂Z(x)

]∥∥2

Rn

]
=
∥∥F̂ (x)−E

[
F̂Z(x)

]∥∥2

Rn +E
[∥∥F̂Z(x)−E

[
F̂Z(x)

]∥∥2

Rn

] (2.50)

for every x ∈ D and combining (2.49) with (2.50) proves the second decomposition.

Given a fixed hypothesis space, we can only control the sample error (by increasing m) as solely
the latter depends on the samples Z. On the other hand if we fix the number of samples m and
enlarge the hypothesis space H , the model error will certainly decrease, but usually the sample
error will at some point increase due to so-called overfitting. Since a too complex model for
the empirical target function will be able to depict random fluctuations caused by the variance
of the samples, it does not generalize well to the whole data (see Example 2.3.10 below). This
trade-off between minimizing S(Z,H ) and M(H ) suggests that there is an optimal complexity
of our hypothesis space. This is closely tied to the so-called bias-variance trade-off (with bias
related to the model error and variance to the sample error). According to Bishop [11]:

”
A

model which is too simple, or too inflexible, will have a large bias, while one which has too much
flexibility in relation to the particular data set will have a large variance. Bias and variance
are complementary quantities, and the best generalization is obtained when we have the best
compromise between the conflicting requirements of small bias and small variance.“
One can make the relations between the number of samples m and the capacity of our hypothesis
space H more precise by considering the covering number of H and using the concentration
inequalities from Remark 2.3.3 to bound the sample error S(Z,H ). For every δ ∈ (0,∞) the
δ-covering number of H , denoted by N(H , δ), is defined as the minimal k ∈ N such that there
exist k balls in H with radius δ covering H .

Theorem 2.3.8 (Bound on the Sample Error). Assume that there exists a real number M ∈
(0,∞) such that for every F ∈H it holds P-a.s. that

‖F (X)− Y ‖Rn ≤M (2.51)

and let
σ2 = sup

F∈H
V
[
‖F (X)− Y ‖2

Rn
]
∈
[
0,M4

]
. (2.52)

Then it holds for every ε > 0 that

P

[
E
(
F̂Z

)
− E

(
F̂H

)
≤ ε
]
≥ 1− 2N

(
H , ε

16M

)
exp

(
− mε2

8
(
4σ2 + 1

3
M2ε

)) . (2.53)

11



Proof. Cucker [21, Theorem C]

Furthermore for various hypothesis spaces it is also possible to estimate the model error (cf.
Cucker [21] and Poggio [67]). Before we go on to our first example we prove a technical lemma
which allows us to compute the regression function F̂ (x) = E[Y |X = x] in a certain setting.

Lemma 2.3.9 (Computation of the Regression Function). Let (C,Σ) be a measurable space,
let W : Ω → C be a G/Σ-measurable random variable independent of X and for every x ∈ D
let Φx : C → Rn be a Σ/B(Rn)-measurable function. Assume that it holds that

(i) Y = ΦX(W ) P-a.s. and

(ii) for every u ∈ C the mapping D 3 x 7→ Φx(u) ∈ Rn is continuous.

Then it holds that

F̂ (x) = E[Y |X = x] = E
[
ΦX(W )

∣∣X = x
]

= E
[
Φx(W )

]
(2.54)

for PX-a.s. x ∈ D.

Proof. First we note that the second item establishes that the mapping

C ×D 3 (u, x) 7→ Φx(u) ∈ Rn (2.55)

is a Carathéodory function and (Σ⊗B(D))/B(Rn)-measurable. Thus Fubini’s theorem and the
independence of X and W assure that for all A ∈ B(D) it holds that∫

Ω

1{X∈A}Y dP =

∫
Ω

1{X∈A}Φ
X(W ) dP =

∫
D×C

1{x∈A}Φ
x(u) dP(X,W )(x, u)

=

∫
C

∫
D
1{x∈A}Φ

x(u) dPX(x)dPW (u) =

∫
A

∫
C

Φx(u) dPW (u)dPX(x)

=

∫
A

∫
Ω

Φx(W ) dPdPX(x) =

∫
A

E
[
Φx(W )

]
dPX(x)

(2.56)

and the defining property of the conditional expectation (2.11) yields the claim (cf. Pollard [68,
Chapter 4] and Aliprantis [2, Change of Variables Theorem 13.46]).

Now we will illustrate the concepts behind the Learning Problem and the bias-variance trade-off
with an example.

Example 2.3.10. Let p ∈ N, a, %, c0, . . . , cp ∈ R, b ∈ [a,∞), let ϕ : R→ R be a polynomial of
the form ϕ(x) =

∑p
j=0 cjx

j, let X : Ω→ [a, b] be a (continuously) uniformly distributed random
variable, let W : Ω → R be a standard normal random variable independent of X and define
the random variable Y : Ω→ R by

Y = ϕ
(
Xe%W

)
. (2.57)

It is well known that the Laplace transform of the standard normal random variable W satisfies

E
[
ezW

]
= e

1
2
z2 (2.58)

for all z ∈ C (cf., for instance, Le Gall [27, Section 1.1]). The assumptions of Theorem 2.2.1
are satisfied and it follows that the Learning Problem of minimizing

E(X,Y )(F ) = E
[
|F (X)− Y |2

]
(2.59)

12



is solved by the regression function

F̂ (x) = E[Y
∣∣X = x] = E

[
ϕ
(
xe%W

)]
=

p∑
j=0

cjx
j
E
[
ej%W

]
=

p∑
j=0

cjx
je

1
2

(j%)2 (2.60)

for PX-a.s. x ∈ [a, b], where in the second equality we used Lemma 2.3.9 (with Φx(u) = ϕ(xe%u)
for every x ∈ [a, b] and u ∈ R). Denote by λ the Lebesgue measure on

(
[a, b],B([a, b])

)
and

observe that
PX = 1

b−aλ (2.61)

and that the regression function F̂ is PX-unique. Therefore we can state that the version of the
regression function F̂ defined above is the is unique continuous function solving the Learning
Problem. Next suppose we want to learn this relationship between X and Y from m realizations

z =
(
(xi, yi)

)m
i=1

(2.62)

of independent samples drawn from the distribution of the data Z = (X, Y ) (see Figure 2.1).

Figure 2.1: The plot shows the regression function (blue) and m = 40 realizations (green) of
independent samples drawn from the distribution of the data (X, Y ) with % = 0.5, a = −6, b =
6, p = 3, c0 = 0, c1 = 1.77, c2 = 0, c3 = −0.015.

Let us fix the space Ps([a, b],R) of polynomials on [a, b] with a maximal degree of s ∈ N and
coefficients bounded by R ∈ (0,∞) as a valid hypothesis space

H = Ps([a, b],R) . (2.63)

Minimizing the empirical error over Ps([a, b],R) is equivalent to a linear least squares problem.
Every function F ∈Ps([a, b],R) can be written as F (x) =

∑s
j=0 θjx

j and by defining

A = (xji )1≤i≤m, 0≤j≤s ∈ Rm,s+1, y = (yi)1≤i≤m ∈ Rm, θ = (θj)0≤j≤s ∈ [−R,R]s+1 (2.64)

13



it holds that
min

F∈Ps([a,b],R)
Ez(F ) = min

θ∈[−R,R]s+1
‖Aθ − y‖2

Rm . (2.65)

From linear algebra (cf. Roman [71, Theorem 17.3]) it is known that minimizing coefficients θ
are given by applying the Moore-Penrose pseudoinverse A† of A to y (if R is chosen big enough),
i.e. the empirical target function is defined by

F̂z(x) =
s∑
j=0

(A†y)jx
j (2.66)

for every x ∈ [a, b]. The next three figures illustrate the bias-variance trade-off.

Figure 2.2: The plot shows the previous regression function (blue) and four empirical target
functions in P1([a, b],R) w.r.t. four independent trials with 40 samples each (green colors).
One can observe that the functions do not deviate much from each other (small variance), but
cannot approximate the regression function (large bias). The dashed line corresponds to the
target function, which can be computed by orthogonal projection.

14



Figure 2.3: The plot shows the previous regression function (blue) and four empirical target
functions in P6([a, b],R) w.r.t. four independent trials with 40 samples each (green colors).
One can observe that the functions approximate the regression function better (smaller bias),
but deviate more from each other (larger variance). The target function equals the regression
function in this case.

Figure 2.4: The plot shows the previous regression function (blue) and four empirical target
functions in P3([a, b],R) w.r.t. four independent trials with 40 samples each (green colors).
This corresponds to the optimal complexity of the hypothesis space in order to balance the
bias-variance trade-off.

15



If the size of the hypothesis space is chosen to small, i.e. in our case the degree s, we tend to
make a large model error. The (empirical) target function may be a too simplistic model and
underfits the data in the sense that it cannot capture the relevant relations between X and Y .
This can be identified with a large (squared) bias

1

b− a

∫
[a,b]

∣∣BiasF̂ (x)

(
F̂Z(x)

)∣∣2 dx =
1

b− a

∫
[a,b]

∣∣E[F̂Z(x)− F̂ (x)
]∣∣2 dx (2.67)

but usually a lower variance

1

b− a

∫
[a,b]

V
[
F̂Z(x)

]
dx =

1

b− a

∫
[a,b]

E

[∣∣F̂Z(x)−E
[
F̂Z(x)

]∣∣2] dx (2.68)

over different samples (see Figure 2.2). On the other side choosing a large hypothesis space
certainly reduces the model error as the target function can better represent the regression func-
tion. Employing a more complex model for the empirical target function will capture the samples
more accurately and thus lead to a lower bias but due to the fluctuations in the samples also
to a higher variance (see Figure 2.3). This so-called overfitting of the samples results also in a
larger sample error. Of course in this case the choice of s = p would be the optimal complexity
for our hypothesis space (see Figure 2.4) in order to minimize both errors. However a priori
one usually does not know the regression function and it is a difficult task to choose a model
that both accurately captures the regularities in the samples, but also generalizes well to the
whole data.

2.4 Multilevel Learning

Assume that our output data is approximated by a simulation process with adjustable precision.
That means we do not have access to Z = (X, Y ) directly but can only compute realizations of
approximated data ZN =

(
X,YN

)
, N ∈ N, where increasing N is denoting a more precise, but

also more computationally expensive simulation. For the analysis let us state some assumptions
on the asymptotic behavior of the approximation quality and the computational cost for the
simulations.

(A) Let α, γ ∈ (0,∞). We assume that Y : Ω → Rn and YN : Ω → Rn, N ∈ N, have finite
variance and that there exists a strictly increasing sequence Nl ∈ N, l ∈ N0, of precision
levels such that the quality of the approximation

∥∥Y − YNl∥∥
L2(P;‖·‖Rn )

and the expected

computational cost E
[
CNl
]

of calculating a single realization of the output variable YNl
follow the asymptotic behavior∥∥Y − YNl∥∥

L2(P;‖·‖Rn )
= O

(
N−αl

)
, (2.69)

and
E
[
CNl
]

= O
(
Nγ
l

)
(2.70)

for l tending to infinity.

We keep the notation F̂ for the regression function w.r.t. the data (X, Y ) and for every N ∈ N
we define F̂N to be the regression function w.r.t. the data

(
X,YN

)
. Let us revisit the empirical

Learning Problem according to Section 2.3 using the approximated data ZNl = (X,YNl). Let
l ∈ N0 and assume we have simulated m realizations of samples independently drawn from

16



the distribution of the approximated data ZNl =
(
X,YNl

)
, which we will also denote by

z =
(
(xi, yi)

)m
i=1

. Then for a given hypothesis space H , compact subset of B(D,Rn), we aim

to learn F̂Nl and define the empirical target function F̂Nlz to be a function minimizing the
empirical error Ez(F ) over F ∈H , i.e. an optimizer of

min
F∈H

1

m

m∑
i=1

‖F (xi)− yi‖2
Rn . (2.71)

In the same fashion we define the target function F̂NlH w.r.t. to the data ZNl to be a function
minimizing the least squares error E(X,YNl )(F ) over F ∈ H . By solving the minimizing prob-

lem (2.71) and therefore obtaining an empirical target function F̂Nlz we make three kinds of
errors, which have to be controlled in order to state that

F̂Nlz (x) ≈ F̂NlH (x) ≈ F̂Nl(x) ≈ F̂ (x) (2.72)

for x ∈ D:

(i) Error by using approximated data ZNl instead of Z - can be controlled by choosing l
large enough due to assumption (A).

(ii) Model error M(H ) by seeking a minimizer in a hypothesis space - can be controlled by
selection of a sufficiently large hypothesis space

(iii) Sample error S(z,H ) by using realizations of samples instead of the actual data distri-
bution - can be controlled by choosing a less complex hypothesis space and sufficiently
large number of samples m (see Theorem 2.3.8).

Let us again stress the bias-variance trade-off we face for choosing the hypothesis space in
items (ii) and (iii). We will try to cope with this problem in Chapter 4 by choosing appropriate
deep neural networks as hypothesis space. In order to decrease the computational cost for
computing large number m of samples at a high precision (large l), which is necessary due to
items (i) and (ii), we will introduce a new way of Multilevel Learning in this chapter. Observe
that assumption (A), Jensen’s inequality (cf., for instance, Athreya [5, Theorem 12.2.4]) and
Theorem 2.2.1 assure that it holds that

E(X,Y )

(
F̂Nl

)
− E(X,Y )

(
F̂
)

=

∫
D

∥∥F̂Nl(x)− F̂ (x)
∥∥2

Rn dPX(x)

= E

[∥∥E[YNl − Y ∣∣X]∥∥2

Rn

]
≤
∥∥Y − YNl∥∥2

L2(P;‖·‖Rn )
= O

(
N−2a
l

) (2.73)

for l tending to infinity. Therefore in mathematical terms we obtain that

E
(
F̂Nlz

)
=
(
E
(
F̂Nlz

)
− E

(
F̂NlH

))
︸ ︷︷ ︸

S(z,H )

+
(
E
(
F̂NlH

)
− E

(
F̂Nl

))
︸ ︷︷ ︸

M(H )

+
(
E(F̂Nl)− E

(
F̂
))

︸ ︷︷ ︸
O(N−2a

l )

+ E
(
F̂
)
, (2.74)

where the least squares error is taken w.r.t. to the data (X, Y ) (see also Figure 2.5). In the
spirit of Remark 2.3.3 let us compute the mean squared error of the defect. Throughout the rest
of this section we will stick to the following notation for the samples of

(
X,YN

)
on different

levels of precision N . Let Xi,l : Ω → D, i, l ∈ N0, and YNi,l : Ω → Rn, i, l ∈ N0, N ∈ N, be
random vectors such that it holds that the σ-algebras

σ
((
Xi,l,YNi,l

)
, i ∈ N0, N ∈ N) , l ∈ N0 , (2.75)

17



low generalization error

F̂Nl
z ≈ F̂

low sample error
(see Theorem 2.3.8)

E
(
F̂Nl

z

)
− E

(
F̂Nl

H

)low error by using
approximated Data

E
(
F̂Nl

)
− E

(
F̂
)
= O

(
N−2a

l

) low model error

E
(
F̂Nl

H

)
− E

(
F̂Nl

)

large sample

size m

large number of

time steps Nl
appropriate H

deep neural networksMultilevel Learning

Figure 2.5: Schematic representation of equation (2.74) suggesting possible steps to reduce the
generalization error.

are independent and for every N ∈ N it holds that
(
Xi,l,YNi,l

)
: Ω → D × Rn, i, l ∈ N0, are

i.i.d. random vectors with
(
X0,0,YN0,0

)
=
(
X,YN

)
. In the beginning we will not make use of

the second index, thus we fix l = 0 and omit writing the index, i.e.
(
Xi,YNi

)
=
(
Xi,0,YNi,0

)
.

Proposition 2.4.1 (Mean Squared Error of the Defect for Approximated Data). Let F ∈H
and assume that Y ∈ L4(P; ‖·‖Rn) and supl∈N ‖YNl‖L4(P;‖·‖Rn ) < ∞. Then there exists a real
number C ∈ (0,∞) such that for every l,m ∈ N it holds that

E

[∣∣E
((Xi,Y

Nl
i ))mi=1

(F )− E(X,Y )(F )
∣∣2] ≤ C

(∥∥Y − YNl∥∥2

L2(P;‖·‖Rn )
+

1

m

)
(2.76)

Proof. First observe that for vectors u, v, w ∈ Rn it holds that∣∣‖u− v‖2
Rn − ‖u− w‖2

Rn
∣∣ =

∣∣〈2u− w − v, w − v〉Rn∣∣ ≤ ‖2u− w − v‖Rn‖w − v‖Rn . (2.77)

Then by the same decomposition as in equation (2.50) it holds for every l ∈ N that

E

[∣∣E
((Xi,Y

Nl
i ))mi=1

(F )− E(X,Y )(F )
∣∣2]

=
(
E

[
E

((Xi,Y
Nl
i ))mi=1

(F )
]
− E(X,Y )(F )

)2

+V
[
E

((Xi,Y
Nl
i ))mi=1

(F )
]

=
(
E

[∥∥F (X)− YNl
∥∥2

Rn − ‖F (X)− Y ‖2
Rn

])2

+
1

m
V

[∥∥F (X)− YNl
∥∥2

Rn

]
≤
(
E
[∥∥2F (X)− Y − YNl

∥∥
Rn
∥∥Y − YNl∥∥Rn])2

+
1

m
E

[∥∥F (X)− YNl
∥∥4

Rn

]
≤ E

[∥∥2F (X)− Y − YNl
∥∥2

Rn

]
︸ ︷︷ ︸

Al

E

[∥∥Y − YNl∥∥2

Rn

]
+

1

m
E

[∥∥F (X)− YNl
∥∥4

Rn

]
︸ ︷︷ ︸

Bl

(2.78)

and due to the assumptions we can bound both factors Al and Bl uniformly over l ∈ N, i.e.

sup
l∈N

Al ≤ sup
l∈N

(
2‖F‖∞ + ‖Y ‖L2(P;‖·‖Rn ) +

∥∥YNl∥∥
L2(P;‖·‖Rn )

)2

<∞

sup
l∈N

Bl ≤ sup
l∈N

(
‖F‖∞ +

∥∥YNl∥∥
L4(P;‖·‖Rn )

)4

<∞ .
(2.79)

18



Defining C = max {supl∈N Al, supl∈N Bl} proves the proposition.

Using the approximated data we observe that the term 1
m

due to the Monte Carlo approximation

(see Remark 2.3.3) remains, but also the new term
∥∥Y − YNl∥∥2

L2(P;‖·‖Rn )
is introduced, which

by assumption (A) has an asymptotic behavior of O
(
N−2α
l

)
as l tends to infinity. Again this

stresses the need to take a sufficiently large number of samples m, as well as a sufficiently large
value for l, i.e. a sufficiently precise simulation, in order to keep the defect small. More precisely
for a mean squared error of the defect of size ε2, one needs to choose m, l ∈ N such that

Nl = O
(
ε−

1
α

)
(2.80)

and
m = O(ε−2) (2.81)

and thus gets an expected overall computational cost for the simulations of

E[C] = mE
[
CNl
]

= O
(
ε−2
)
O
(
Nγ
l

)
= O

(
ε−2
)
O
(
ε−

γ
α

)
= O

(
ε−

γ
α
−2
)

(2.82)

for ε tending to zero. We try to improve on the overall computational cost by taking advan-
tage of the idea of Multilevel Monte Carlo simulations (cf. Giles [29] & [30], Cliffe [20] and
Heinrich [40]). For this Multilevel Learning approach we use data based on different levels of
precision.

Proposition 2.4.2 (Multilevel Learning). Let L ∈ N and define the Multilevel data
(
Zl
)L
l=0

with

(i) 0-th level data Z0 = ZN0 =
(
X,YN0

)
(ii) l-th level data Zl =

(
X,YNl − YNl−1

)
for l ∈ {1, 2, . . . , L}

and for every l ∈ {0, 1, . . . , L} denote by F̂l the regression function w.r.t. to the data Zl. Then
for PX-a.s. x ∈ D it holds that

L∑
l=0

F̂l(x) = F̂NL(x) . (2.83)

Proof. For the convenience of the reader we define YN−1 = 0 and thus it holds that(
Zl
)L
l=0

=
((
X,YNl − YNl−1

))L
l=0

. (2.84)

By assumption (A) for every l ∈ {0, 1, . . . , L} the output data YNl − YNl−1 has finite variance
and according to Theorem 2.2.1 it holds that

F̂l(x) = E
[
YNl − YNl−1

∣∣X = x
]

(2.85)

for PX-a.s. x ∈ D. Therefore the linearity of the conditional expectation establishes that

L∑
l=0

F̂l(x) = E

[
L∑
l=0

YNl − YNl−1

∣∣∣∣∣X = x

]
= E

[
YNL − YN−1

∣∣X = x
]

= E
[
YNL

∣∣X = x
]

= F̂NL(x)

(2.86)

for PX-a.s. x ∈ D.

19



That shows that solving the (standard) Learning Problem w.r.t. to the data

ZNL =
(
X,YNL

)
(2.87)

is equivalent to solving the L+ 1 Learning Problems with Multilevel data(
Zl
)L
l=0

=
((
X,YNl − YNl−1

))L
l=0

(2.88)

and adding up the regression functions. The advantage of the latter approach is that we expect
the differences YNl−YNl−1 to be small as both terms approximate the same output data only on
a different level of precision. This would lead to a smaller variance in the output variables and
we expect to need less samples to obtain an accurate estimate via the empirical target function.
Only in the lowest level l = 0 we do not have this reduction, but in exchange the simulations of
the output data at lower levels have decreased computational cost. Thus we hope that following
this Multilevel Learning method we get the same precision of the empirical Learning Problem
at a significantly lower computational cost. But we cannot perform a rigorous analysis due to
the minimization procedure and the severe dependency of the (empirical) target function on
the chosen hypothesis space. Thus for motivational purposes we will only consider the extreme
case of D = {x} for x ∈ Rd. Then for every random vector V ∈ L2(P; ‖·‖Rn), every m ∈ N and
i.i.d. samples Z =

(
(Xi, Vi)

)m
i=1

drawn from the distribution of (X, V ) = (x, V ) the empirical

target function F̂Z w.r.t. to the samples Z satisfies that

F̂Z(x) =
1

m

m∑
i=1

Vi (2.89)

and thus it holds that
E
[
F̂Z(x)

]
= E[V ] (2.90)

and

V
[
F̂Z(x)

]
=

1

m
V[V ] . (2.91)

Under these assumptions we can make it plausible that it is asymptotically advantageous to
use the Multilevel Learning method.

Proposition 2.4.3 (Computational Cost of Multilevel Learning). Let x ∈ Rd, assume that
D = {x}, assume that assumption (A) holds with α ≥ γ

2
and that supl∈N

∥∥YNl∥∥
L2(P;‖·‖Rn )

<∞.

Then it holds that there exist L ∈ N and m0,m1, . . . ,mL ∈ N such that by defining the Multilevel
samples

Z0 =
(
(X0,i,YN0

0,i )
)m0

i=1
,

Zl =
(
(Xl,i,YNll,i − Y

Nl−1

l,i )
)ml
i=1

(2.92)

for l ∈ {1, 2, . . . , L} and the corresponding empirical target functions F̂Zl we obtain a mean
squared error

E

∥∥∥∥∥
L∑
l=0

F̂Zl(X)− F̂ (X)

∥∥∥∥∥
2

Rn

 = O
(
ε2
)

(2.93)

with an expected overall computational cost for the simulations of

E[C] =

{
O
(
ε−2
)
, if α > γ

2

O
(
ε−2(log ε)2

)
, if α = γ

2

(2.94)

for ε tending towards zero.

20



Proof. Define YN−1 = 0 for a simpler notation and recall the decomposition in equation (2.50).
This, the independence of the Multilevel samples (Zl)

L
l=0 and equations (2.90) & (2.91) assure

that it holds that

E

∥∥∥∥∥
L∑
l=0

F̂Zl(X)− F̂ (X)

∥∥∥∥∥
2

Rn

 =
L∑
l=0

V
[
F̂Zl(x)

]
+

∥∥∥∥∥F̂ (x)−
L∑
l=0

E
[
F̂Zl(x)

]∥∥∥∥∥
2

Rn

=
L∑
l=0

1

ml

V
[
YNl − YNl−1

]
+

∥∥∥∥∥E[Y ]−
L∑
l=0

E
[
YNl − YNl−1

]∥∥∥∥∥
2

Rn

≤
L∑
l=0

1

ml

E

[∥∥YNl − YNl−1
∥∥2

Rn

]
+E

[∥∥Y − YNL∥∥2

Rn

]
≤

L∑
l=0

1

ml

(∥∥Y − YNl∥∥
L2(P;‖·‖Rn )

+
∥∥Y − YNl−1

∥∥
L2(P;‖·‖Rn )

)2

+
∥∥Y − YNL∥∥2

L2(P;‖·‖Rn )
.

(2.95)

The claim follows by using a theorem on the complexity of Multilevel Monte Carlo simulations in
Cliffe [20, Theorem 1 with β = 2α] or Giles [29, Theorem 3.1]. Note that in the latter references
it is assumed for simplicity that there exists s ∈ N \{1} such that for all l = 1, 2, . . . , L it holds
that Nl = sNl−1.

For a discussion on optimal or sensible values for the numbers L,m0,m1, . . . ,mL, s we refer the
reader to Giles [29]. Note that the computational cost of the standard approach in this special
case coincides with the estimate in equation (2.82). Indeed by choosing m, l ∈ N such that

m = O
(
ε−2
)

and Nl = O
(
ε−

1
α

)
, defining the samples

Z =
((
Xi,YNli

))m
i=1

(2.96)

and the corresponding empirical target function F̂NlZ we obtain a mean squared error

E

[∥∥F̂NlZ (X)− F̂ (X)
∥∥2

Rn

]
= V

[
F̂NlZ (x)

]
+
∥∥F̂ (x)−E

[
F̂NlZ (x)

]∥∥2

Rn

=
1

m
V
[
YNl

]
+
∥∥E[Y − YNl]∥∥2

Rn

≤ 1

m
sup
j∈N

∥∥YNj∥∥2

L2(P;‖·‖Rn )
+
∥∥Y − YNl∥∥2

L2(P;‖·‖Rn )
= O

(
ε2
) (2.97)

with an expected overall computational cost for the simulations of

E[C] = O
(
ε−

γ
α
−2
)
. (2.98)

Therefore under the (harsh) assumptions of the previous Theorem 2.4.3 the Multilevel Learning
approach can yield significant computational savings and we hope that this will transfer also to
more general settings. In Section 3.5 we revisit the Multilevel Learning approach in the context
of Kolmogorov equations and Chapter 5 presents promising numerical results.

Remark 2.4.4. Note that we did not include the computational cost of minimizing the empirical
error, i.e. finding the empirical target function, in our analysis. In other words we assumed the
cost of the L+ 1 minimization problems in the Multilevel setting to be comparable to the cost of
a single minimization problem for the standard setting or neglectable in comparison to the cost
of the simulations.

21



Chapter 3

Stochastic Interpretation of
Kolmogorov Equations

In this chapter we will investigate the link between a class of linear parabolic partial differential
equations, so-called Kolmogorov equations, and solution processes to stochastic differential
equations with the help of the Feynman-Kac formula. This probabilistic interpretation allows
us to reformulate the problem of calculating the solution to a Kolmogorov equation into a
Learning Problem as defined in Chapter 2. Thereupon we will temporally discretize the solution
process to the stochastic differential equation by the Euler-Maruyama scheme in order to obtain
samples for the empirical Learning Problem, analyze the occurring errors and propose a suitable
Multilevel Learning Problem.

3.1 Setting

Throughout this chapter let T ∈ (0,∞), d ∈ N, let (Ω,G,P) be an appropriate probability
space equipped with a complete filtration (Gt)t∈[0,T ], let

B =
(
(B1

t , B
2
t , . . . , B

d
t )
)
t∈[0,T ]

: [0, T ]× Ω→ Rd (3.1)

be a standard (Ω,G,P, (Gt)t∈[0,T ])-Brownian motion (cf., for instance, Schilling [75]), let

µ = (µi)
d
i=1 : Rd → Rd

σ = (σij)
d
i,j=1 : Rd → Rd×d (3.2)

be (globally) Lipschitz continuous functions, i.e. there exists K ∈ (0,∞) such that for all
x, y ∈ Rd it holds that

‖µ(x)− µ(y)‖Rd ≤ K ‖x− y‖Rd
‖σ(x)− σ(y)‖Rd×d ≤ K ‖x− y‖Rd

(3.3)

and let ϕ : Rd → R be a twice continuously differentiable function with an at most polynomially
growing gradient, i.e. there exists c ∈ [1,∞) such that for all x ∈ Rd it holds that

‖∇ϕ(x)‖Rd ≤ c
(
1 + ‖x‖Rd

)c
. (3.4)

Observe that the Lipschitz condition (3.3) on σ and µ implies that there exists a real number
K̄ ∈ (0,∞) such that for every x ∈ Rd the linear growth condition

‖µ(x)‖Rd ≤ K̄
(
1 + ‖x‖Rd

)
‖σ(x)‖Rd×d ≤ K̄

(
1 + ‖x‖Rd

) (3.5)

22



holds (cf. Schilling [75, Section 18.3]). Recall the definition of stopping times and stochastic
integrals (cf., for example, Le Gall [27, Definition 2.18 and Chapter 5]) and note that we
compute multi-dimensional integrals component-wise, that is for suitable integrands

G =
(
(Gi

t)
d
i=1

)
t∈[0,T ]

: [0, T ]× Ω→ Rd ,

H =
(
(H ij

t )di,j=1

)
t∈[0,T ]

: [0, T ]× Ω→ Rd×d (3.6)

and 0 ≤ τ1 ≤ τ2 ≤ T we define ∫ τ2

τ1

Gs ds =

(∫ τ2

τ1

Gi
s ds

)d

i=1

(3.7)

and ∫ τ2

τ1

Hs dBs =

(
d∑
j=1

∫ τ2

τ1

H ij
s dB

j
s

)d

i=1

. (3.8)

Let us proof bounds on these stochastic and deterministic integrals, which will be used in
subsequent proofs.

Lemma 3.1.1 (Bounds on (Stochastic) Integrals). Let p ∈ [2,∞), τ1 ∈ [0, T ], τ2 ∈ [τ1, T ], let
T : Ω → [0,∞] be a stopping time and let G : [0, T ] × Ω → Rd and H : [0, T ] × Ω → Rd×d be
(Gt)t∈[0,T ]-adapted stochastic processes with right-continuous sample paths, which satisfy P-a.s.
that

sup
s∈[0,T ]

‖Gs‖Rd <∞ (3.9)

and
sup
s∈[0,T ]

‖Hs‖Rd×d <∞ . (3.10)

Then it holds that

E

[
max
τ1≤t≤τ2

∥∥∥∥∫ t∧T

τ1

Gs ds

∥∥∥∥p
Rd

]
≤ (τ2 − τ1)p−1

∫ τ2

τ1

E
[
‖Gs∧T ‖pRd

]
ds (3.11)

and

E

[
max
τ1≤t≤τ2

∥∥∥∥∫ t∧T

τ1

Hs dBs

∥∥∥∥p
Rd

]
≤ pp(τ2 − τ1)

p
2
−1

∫ τ2

τ1

E
[
‖Hs∧T ‖pRd×d

]
ds . (3.12)

Proof. For the first claim the triangle inequality, Hölder’s inequality (cf., for instance, Klenke [52,
Theorem 7.16]) and Tonelli’s theorem yield

E

[
max
τ1≤t≤τ2

∥∥∥∥∫ t∧T

τ1

Gs ds

∥∥∥∥p
Rd

]
= E

[
max
τ1≤t≤τ2

∥∥∥∥∫ t

τ1

Gs1[0,T ] ds

∥∥∥∥p
Rd

]
≤ E

[
max
τ1≤t≤τ2

(∫ t

τ1

‖Gs1[0,T ]‖Rd ds
)p]
≤ E

[(∫ τ2

τ1

‖Gs∧T ‖Rd ds
)p]

≤ (τ2 − τ1)p−1

∫ τ2

τ1

E
[
‖Gs∧T ‖pRd

]
ds ,

(3.13)

23



for the second claim we apply the Burkholder-Davis-Gundy inequality (cf., for example, Da
Prato [23, Section 4.6] and Le Gall [27, Theorem 5.16]) and Hölder’s inequality to obtain

E

[
max
τ1≤t≤τ2

∥∥∥∥∫ t∧T

τ1

Hs dBs

∥∥∥∥p
Rd

]
= E

[
max
τ1≤t≤τ2

∥∥∥∥∫ t

τ1

Hs1[0,T ](s) dBs

∥∥∥∥p
Rd

]

≤ pp

(∫ τ2

τ1

E
[
‖Hs1[0,T ](s)‖pRd×d

] 2
p ds

) p
2

≤ pp

(∫ τ2

τ1

E
[
‖Hs∧T ‖pRd×d

] 2
p ds

) p
2

≤ pp(τ2 − τ1)
p
2
−1

∫ τ2

τ1

E
[
‖Hs∧T ‖pRd×d

]
ds

(3.14)

and this proves the lemma.

Let us define the notion of a solution process to a stochastic differential equation and exhibit
its properties.

Definition 3.1.2 (Solution Process to a Stochastic Differential Equation). Let X : Ω→ Rd be
a G0-measurable random vector. We will say that SX : [0, T ]× Ω→ Rd is a solution process to
the stochastic differential equation (SDE)

SXt = X +

∫ t

0

µ
(
SXs
)
ds+

∫ t

0

σ
(
SXs
)
dBs (3.15)

if SX =
(
SXt
)
t∈[0,T ]

: [0, T ]×Ω→ Rd is an (Gt)t∈[0,T ]-adapted stochastic process with continuous

sample paths which satisfies that for every t ∈ [0, T ] equation (3.15) P-a.s. holds.

Note that in our setting an up to indistinguishability unique solution process to the SDE (3.15)
exists (cf., for instance, Le Gall [27, Theorem 8.3 & 8.5] and Schilling [75, Section 18.3]) and
fulfills the following bound on the moments (cf. also Arnold [3, Section 7.1], Friedman [26,
Chapter 5, Theorem 2.3] and Kloeden [54, Chapter 4] for slightly different versions).

Lemma 3.1.3 (Bound on the Moments of the Solution Process). Let p ∈ [2,∞), τ1 ∈ [0, T ],
let X : Ω→ Rd be a G0-measurable random vector with

E
[
‖X‖pRd

]
<∞ (3.16)

and let SX : [0, T ]× Ω→ Rd be a solution process to the SDE (3.15). Then there exists a real
number C ∈ (0,∞) depending only on p, K̄ and T such that for all τ2 ∈ [τ1, T ] it holds that

E

[
max
τ1≤t≤τ2

∥∥SXt ∥∥pRd] ≤ CeC(τ2−τ1)
(

1 +E
[
‖X‖pRd

])
. (3.17)

Proof. For the convenience of the reader we will just write S instead of SX for the solution
process to the SDE (3.15). For every m ∈ N let

Tm = inf
{

0 ≤ t ≤ T : ‖St‖Rd ≥ m
}

(3.18)

be a stopping time with the convention that inf ∅ = ∞ (cf. Le Gall [27, Proposition 3.9]
and Protter [69, Section I.1]), which assures that the upcoming expectations are well-defined.
Several times in the proof we will apply the following elementary inequality, which can be

24



verified by Hölder’s inequality. Let N ∈ N, ϑ ∈ [1,∞) and a1, a2, . . . , aN ∈ R, then it holds
that (

N∑
i=1

|ai|

)ϑ

≤ Nϑ−1

N∑
i=1

|ai|ϑ ≤ Nϑ

N∑
i=1

|ai|ϑ . (3.19)

Observe that the linear growth condition (3.5) and the previous inequality imply that for every
x ∈ Rd it holds that

‖µ(x)‖pRd ≤ (2K̄)p
(
1 + ‖x‖pRd

)
‖σ(x)‖pRd×d ≤

(
2K̄)p (1 + ‖x‖pRd

)
.

(3.20)

Let τ1, τ2 ∈ [0, T ] and m ∈ N, then equations (3.15) & (3.19) establish that

E

[
max
τ1≤t≤τ2

‖St∧Tm‖
p
Rd

]
≤ 3p−1

(
E
[
‖X‖pRd

]
+E

[
max
τ1≤t≤τ2

∥∥∥∥∫ t∧Tm

τ1

µ(Ss) ds

∥∥∥∥p
Rd

]
︸ ︷︷ ︸

A

+E

[
max
τ1≤t≤τ2

∥∥∥∥∫ t∧Tm

τ1

σ(Ss) dBs

∥∥∥∥p
Rd

]
︸ ︷︷ ︸

B

)
,

(3.21)

applying Lemma 3.1.1 and the growth estimate (3.20) to first integral in (3.21) yields

A ≤ (τ2 − τ1)p−1

∫ τ2

τ1

E
[
‖µ(Ss∧Tm)‖pRd

]
ds

≤ (2K̄)p T p−1

(
T +

∫ τ2

τ1

E
[
‖Ss∧Tm‖

p
Rd
]
ds

) (3.22)

and for the stochastic integral we obtain analogously

B ≤ pp(τ2 − τ1)
p
2
−1

∫ τ2

τ1

E
[
‖σ(Ss∧Tm)‖pRd×d

]
ds

≤ (2K̄p)p T
p
2
−1

(
T +

∫ τ2

τ1

E
[
‖Ss∧Tm‖

p
Rd
]
ds

)
.

(3.23)

In view of (3.21), (3.22) and (3.23) there exists a real number C ∈ (0,∞) depending only on
p, K̄ and T such that for every m ∈ N, τ2 ∈ [τ1, T ] it holds that

E

[
max
τ1≤t≤τ2

‖St∧Tm‖
p
Rd

]
≤ C

(
1 +E

[
‖X‖pRd

]
+

∫ τ2

τ1

E
[
‖Ss∧Tm‖

p
Rd
]
ds

)
≤ C

(
1 +E

[
‖X‖pRd

]
+

∫ τ2

τ1

E

[
max
τ1≤t≤s

‖St∧Tm‖
p
Rd

]
ds

)
.

(3.24)

Now we can apply Grönwall’s lemma (cf. Klenke [52, Lemma 26.9] and Kloeden [54, Lemma
4.5.1]) to show that for all m ∈ N, τ2 ∈ [τ1, T ] it holds that

E

[
max
τ1≤t≤τ2

‖St∧Tm‖
p
Rd

]
≤ CeC(τ2−τ1)

(
1 +E

[
‖X‖pRd

])
. (3.25)

Note that the continuous sample paths of S imply that for every ω ∈ Ω it holds that

lim
m→∞

Tm(ω) =∞ (3.26)

and thus the monotone convergence theorem (cf., for instance, Athreya [5, Theorem 2.3.4])
proves the claim when letting m tend to infinity.

25



Next we define the special class of parabolic linear partial differential equations we are dealing
with and state sufficient conditions on the smoothness and growth of the solutions for the
subsequent theory.

Definition 3.1.4 (Kolmogorov Equation). We call a function f = (f(t, x))(t,x)∈[0,T ]×Rd ∈
C 1,2([0, T ] × Rd,R) a solution to the Kolmogorov equation if it satisfies for every t ∈ [0, T ],
x = (x1, x2, . . . , xd) ∈ Rd that

∂f
∂t

(t, x) = 1
2

TraceRd
(
σ(x)[σ(x)]∗(Hessx f)(t, x)

)
+
〈
µ(x), (∇xf)(t, x)

〉
Rd

= 1
2

d∑
i,j,l=1

σil(x)σjl(x) ∂2f
∂xi∂xj

(t, x) +
d∑
i=1

µi(x) ∂f
∂xi

(t, x)

f(0, x) = ϕ(x) .

(3.27)

We say that the solution to the Kolmogorov equation is at most polynomially growing, if there
exists c ∈ [1,∞) such that for every x ∈ Rd it holds that

max
0≤t≤T

|f(t, x)| ≤ c
(
1 + ‖x‖cRd

)
. (3.28)

Remark 3.1.5 (Kolmogorov Backward Equation). The Kolmogorov equation (3.27) is also
referred to as Kolmogorov partial differential equation (PDE) or Kolmogorov backward equation
in the literature (cf. Hairer [36]). The latter name origins from the fact that one can rewrite the
Kolmogorov equation backwards in time. Let f be a solution to the Kolmogorov equation (3.27)
and let g ∈ C 1,2([0, T ]× Rd,R) be the function defined by

g(t, x) = f(T − t, x) (3.29)

for all t ∈ [0, T ], x ∈ Rd. Then by the chain rule it holds for every t ∈ [0, T ], x ∈ Rd that{
∂g
∂t

(t, x) = −1
2

TraceRd
(
σ(x)[σ(x)]∗(Hessx g)(t, x)

)
−
〈
µ(x), (∇xg)(t, x)

〉
Rd

g(T, x) = ϕ(x) .
(3.30)

Note that the backward formulation (3.30) has a terminal condition opposed to the initial con-
dition in (3.27). For time-dependent coefficient functions µ and σ the backward formulation
would be the appropriate one, but in our time-homogeneous setting the two formulations are
equivalent.

Our goal is to approximately calculate the function Rd 3 x 7→ f(T, x) ∈ R on some subset of
Rd. To fix ideas we consider real numbers a, b ∈ R with a ≤ b and we suppose that our goal is
to approximately calculate the function

[a, b]d 3 x 7→ f(T, x) ∈ R . (3.31)

3.2 Feynman-Kac Formula

The next theorem provides the important connection between the solution of the Kolmogorov
equation and the solution process to an associated stochastic differential equation.

26



Theorem 3.2.1 (Feynman-Kac Formula). Assume there exists an at most polynomially growing
solution f ∈ C 1,2([0, T ] × Rd,R) to the Kolmogorov equation (3.27) and for every x ∈ Rd let
Sx : [0, T ]× Ω→ Rd be a solution process to the SDE

Sxt = x+

∫ t

0

µ(Sxs ) ds+

∫ t

0

σ(Sxs ) dBs . (3.32)

Then for every x ∈ Rd it holds that

f(T, x) = E
[
f(0, SxT )

]
= E

[
ϕ(SxT )

]
. (3.33)

Proof. The proof will be based on the backward formulation of the Kolmogorov equation in
Remark 3.1.5 and we define g ∈ C 1,2([0, T ]× Rd,R) by

g(t, x) = f(T − t, x) (3.34)

for all t ∈ [0, T ], x ∈ Rd. The assumption that f and thus g is polynomially bounded implies
that there exists c ∈ [1,∞) such that for every x ∈ Rd it holds that

max
0≤t≤T

|g(t, x)| ≤ c
(
1 + ‖x‖cRd

)
. (3.35)

Now we fix x ∈ Rd and for our convenience just write S instead of Sx for the solution process
to the SDE (3.32). For every m ∈ N let

Tm = inf
{

0 ≤ t ≤ T : ‖St‖Rd ≥ m
}

(3.36)

be a stopping time. Itô’s formula (cf., for instance, Le Gall [27, Section 5.2]) on the process
g(t∧Tm, St∧Tm) together with equation (3.30) and the assumption that f solves the Kolmogorov
equation yields

g(T ∧ Tm, ST∧Tm) = g(0, S0) +

∫ T∧Tm

0

d∑
i,j=0

∂g
∂xi

(s, Ss)σij(Ss) dB
j
s +

∫ T∧Tm

0

∂g
∂t

(s, Ss) ds

+

∫ T∧Tm

0

d∑
i=1

µi(Ss)
∂g
∂xi

(s, Ss) + 1
2

d∑
i,j,l=1

σil(Ss)σjl(Ss)
∂2g

∂xi∂xj
(s, Ss) ds

= g(0, S0) +
d∑

i,j=0

∫ T∧Tm

0

∂g
∂xi

(s, Ss)σij(Ss) dB
j
s .

(3.37)

Due to the definition of the stopping time, the smoothness of g and the Lipschitz condition (3.3)
on σ the second summand is a martingale and has vanishing expectation

E

[
d∑

i,j=0

∫ T∧Tm

0

∂g
∂xi

(s, Ss)σij(Ss) dB
j
s

]
= 0 (3.38)

(cf. Le Gall [27, Proposition 4.7 and Section 5.1.2]). Thus by taking expectations in (3.37) for
every m ∈ N it holds that

E
[
g(Tm, STm)1{Tm≤T}

]
+E

[
g(T, ST )1{Tm>T}

]
= g(0, S0) = f(T, x) . (3.39)

27



Lemma 3.1.3 assures that for every p ∈ [2,∞) there exists a real number C ∈ (0,∞) such that
it holds that

E

[
max

0≤t≤T
‖St‖pRd

]
≤ CeCT

(
1 + ‖x‖pRd

)
. (3.40)

With (3.35) we can bound the first term of equation (3.39) in absolute value by

E
[
|g(Tm, STm)|1{Tm≤T}

]
≤ c (1 +mc)P[Tm ≤ T ] (3.41)

and by Chebyshev’s inequality it holds that

P[Tm ≤ T ] = P

[
max

0≤t≤T
‖St‖Rd ≥ m

]
≤ m−2c

E

[
max

0≤t≤T
‖St‖2c

Rd

]
≤ m−2cCeCT

(
1 + ‖x‖2c

Rd
)
.

(3.42)

We conclude that the first term in (3.39) converges to zero as m tends to infinity. For the
second term we observe that for every m ∈ N, ω ∈ Ω it holds that

|g(T, ST )|1{Tm>T} ≤ c
(
1 + ‖ST‖cRd

)
(3.43)

and due to (3.39) & (3.40) the dominated convergence theorem (cf. Athreya [5, Theorem 2.3.11])
assures that

E
[
f(0, ST )

]
= E

[
lim
m→∞

g(T, ST )1{Tm>T}

]
= lim

m→∞
E
[
g(T, ST )1{Tm>T}

]
= f(T, x) . (3.44)

The assumption that for every x ∈ Rd it holds that ϕ(x) = f(0, x) concludes the proof.

Remark 3.2.2 (Other Versions of the Feynman-Kac Formula). There are various other and
more general formulations of the Feynman-Kac formula (cf., for instance, Øksendal [63, Chap-
ter 8], Schilling [75, Theorem 8.6] and Durrett [24, Section 8.3]). Under further assumptions on
ϕ, σ and µ one does not need to assume a priori that there exists a solution to the Kolmogorov
equation but the function f : [0, T ]× Rd → R given by

f(t, x) = E
[
ϕ(Sxt )

]
(3.45)

for all t ∈ [0, T ], x ∈ Rd automatically represents a (unique) solution to the Kolmogorov
equation (3.27) (cf. Friedman [26, Theorem 5.6.1], Kloeden [54, Theorem 4.8.6] and Hairer [36,
Corollary 4.17 and Remark 4.1]). Also note that this result is directly related to the fact that
the solution of the SDE (3.32) is a Markov process w.r.t. the filtration (Gt)t∈[0,T ] with Feller
semigroup (Qt) defined for every ϕ ∈ B(Rd,R) by

Qtϕ(x) = E
[
ϕ(Sxt )

]
(3.46)

and generator L defined (at least) for every f ∈ C 2
c (Rd,R) by

Lf(x) = 1
2

TraceRd
(
σ(x)[σ(x)]∗(Hessx f)(t, x)

)
+
〈
µ(x), (∇xf)(t, x)

〉
Rd (3.47)

(cf., for instance, Le Gall [27, Theorem 8.6 and Theorem 8.7]).

28



3.3 Connection to the Learning Problem

Recall the Mathematical Learning Problem from Chapter 2 and the definition of the Kol-
mogorov equation (3.27). Using the Feynman-Kac representation (3.33) of a solution to the
Kolmogorov equation f(T, x) at time T we can formulate an equivalent Learning Problem.

Proposition 3.3.1 (Learning Problem for the Kolmogorov PDE). Let f ∈ C 1,2([0, T ]×Rd,R)
be an at most polynomially growing solution to the Kolmogorov equation, let X : Ω→ [a, b]d be
a (continuously) uniformly distributed G0-measurable random vector, which is independent of
σ(Bt, t ∈ [0, T ]), and let SX : [0, T ]× Ω→ Rd be a solution process to the SDE

SXt = X +

∫ t

0

µ
(
SXs
)
ds+

∫ t

0

σ
(
SXs
)
dBs . (3.48)

Define the data of the Learning Problem for the Kolmogorov equation by

Z = (X, Y ) =
(
X,ϕ

(
SXT
))

(3.49)

and denote by F̂ the regression function w.r.t. to (X, Y ). Then it holds that

(i) F̂ (x) = E
[
ϕ(SxT )

]
= f(T, x) for a.e. x ∈ [a, b]d and

(ii) the function [a, b]d 3 x 7→ f(T, x) ∈ R is the unique minimizer of

min
F∈C ([a,b]d,R)

E

[∣∣F (X)− ϕ
(
SXT
)∣∣2] . (3.50)

Proof. First note that the uniformly distributed random vector X has bounded moments (cf.
Zwillinger [80, Section 7.3.2]) and Lemma 3.1.3 therefore assures that for every p ∈ [2,∞) it
holds that

E

[∥∥SXT ∥∥pRd] <∞ . (3.51)

The assumption on f assures that there exists a real number c ∈ [1,∞) such that for every
x ∈ Rd it holds that

|ϕ(x)| = |f(0, x)| ≤ c
(
1 + ‖x‖cRd

)
. (3.52)

Together with inequality (3.19) and (3.51) this shows that for every p ∈ [2,∞) it holds that

E

[∣∣ϕ(SXT )∣∣p] ≤ E[cp(1 +
∥∥SXT ∥∥cRd)p] ≤ E[2pcp(1 +

∥∥SXT ∥∥cpRd)] <∞ . (3.53)

This establishes that the random vector Y = ϕ
(
SXT
)

has finite variance and according to

Theorem 2.2.1 the corresponding Learning Problem has a PX-unique regression function F̂
minimizing the least squares error. Note that PX is just a multiple of the Lebesgue measure
on [a, b]d and we claim that for a.e. x ∈ [a, b]d it holds that

F̂ (x) = E
[
Y
∣∣X = x

]
= E

[
ϕ
(
SXT
)∣∣X = x

]
= E

[
ϕ(SxT )

]
. (3.54)

The last equality can be made precise by the following argument. Define B
(
C ([0, T ],Rd)

)
to be

the Borel σ-algebra on the Banach space
(
C ([0, T ],Rd), ‖·‖∞

)
and Σ to the be its completion

by all PB-null sets. Adopt from Le Gall [27, Theorem 8.5] that for every x ∈ Rd there exists a
Σ/B(Rd)-measurable mapping Ψx : C ([0, T ],Rd)→ Rd such that it holds that

29



(i) SxT = Ψx(B) P-a.s.,

(ii) SXT = ΨX(B) P-a.s. and

(iii) for every u ∈ C ([0, T ],Rd) the mapping [a, b]d 3 x 7→ Ψx(u) ∈ Rd is continuous.

Consequently Lemma 2.3.9 yields the claim (with Φx(u) = ϕ(Ψx(u)) for every x ∈ [a, b]d and
u ∈ C ([0, T ],Rd)). Using the Feynman-Kac formula it follows that for a.e. x ∈ [a, b] it holds
that

f(T, x) = E
[
ϕ(SxT )

]
= F̂ (x) (3.55)

and due to the assumption that [a, b]d 3 x 7→ f(T, x) ∈ R is continuous it must be the unique
continuous function F : [a, b]d → R minimizing the least squares error

E(X,Y )(F ) = E

[∣∣F (X)− ϕ
(
SXT
)∣∣2] =

1

(b− a)d

∫
[a,b]d

∣∣F (x)− F̂ (x)
∣∣2 dx+ E(X,Y )

(
F̂
)
. (3.56)

This proves Proposition 3.3.1.

That means that the continuous version of the regression function w.r.t. to the data Z =(
X,ϕ

(
SXT
))

equals the solution of the Kolmogorov equation on [a, b]d at time T . We will
demonstrate this connection with an easy example.

Example 3.3.2. Let d = 1, p ∈ N, a, σ̄, c0, . . . , cp, T ∈ R, b ∈ [a,∞), define the polynomial
ϕ : R → R by ϕ(x) =

∑p
j=0 cjx

j for every x ∈ R and suppose we want to calculate a solution
to the Kolmogorov equation{

∂f
∂t

(t, x) = 1
2
σ̄2
(
x2 ∂2f

∂x2
(t, x) + x∂f

∂x
(t, x)

)
f(0, x) = ϕ(x)

(3.57)

at time T for x ∈ [a, b]. In our previous notation the functions µ : R → R and σ : R → R are
thus defined by

µ(x) = 1
2
σ̄2x (3.58)

and
σ(x) = σ̄x (3.59)

for all x ∈ R. Note that the functions ϕ, σ and µ are sufficiently smooth in order to employ
a version of the Feynman-Kac formula cited in Remark 3.2.2 and to conclude that this Kol-
mogorov equation has a unique solution given by the Feynman-Kac representation in (3.45).
Let us investigate the corresponding Learning Problem. Given a standard (Ω,G,P, (Gt)t∈[0,T ])-
Brownian motion B : [0, T ]×Ω→ R and a (continuously) uniformly distributed G0-measurable
random variable X : Ω → [a, b], which is independent of σ(Bt, t ∈ [0, T ]), the associated SDE
reads

SXt = X +

∫ t

0

1
2
σ̄2SXs ds+

∫ t

0

σ̄SXs dBs . (3.60)

By Itô’s formula the stochastic process(
SXt
)
t∈[0,T ]

=
(
Xeσ̄Bt

)
t∈[0,T ]

: [0, T ]× Ω→ R (3.61)

is the up to indistinguishability unique solution process to the SDE (3.60). According to Propo-
sition 3.3.1 let us define

Y = ϕ
(
SXT
)

= ϕ
(
Xeσ̄BT

)
(3.62)

30



and note that BT is a centered normally distributed random variable with variance T . We
observe that the data Z = (X, Y ) corresponds exactly to our Example 2.3.10 with % = σ̄

√
T

and W = 1√
T
BT . Therefore equation (2.60) establishes that the unique continuous version of

the regression function is given by

F̂ (x) =

p∑
j=0

cjx
je

1
2

(jσ̄)2T (3.63)

for all x ∈ [a, b] and one can check that F̂ (x) indeed equals the solution of the Kolmogorov
equation f(T, x) at time T .

In a general situation we can neither calculate the regression function nor a solution to the
stochastic differential equation explicitly. While we can approximately solve the first problem
by finding the empirical target function and balancing the bias-variance trade-off as treated in
Sections 2.3 and 2.4, we will cope with the second problem in the next section.

3.4 Approximation by the Euler-Maruyama Scheme

Since in most cases we do not know an explicit solution to the stochastic differential equation
and even cannot compute realizations of the random vectors SXT or SxT , we will approximate
the solution of the stochastic differential equation by the Euler-Maruyama scheme (cf., for
example, Kloeden [54] and Maruyama [58]). To motivate the definition let X : Ω → Rd be a
G0-measurable random vector and let SX : [0, T ]× Ω→ Rd be a solution process to the SDE

SXt = X +

∫ t

0

µ
(
SXs
)
ds+

∫ t

0

σ
(
SXs
)
dBs . (3.64)

Let N ∈ N and partition the time interval [0, T ] into N subintervals of equal length, i.e. for every
n ∈ {0, 1, . . . , N} we set tn = nT

N
. Note that (3.64) implies that for every n ∈ {0, 1, . . . , N − 1}

it holds P-a.s. that

SXtn+1
= SXtn +

∫ tn+1

tn

µ
(
SXs
)
ds+

∫ tn+1

tn

σ
(
SXs
)
dBs . (3.65)

This suggests that for sufficiently small step size T
N

= tn+1 − tn it holds that

SXtn+1
≈ SXtn + µ

(
SXtn
)
T
N

+ σ
(
SXtn
) (
Btn+1 −Btn

)
. (3.66)

and we take (3.66) as a definition for the Euler-Maruyama scheme.

Definition 3.4.1 (Euler-Maruyama Scheme). Let N ∈ N, let X : Ω → Rd be a G0-measurable
random vector and let

SN,X =
(
SN,Xn

)
n∈{0,1,...,N} : {0, 1, . . . , N} × Ω→ Rd (3.67)

be the stochastic process which satisfies for every n ∈ {0, 1, . . . , N − 1} that SN,X0 = X and

SN,Xn+1 = SN,Xn + µ
(
SN,Xn

)
T
N

+ σ
(
SN,Xn

) (
B (n+1)T

N

−BnT
N

)
. (3.68)

Then we call SN,X the Euler-Maruyama approximation for the SDE (3.64) with step size T
N

.

31



Observe that (3.66) and (3.68) suggest that for every n ∈ {0, 1, . . . , N} it holds that

SXnT
N

= SXtn ≈ S
X
n . (3.69)

We want to analyze the quality of the approximation (3.69) more precisely, therefore we state
a technical lemma on the moments (cf. also Kloeden [54, proof of Theorem 10.6.3]) and then a
theorem on the strong convergence rate for the Euler-Maruyama scheme.

Lemma 3.4.2 (Bound on the Moments of the Euler-Maruyama Scheme). Let p ∈ [2,∞), let
X : Ω→ Rd be a G0-measurable random vector, which satisfies that

E
[
‖X‖pRd

]
<∞ , (3.70)

let SX : [0, T ]× Ω→ Rd be a solution process to the SDE

SXt = X +

∫ t

0

µ
(
SXs
)
ds+

∫ t

0

σ
(
SXs
)
dBs (3.71)

and for every N ∈ N let SN,X : {0, 1, . . . , N} ×Ω→ Rd be the Euler-Maruyama approximation
for the SDE (3.71) with step size T

N
. Then there exists a real number C ∈ (0,∞) depending

only on p, K̄ and T such that it holds that

sup
M∈N

max
n∈{0,1,...,M}

E

[∥∥SM,X
n

∥∥p
Rd

]
≤ C

(
1 +E

[
‖X‖pRd

])
. (3.72)

Proof. The proof proceeds in an analogous spirit to the proof of Lemma 3.1.3 and for our
convenience we just write SN instead of SN,X for the Euler-Maruyama approximation with
step size T

N
. We define for every N ∈ N the constant extension

S̄N =
(
S̄Nt
)
t∈[0,T ]

: [0, T ]× Ω→ Rd (3.73)

of the Euler-Maruyama approximation to [0, T ] which for every n ∈ {0, 1, . . . , N − 1} and

t ∈
[
nT
N
, (n+1)T

N

)
is given by

S̄Nt = SNn (3.74)

and
S̄NT = SNN . (3.75)

Then for every N ∈ N, n ∈ {0, 1, . . . , N} it holds that

S̄NnT
N

= SNn = X +

∫ nT
N

0

µ
(
S̄Ns
)
ds+

∫ nT
N

0

σ
(
S̄Ns
)
dBs . (3.76)

For every m ∈ N let
Tm = inf

{
0 ≤ t ≤ T : ‖Bt‖Rd ≥ m

}
(3.77)

be a stopping time, which assures that the upcoming expectations are well-defined. Let m,N ∈
N, τ ∈ [0, T ], then equation (3.76) and inequality (3.19) establish that

E

[∥∥S̄Nτ∧Tm∥∥pRd] ≤ 3p−1

(
E
[
‖X‖pRd

]
+E

[
max
0≤t≤τ

∥∥∥∥∫ t∧Tm

0

µ
(
S̄Ns
)
ds

∥∥∥∥p
Rd

]
︸ ︷︷ ︸

A

+E

[
max
0≤t≤τ

∥∥∥∥∫ t∧Tm

0

σ
(
S̄Ns
)
dBs

∥∥∥∥p
Rd

]
︸ ︷︷ ︸

B

)
,

(3.78)

32



applying Lemma 3.1.1 and the growth estimate (3.20) to first integral in (3.78) yields

A ≤ τ p−1

∫ τ

0

E

[∥∥µ(S̄Ns∧Tm)∥∥pRd] ds
≤ (2K̄)p T p−1

(
T +

∫ τ

0

E

[∥∥S̄Ns∧Tm∥∥pRd] ds) (3.79)

and for the stochastic integral we obtain analogously

B ≤ ppτ
p
2
−1

∫ τ

0

E

[∥∥σ(S̄Ns∧Tm)∥∥pRd×d] ds
≤ (2K̄p)p T

p
2
−1

(
T +

∫ τ

0

E

[∥∥S̄Ns∧Tm∥∥pRd] ds) .

(3.80)

In view of (3.78), (3.79) and (3.80) there exists a real number C̃ ∈ (0,∞) depending only on
p, K̄ and T such that for every m,N ∈ N, τ ∈ [0, T ] it holds that

E
[∥∥S̄Nτ∧Tm∥∥pRd] ≤ C̃

(
1 +E

[
‖X‖pRd

]
+

∫ τ

0

E

[∥∥S̄Ns∧Tm∥∥pRd] ds) . (3.81)

Now we can apply Grönwall’s lemma and the monotone convergence theorem to show that for
all N ∈ N, τ ∈ [0, T ] it holds that

E

[∥∥S̄Nτ ∥∥pRd] ≤ C̃eC̃τ
(

1 +E
[
‖X‖pRd

])
. (3.82)

The definition of the constant extension of the Euler-Maruyama scheme therefore establishes
that it holds that

sup
M∈N

max
n∈{0,1,...,M}

E

[∥∥SMn ∥∥pRd] = sup
M∈N

sup
τ∈[0,T ]

E

[∥∥S̄Mτ ∥∥pRd] ≤ C̃eC̃T
(

1 +E
[
‖X‖pRd

])
(3.83)

and thus proves the lemma.

Let us continue with a theorem on the strong convergence rate for the Euler-Maruyama scheme
(cf. also Kloeden [54, Theorem 10.2.2], Milstein [59], Hofmann [42] and Müller-Gronbach [61]).

Theorem 3.4.3 (Strong Convergence Rate for the Euler-Maruyama Scheme). Let p ∈ [2,∞),
let X : Ω→ Rd be a G0-measurable random vector, which satisfies that

E
[
‖X‖pRd

]
<∞ , (3.84)

let SX : [0, T ]× Ω→ Rd be a solution process to the SDE

SXt = X +

∫ t

0

µ
(
SXs
)
ds+

∫ t

0

σ
(
SXs
)
dBs (3.85)

and for every N ∈ N let
SN,X : {0, 1, . . . , N} × Ω→ Rd (3.86)

be the Euler-Maruyama approximations for the SDE (3.85) with step size T
N

. Then there exists
a real number C ∈ (0,∞) depending only on p, K, K̄ and T such that for every N ∈ N it holds
that

max
n∈{0,1,...,N}

∥∥∥SXnT
N
− SN,Xn

∥∥∥
Lp(P;‖·‖Rd )

≤ C√
N

(
1 + ‖X‖Lp(P;‖·‖Rd )

)
(3.87)

33



Proof. Again we just write S instead of SX for the solution process to the SDE (3.85), SN
instead of SN,X for the Euler-Maruyama approximation with step size T

N
and for every N ∈ N

we define the constant extension

S̄N =
(
S̄Nt
)
t∈[0,T ]

: [0, T ]× Ω→ Rd (3.88)

of the Euler-Maruyama approximation to [0, T ] according to the proof of Lemma 3.4.2. Then
it holds for every n ∈ {0, 1, . . . , N} that

SNn = X +

∫ nT
N

0

µ(S̄Ns ) ds+

∫ nT
N

0

σ(S̄Ns ) dBs . (3.89)

For every N ∈ N, n ∈ {0, 1, . . . , N − 1}, nT
N
≤ τ < (n+1)T

N
, equations (3.85) & (3.89) and

inequality (3.19) yield

E

[∥∥Sτ − S̄Nτ ∥∥pRd] = E

[∥∥∥(Sτ − SnT
N

)
+
(
SnT

N
− SNn

)∥∥∥p
Rd

]

≤ 4p−1

(
E

[∥∥∥∥∥
∫ τ

nT
N

µ
(
Ss
)
ds

∥∥∥∥∥
p

Rd

]
︸ ︷︷ ︸

A

+E

[∥∥∥∥∥
∫ τ

nT
N

σ
(
Ss
)
dBs

∥∥∥∥∥
p

Rd

]
︸ ︷︷ ︸

B

+E

[∥∥∥∥∥
∫ nT

N

0

µ
(
Ss
)
− µ

(
S̄Ns
)
ds

∥∥∥∥∥
p

Rd

]
︸ ︷︷ ︸

C

+E

[∥∥∥∥∥
∫ nT

N

0

σ
(
Ss
)
− σ

(
S̄Ns
)
dBs

∥∥∥∥∥
p

Rd

]
︸ ︷︷ ︸

D

)
,

(3.90)

using Lemma 3.1.1 and the growth estimate (3.20) we can bound the first two terms by

A ≤
(
t− nT

N

)p−1
∫ τ

nT
N

E

[∥∥µ(Ss)∥∥pRd] ds
≤
(

2K̄ T
N

)p(
1 +E

[
max

0≤t≤T

∥∥St∥∥pRd]) (3.91)

and

B ≤
(
t− nT

N

) p
2
−1

pp
∫ τ

nT
N

E

[∥∥σ(Ss)∥∥pRd×d] ds
≤
(
T
N

) p
2
(2K̄p)p

(
1 +E

[
max

0≤t≤T

∥∥St∥∥pRd]) (3.92)

and using Lemma 3.1.1 and the Lipschitz assumption (3.3) we can bound the last two terms
by

C ≤
(
nT
N

)p−1
∫ nT

N

0

E

[∥∥µ(Ss)− µ(S̄Ns )∥∥pRd] ds
≤ T p−1Kp

∫ τ

0

E

[∥∥Ss − S̄Ns ∥∥pRd] ds (3.93)

and

D ≤
(
nT
N

) p
2
−1

pp
∫ nT

N

0

E

[∥∥σ(Ss)− σ(S̄Ns )∥∥pRd] ds
≤ T

p
2
−1(Kp)p

∫ τ

0

E

[∥∥Ss − S̄Ns ∥∥pRd] ds . (3.94)

34



In view of (3.90), (3.91), (3.92), (3.93), (3.94) and Lemma 3.1.3 there exists a real number
C̃ ∈ (0,∞) depending only on p, K, K̄ and T such that for every N ∈ N, τ ∈ [0, T ] it holds
that

E

[∥∥Sτ − S̄Nτ ∥∥pRd] ≤ C̃N−
p
2

(
1 +E

[
‖X‖pRd

])
+ C̃

∫ τ

0

E

[∥∥Ss − S̄Ns ∥∥pRd] ds . (3.95)

Finally we can apply Grönwall’s lemma and the definition of the constant extension of the
Euler-Maruyama scheme to show that for every N ∈ N it holds that

max
n∈{0,1,...,N}

E

[∥∥∥SnT
N
− SNn

∥∥∥p
Rd

]
≤ sup

τ∈[0,T ]

E

[∥∥Sτ − S̄Nτ ∥∥pRd]
≤ sup

τ∈[0,T ]

C̃N−
p
2

(
1 +E

[
‖X‖pRd

])
eC̃τ ≤ C̃N−

p
2

(
1 +E

[
‖X‖pRd

])
eC̃T

(3.96)

and this proves the theorem.

For the sake of completeness we also mention the numerically weak convergence rate for the
Euler-Maruyama scheme.

Remark 3.4.4 (Numerically Weak Convergence Rate for the Euler-Maruyama Scheme). Under
additional assumptions on X, ϕ, σ and µ there exists a real number C ∈ (0,∞) such that for
every N ∈ N it holds that

max
n∈{0,1,...,N}

∣∣∣E[ϕ(SXnT
N

)]
−E

[
ϕ
(
SN,Xn

)]∣∣∣ ≤ C

N
(3.97)

(cf. Kloeden [54, Theorem 14.5.1]).

Instead of the data Z = (X, Y ) =
(
X,ϕ

(
SXT
))

we now consider the Learning Problem w.r.t. the

approximated data ZN =
(
X,YN

)
=
(
X,ϕ

(
SN,XN

))
for sufficient large N. With Theorem 3.4.3

we can estimate the error we make by using the approximated data.

Proposition 3.4.5 (Approximated Learning Problem for the Kolmogorov PDE). Let f ∈
C 1,2([0, T ] × Rd,R) be an at most polynomially growing solution to the Kolmogorov equation
and let X : Ω→ [a, b]d be a (continuously) uniformly distributed G0-measurable random vector,
which is independent of σ(Bt, t ∈ [0, T ]). For every N ∈ N let SN,X : {0, 1, . . . , N} × Ω → Rd

be the Euler-Maruyama approximation for the SDE (3.48) with step size T
N

, define the data of
the (with step size T

N
) approximated Learning Problem for the Kolmogorov equation by

ZN =
(
X,YN

)
=
(
X,ϕ

(
SN,XN

))
(3.98)

and denote by F̂N the regression function w.r.t. to
(
X,YN

)
. Then there exists a real number

C ∈ (0,∞) such that for every N ∈ N it holds that

(i) F̂N(x) = E
[
ϕ
(
SN,xN

)]
for a.e. x ∈ [a, b]d,

(ii) supx∈[a,b]d

∣∣E[ϕ(SN,xN

)]
− f(T, x)

∣∣ ≤ C√
N

and

(iii) the function [a, b]d 3 x 7→ E
[
ϕ
(
SN,xN

)]
∈ R is the unique minimizer of

min
F∈C ([a,b]d,R)

E

[∣∣F (X)− ϕ
(
SN,XN

)∣∣2] . (3.99)

35



Proof. Note that Lemma 3.4.2 implies by the same argument as in equation (3.52) & (3.53)
that for every p ∈ [2,∞) it holds that

sup
M∈N

∥∥YM∥∥
Lp(P;|·|) = sup

M∈N
E
[∣∣ϕ(SM,X

M

)∣∣p] 1
p
<∞ . (3.100)

This shows that for every N ∈ N the output variable YN has finite variance and therefore the
regression function F̂N is well-defined. Now we will prove the representation of the regression
function in item (i). For every x ∈ [a, b]d let(

ΨN,x
n

)
n∈{0,1,...,N} : {0, 1, . . . , n} × C ([0, T ],Rd)→ Rd , N ∈ N , (3.101)

be the mappings, which satisfy for every N ∈ N, n ∈ {0, 1, . . . , N − 1}, u ∈ C ([0, T ],Rd) that
ΨN,x

0 (u) = x and

ΨN,x
n+1(u) = ΨN,x

n (u) + µ
(
ΨN,x
n (u)

)
T
N

+ σ
(
ΨN,x
n (u)

)(
u
( (n+1)T

N

)
− u
(
nT
N

))
. (3.102)

Observe that for every N ∈ N it holds that

(i) ΨN,x
N (B) = SN,xN ,

(ii) ΨN,X
N (B) = SN,XN and

(iii) for every u ∈ C ([0, T ],Rd) the mapping [a, b]d 3 x 7→ ΨN,x
N (u) ∈ Rd is continuous.

Furthermore note the fact that the Borel σ-algebra on C ([0, T ],Rd) is generated by the evalu-
ation functionals

C ([0, T ],Rd) 3 u 7→ evalt(u) = u(t) ∈ Rd (3.103)

for every t ∈ [0, T ], i.e.
B
(
C ([0, T ],Rd)

)
= σ(evalt, t ∈ [0, T ]) (3.104)

(cf. Aliprantis [2, Lemma 4.53]). This assures that for every N ∈ N, x ∈ [a, b]d the mapping

C ([0, T ],Rd) 3 u 7→ ΨN,x
N (u) ∈ Rd (3.105)

is B
(
C ([0, T ],Rd)

)
/B(Rd)-measurable. Thus for every N ∈ N Lemma 2.3.9 (with Φx(u) =

ϕ
(
ΨN,x
N (u)

)
for every x ∈ [a, b]d and u ∈ C ([0, T ],Rd)) and Theorem 2.2.1 yields that it holds

that
F̂N(x) = E

[
YN
∣∣X = x

]
= E

[
ϕ
(
SN,XN

)∣∣X = x
]

= E
[
ϕ
(
SN,xN

)]
(3.106)

for a.e. x ∈ [a, b]d. Observe that similar to equation (3.100) we can also deduce the fact that

sup
M∈N

sup
x∈[a,b]d

E

[∣∣ϕ(SM,x
M

)∣∣p] 1
p
<∞ . (3.107)

The continuity claim in item (iii) above and the continuity of ϕ imply that for all N ∈ N, ω ∈ Ω
the function [a, b]d 3 x 7→ ϕ

(
SN,xN (ω)

)
∈ R is continuous. In view of the uniform integrability

convergence theorem (cf. Athreya [5, Theorem 2.5.10]) and (3.107) this demonstrates that for
every N ∈ N the mapping

[a, b]d 3 x 7→ E
[
ϕ
(
SN,xN

)]
∈ R (3.108)

is the unique continuous version of the regression function F̂N and therefore proves item (iii).
For the proof of item (ii) let Sx : [0, T ] × Ω → Rd a be solution process to the SDE (3.48)

36



for every x ∈ [a, b]d. Then the Feynman-Kac formula establishes that f(T, x) = E
[
ϕ(SxT )

]
for

every x ∈ Rd and we observe that

sup
x∈[a,b]d

∣∣E[ϕ(SN,xN

)]
− f(T, x)

∣∣ = sup
x∈[a,b]d

∣∣E[ϕ(SN,xN

)]
−E

[
ϕ
(
SxT
)]∣∣

≤ 1√
N

(
sup
M∈N

sup
x∈[a,b]d

√
M
∣∣E[ϕ(SM,x

M

)
− ϕ

(
SxT
)]∣∣) . (3.109)

Next the fundamental theorem of calculus, the Cauchy-Schwarz inequality (cf., for instance,
Cannarsa [17, Theorem 7.34 & Proposition 5.3]) and the assumption that ϕ has an at most
polynomially growing gradient (3.4) yield that there exists a real number c ∈ [1,∞) such that
for every u, v ∈ Rd it holds that

∣∣ϕ(u)− ϕ(v)
∣∣ =

∣∣∣∣∫ 1

0

〈
∇ϕ(v + s(u− v)), u− v

〉
Rd ds

∣∣∣∣
≤ ‖u− v‖Rd sup

s∈[0,1]

‖∇ϕ(v + s(u− v))‖Rd

≤ c ‖u− v‖Rd
(
1 + ‖u‖Rd + ‖v‖Rd

)c
(3.110)

Eventually equation (3.110), the Cauchy-Schwarz inequality, Lemma 3.1.3 & 3.4.2 and the
strong convergence rate of the Euler-Maruyama scheme (Theorem 3.4.3) assure that there
exists a real number C ∈ (0,∞) such that we can bound the last term in equation (3.109) by

sup
M∈N

sup
x∈[a,b]d

√
M
∣∣E[ϕ(SM,x

M

)
− ϕ

(
SxT
)]∣∣

≤ sup
M∈N

sup
x∈[a,b]d

√
M cE

[∥∥SM,x
M − SxT

∥∥
Rd
(
1 +

∥∥SM,x
M

∥∥
Rd +

∥∥SxT∥∥Rd)c]
≤ sup

M∈N
sup

x∈[a,b]d

√
M cE

[∥∥SM,x
M − SxT

∥∥2

Rd

] 1
2
E

[(
1 +

∥∥SM,x
M

∥∥
Rd +

∥∥SxT∥∥Rd)2c
] 1

2

≤ cC sup
M∈N

sup
x∈[a,b]d

√
M E

[∥∥SM,x
M − SxT

∥∥2

Rd

] 1
2
<∞ .

(3.111)

This proves Proposition 3.4.5.

Recall that in general we do not know the distribution of the (exact) data Z =
(
X,ϕ

(
SXT
))

of the Learning Problem for the Kolmogorov equation (Proposition 3.3.1) and even cannot
compute realizations of the latter. But according to Proposition 3.4.5 for sufficiently large N
the regression function F̂N w.r.t. the approximated data ZN =

(
X,ϕ

(
SN,XN

))
is a sensible

approximation to the solution of the Kolmogorov equation at time T and it is straightforward
to obtain realizations of samples drawn from the distribution of ZN .

Example 3.4.6. Let us continue with Example 3.3.2 and suppose we do not know the explicit
solution to the stochastic differential equation. Let us partition the time interval [0, T ] into
N ∈ N subintervals of equal length, then the Euler-Maruyama approximation of the SDE (3.60)
with step size T

N
is defined as the stochastic process SN,X : {0, 1, . . . , N}×Ω→ R which satisfies

for every n ∈ {0, 1, . . . , N − 1} that SN,X0 = X and

SN,Xn+1 = SN,Xn + σ̄2T
2N
SN,Xn + σ̄SN,Xn

(
B (n+1)T

N

−BnT
N

)
. (3.112)

37



Based on Proposition 3.4.5 we can approximate the data for the Learning Problem by ZN =(
X,ϕ

(
SN,XN

))
. Observe that the increments of the Brownian motion

B (n+1)T
N

−BnT
N

(3.113)

are just centered normally distributed random variables with variance T
N

independent of

σ
(
Bt, 0 ≤ t ≤ nT

N

)
. (3.114)

So in order to obtain a realization of a sample drawn from the distribution of the data ZN we

(i) take a realization of the in [a, b] uniformly distributed random variable X,

(ii) iteratively compute the realization of the Euler-Maruyama approximation for every step
n ∈ {0, 1, . . . , N} by using realizations of independent centered normally distributed ran-
dom variables with variance T

N
and

(iii) evaluate ϕ(x) =
∑s

j=0 cjx
j for the realization of the Euler-Maruyama approximation at

the N-th step

(see figure 3.1).

Figure 3.1: In accordance with Example 2.3.10 we choose T = 1, σ̄ = 0.5, a = −6, b = 6, p =
3, c0 = 0, c1 = 1.77, c2 = 0, c3 = −0.015. The plot shows m = 10 realizations of i.i.d. samples
of the Euler-Maruyama approximation for N = 16, i.e. step size 1

16
, on the left (the points are

connected by lines for visualization purposes) and corresponding realizations of samples from
the data ZN =

(
X,ϕ

(
SN,XN

))
on the right (orange). The realizations of the samples from the

true data Z = (X, Y ) (green) as well as the regression function (blue) are shown as comparison
(see also Figure 2.1).

38



3.5 Multilevel Monte Carlo Simulation

Recall that in Section 2.4 we motivated to use a Multilevel Learning approach in order to
decrease the computational cost for the simulations. Furthermore Giles [29] originally sug-
gested Multilevel Monte Carlo path simulations for estimating an expected value arising from
a stochastic differential equation. Therefore analogously to Section 2.4 we propose to use Mul-
tilevel Euler-Maruyama simulations based on L ∈ N levels with an increasing number of steps.
For every l ∈ N0 we denote by Nl the number of steps in the l-th level.

Proposition 3.5.1 (Multilevel Learning Problem for the Kolmogorov PDE). Let f ∈ C 1,2([0, T ]
× Rd,R) be an at most polynomially growing solution to the Kolmogorov equation and let
X : Ω → [a, b]d be a (continuously) uniformly distributed G0-measurable random vector, which
is independent of σ(Bt, t ∈ [0, T ]). For every l ∈ N0 let SNl,X : {0, 1, . . . , Nl} × Ω → Rd be the
Euler-Maruyama approximation for the SDE (3.48) with step size T

Nl
, define the 0-th level data

Z0 = ZN0 =
(
X,YN0

)
=
(
X,ϕ

(
SN0,X
N0

))
(3.115)

and the l-th level data

Zl =
(
X,YNl − YNl−1

)
=
(
X,ϕ

(
SNl,XNl

)
− ϕ

(
SNl−1,X
Nl−1

))
(3.116)

and denote by F̂l the regression function w.r.t. the data Zl. Then it holds that

(i) F̂0(x) = E
[
ϕ
(
SN0,x
N0

)]
for a.e. x ∈ [a, b]d and

(ii) the function [a, b]d 3 x 7→ E
[
ϕ
(
SN0,x
N0

)]
∈ R is the unique minimizer of

min
F∈C ([a,b]d,R)

E

[∣∣F (X)− ϕ
(
SN0,X
N0

)∣∣2] (3.117)

and for every l ∈ N it holds that

(iii) F̂l(x) = E
[
ϕ
(
SNl,xNl

)
− ϕ

(
SNl−1,x
Nl−1

)]
for a.e. x ∈ [a, b]d and

(iv) the function [a, b]d 3 x 7→ E
[
ϕ
(
SNl,xNl

)
− ϕ

(
SNl−1,x
Nl−1

)]
∈ R is the unique minimizer of

min
F∈C ([a,b]d,R)

E

[∣∣∣F (X)−
(
ϕ
(
SNl,XNl

)
− ϕ

(
SNl−1,X
Nl−1

))∣∣∣2] . (3.118)

For every L ∈ N define the data of the Multilevel Learning Problem for the Kolmogorov equation
(with L levels) by (

Zl
)L
l=0

. (3.119)

Then there exists a real number C ∈ (0,∞) such that for all L ∈ N it holds that

sup
x∈[a,b]d

∣∣∣∣∣
(
E
[
ϕ
(
SN0,x
N0

)]
+

L∑
l=1

E
[
ϕ
(
SNl,xNl

)
− ϕ

(
SNl−1,x
Nl−1

)])
− f(T, x)

∣∣∣∣∣ ≤ C√
NL

. (3.120)

39



Proof. The statements of this Proposition are just a combination of Propositions 2.4.2 and 3.4.5.
First observe that items (i) & (ii) follow directly from the corresponding statements in Proposi-

tion 3.4.5. Next for every l ∈ N the output data YNl −YNl−1 = ϕ
(
SNl,XNl

)
−ϕ

(
SNl−1,X
Nl−1

)
suffices

analogous moment bounds as the output data YNl = ϕ
(
SNl,XNl

)
(see (3.100)). The linearity of

the expectation guarantees that we can mimic the proof of Proposition 3.4.5 in order to prove
items (iii) & (iv) and also the claim in (3.120) as for every L ∈ N it holds that

sup
x∈[a,b]d

∣∣∣∣∣
(
E
[
ϕ
(
SN0,x
N0

)]
+

L∑
l=1

E
[
ϕ
(
SNl,xNl

)
− ϕ

(
SNl−1,x
Nl−1

)])
− f(T, x)

∣∣∣∣∣
= sup

x∈[a,b]d

∣∣E[ϕ(SNL,xNL

)]
− f(T, x)

∣∣ . (3.121)

This concludes the proof of Proposition 3.5.1.

In other words the previous proposition states that the regression function F̂NL w.r.t. to the
data

(
X,ϕ

(
SNL,XNL

))
satisfies

F̂NL(x) =
L∑
l=0

F̂l(x) (3.122)

for a.e. x ∈ [a, b]d. It enables us to use the sum of the (unique) continuous versions of the re-

gression functions
∑L

l=0 F̂
l(x) w.r.t. to the Multilevel data

(
Zl
)L
l=0

as a suitable approximation

to the solution of the Kolmogorov equation f(T, x) at time T for all x ∈ [a, b]d and hence this
Multilevel Learning approach presents a new alternative to the standard approach of Proposi-
tion 3.4.5. In accordance with the definition before Proposition 2.4.1 let us define samples for
the empirical (Multilevel) Learning Problem.

Definition 3.5.2 (Samples of the Multilevel Learning Problem for the Kolmogorov PDE). Let
L ∈ N, m0,m1, . . . ,mL ∈ N, let Bl,i : [0, T ] × Ω → Rd, l, i ∈ N0, be independent standard
(Ω,G,P, (Gt)t∈[0,T ])-Brownian motions with B0,0 = B, let Xl,i : Ω → [a, b]d, l, i ∈ N0, be in-
dependent (continuously) uniformly distributed G0-measurable random vectors with X0,0 = X,

which are independent of σ
(
Bl,i
t , t ∈ [0, T ], l, i ∈ N0

)
, and for every l, i ∈ N0, N ∈ N let

SN,l,i : {0, 1, . . . , N} × Ω→ Rd be the Euler-Maruyama approximation for the SDE

Sl,it = Xl,i +

∫ t

0

µ
(
Sl,is
)
ds+

∫ t

0

σ
(
Sl,is
)
dBl,i

s . (3.123)

with step size T
N

. Then we define the Multilevel samples
(
Zl

)L
l=0

for L levels with m0 samples
on level zero, m1 samples on level one, . . . , mL samples on level L by

Z0 =
((
X0,i,YN0

0,i

))m0

i=1
=
((
X0,i, ϕ

(
SN0,0,i
N0

)))m0

i=1
(3.124)

and
Zl =

((
Xl,i,YNll,i − Y

Nl−1

l,i

))ml
i=1

=
((
Xl,i, ϕ

(
SNl,l,iNl

)
− ϕ

(
SNl−1,l,i
Nl−1

)))ml
i=1

(3.125)

for l ∈ {1, 2, . . . , L}. Let H be a valid hypothesis space, then for every l ∈ {0, 1, . . . , L} we
denote by F̂Zl the empirical target function w.r.t. to the samples Zl.

Note that for the standard approach according to Proposition 3.4.5 we obtain m ∈ N i.i.d.
samples with precision level l ∈ N, i.e. step size T

Nl
, by defining

Z =
((
Xi,YNli

))m
i=1

=
((
X0,i, ϕ

(
SNl,0,iNl

))m
i=1

. (3.126)

40



Let us review the special case that the precision levels are chosen such that N0 ∈ N and for
every l ∈ N it holds that

Nl = sNl−1 (3.127)

with s ∈ N \ {1}. Then for every l ∈ N we can use the realizations of the Brownian motion
increments, i.e. the realizations of the normally distributed random vectors, for the simulation
of SNl,XNl

to also calculate a (one level lower) simulation of SNl−1,X
Nl−1

. This is done by adding s
successive increments due to the fact that for all n ∈ {0, 1, . . . , Nl−1} it holds that

B (n+1)T
Nl−1

−B nT
Nl−1

=
s∑
i=1

(
B (sn+i)T

Nl

−B (sn+i−1)T
Nl

)
. (3.128)

This shows that in this case the computational cost of simulating a Multilevel sample(
Xl,i,YNll,i − Y

Nl−1

l,i

)
(3.129)

(see (3.125)) is comparable to the cost of simulating a standard sample
(
Xi,YNli

)
(see (3.126)).

Passing to the empirical Multilevel Learning Problem we now show that assumptions (A) from
Chapter 2.4 can be satisfied and in view of Proposition 2.4.3 investigate possible advantages
of the Multilevel Learning approach. A calculation similar to the one in (3.111) assures that
there exists a real number C ∈ (0,∞) such that for every l ∈ N0 it holds that∥∥Y − YNl∥∥

L2(P;‖·‖Rd )
= E

[∣∣ϕ(SXT )− ϕ(SNl,XNl

)∣∣2] 1
2 ≤ C√

Nl

. (3.130)

Furthermore for simulating a realization of YNl using the Euler-Maruyama scheme we need
one realization of a uniformly distributed random vector, dNl random normal realizations for
the Brownian motion increments, in summary 2Nl + 1 function evaluations of ϕ, σ and µ and
Nl(2d+ 2) + 2 additional floating point operations. Thus there exists a real number C̃ ∈ (0,∞)
such that the expected computational cost satisfies for every l ∈ N that

E
[
CNl
]

= C̃Nl . (3.131)

We conclude that assumptions (A) in Section 2.4 are satisfied with

α =
1

2
, γ = 1 . (3.132)

Therefore at least in the extreme case a = b Proposition 2.4.3 suggests that there exists L ∈ N
and m0,m1, . . . ,mL ∈ N such that by defining the corresponding Multilevel samples (Zl)

L
l=0

and the corresponding empirical target functions F̂Zl we obtain a mean squared error

E

∣∣∣∣∣
L∑
l=0

F̂Zl(X)− f(T,X)

∣∣∣∣∣
2
 = O

(
ε2
)

(3.133)

with an expected overall computational cost for the simulations of

E[C] = O
(
ε−2(log ε)2

)
(3.134)

for ε tending to zero. This is opposed to the standard approach which by defining suitable
l,m ∈ N, samples Z =

(
(Xi,YNli )

)m
i=1

and the corresponding empirical target function F̂NlZ

obtains a mean squared error

E

[∣∣F̂NlZ (X)− f(T,X)
∣∣2] = O

(
ε2
)

(3.135)

41



with an expected overall computational cost for the simulations of

E[C] = O
(
ε−4
)

(3.136)

for ε tending to zero (see equation (2.98)). Under additional assumptions one could employ
the result on the weak convergence rate of the Euler-Maruyama scheme (Remark 3.4.4), but
one still faces a computational cost of E[C] = O

(
ε−3
)

(cf. Giles [29], Hutzenthaler [44] and the
references mentioned therein). In view of (3.134), (3.136) and Proposition 3.5.1 we propose to
take the sum of the empirical target functions w.r.t. the Multilevel samples as approximation
of f(T, x), i.e.

L∑
l=0

F̂Zl(x) ≈ f(T, x) (3.137)

for every x ∈ [a, b]d.

Example 3.5.3. We will further investigate our previous example in the Multilevel setting. Let
L = 3 and we define

Nl = 2l (3.138)

for l ∈ {0, 1, 2, 3}. Then for l > 0 the Multilevel data takes the form

Zl =
(
X,ϕ

(
S2l,X

2l

)
− ϕ

(
S2l−1,X

2l−1

))
(3.139)

and when computing a simulation of the coarse Euler-Maruyama approximation S2l−1,X
2l−1 we use

the same Brownian motion trajectory as for the simulation of the fine scheme S2l,X
2l

(see (3.128)
and Figure 3.2).

Figure 3.2: The plot shows the fine Euler-Maruyama approximation (bright orange) and the
corresponding coarse one (orange) for the Multilevel data Z3 =

(
X,ϕ

(
S8,X

8

)
− ϕ

(
S4,X

4

))
. The

true trajectory of the solution to the stochastic differential equation is shown in red as a
comparison.

42



Let us take the hypothesis space H = P6([a, b],R) (see Example 2.3.10) and choose

ml = 100 · 23−l (3.140)

for l ∈ {0, 1, 2, 3}. We perform 50 independent trials and each time simulate realizations of
the Multilevel samples (zl)

L
l=0 and compute the corresponding empirical target functions F̂zl,

l ∈ {0, 1, 2, 3}. In view of (3.133) and Proposition 3.5.1 we sum the latter to compute an
approximation

L∑
l=0

F̂zl(x) ≈ f(T, x) (3.141)

to the solution to the Kolmogorov equation (3.57) at time T for x ∈ [a, b]d. As a comparison for
each trial we also follow the standard approach due to Proposition 3.4.5 and (3.135) with N =
2L = 8 and m = 400 realizations of samples z. This corresponds to the same precision of the
regression functions and the same number of random normal calls for both approaches (see also
the introduction of Chapter 5). Denote the empirical target functions of the standard approach
by F̂8

z . Figure 3.3 illustrates that for this comparable computational cost of the simulations the
mean squared error over the trials is significantly smaller for

∑3
l=0 F̂zl than for F̂8

z .

43



Figure 3.3: The first four plots show the empirical target functions w.r.t. to the realizations of
each of the Multilevel samples (zl)

3
l=0 for 50 independent trials (orange). The plot on the bottom

left and right shows for each trial
∑3

l=0 F̂zl and F̂8
z respectively (green) and the regression

function is shown as comparison (blue). Note that by using the same number of random
normal calls the mean squared error over all trials equals 0.94 for the Multilevel case opposed
to 5.24 in the standard approach.

44



Chapter 4

Neural Networks as Hypothesis Space

The following chapter offers a short overview of neural networks and their approximation prop-
erties. Especially when dealing with high-dimensional input data, that is large d ∈ N in the
setting of the last chapters, we suggest a class of neural networks as a suitable hypothesis space
H for our Learning Problem. Thereupon the chapter summarizes the Learning Problem for
the Kolmogorov equation and explains the optimization algorithm for approximately solving
the empirical Learning Problem in the hypothesis space of neural networks.

4.1 Definition

In this section we want to introduce the notion of artificial feed-forward neural networks (also
known as multilayer perceptrons). The definition is based on a very simplified mathematical
model of the neural structure in a human brain and follows standard literature (cf., for instance,
Bishop [11] & [12, Chapter 5], Goodfellow [33], Haykin [38] and Caterini [18]). For every
M,N ∈ N let us denote by A (RM ,RN) the space of affine linear mappings from RM to RN .

Definition 4.1.1 ((Deep) Artificial Feed-Forward Neural Network). Let d, n, s ∈ N and let
M0,M1, . . . ,Ms+1 ∈ N with M0 = d and Ms+1 = n. Let α : R→ R be a function and for every
i ∈ {0, 1, . . . , s} let Wi ∈ RMi+1×Mi, bi ∈ RMi+1 and denote by Ai ∈ A (RMi ,RMi+1) the affine
linear mapping given by

Ai(x) = Wix+ bi (4.1)

for every x ∈ RMi. We define the function F : Rd → Rn by

F(x) = (As ◦ α ◦ As−1 ◦ α ◦ As−2 ◦ · · · ◦ α ◦ A0)(x) (4.2)

for every x ∈ Rd, where the function α is applied component-wise. We call F an (artificial
feed-forward) neural network with activation function α, d units in the input layer, n units
in the output layer, and Mi, i ∈ {1, 2, . . . , s}, units in each of the s hidden layers and refer
to s, d,M1, . . . ,Ms, n and the function α as the network architecture. We call Wi the weight
matrix and bi the biases in the i-th layer and refer to the collection of weight matrices and biases
θ =

(
(Wi, bi)

)s
i=0

as the parameters of the network. We say that a neural network is deep, if
s ≥ 2.

Note that the parameters of a neural network can be represented as a vector in Rν with

ν =
s∑
i=0

Mi+1Mi +Mi+1 = M1(d+ 1) + n(Ms + 1) +
s−1∑
i=1

Mi+1(Mi + 1) (4.3)

45



and we will often explicitly stress the dependence of F on θ by writing Fθ. The architecture of
the network can be depicted as a directed acyclic graph like in Figure 4.1.

Figure 4.1: Graph of a deep neural network with s = 2, d = 6, M1 = 4, M2 = 3, n = 1, from
Nielsen [62]

4.2 Properties

A neural network with continuous non-polynomial activation function can approximate all
continuous functions on a compact subset of Rd arbitrary well with respect to the uniform
norm provided that enough hidden units are available. This is a special case of the following
more general theorem on the approximation capabilities of neural networks.

Theorem 4.2.1 (Universal Approximation Theorem). Let d ∈ N, let α : R → R be a locally
bounded activation function and assume that the closure of the points of discontinuity of α is a
Lebesgue null set, let

N(d,α) =
{
A1 ◦ α ◦ A0 : M ∈ N, A0 ∈ A (Rd,RM), A1 ∈ A (RM ,R)

}
(4.4)

be the set of all neural networks with activation function α, d input units, one hidden layer
(with an arbitrary number of hidden units) and one output unit. Then

(i) for every compact subset D ⊆ Rd, every ε > 0 and every F ∈ C (Rd,R) there exists
F ∈ N(d,α) such that it holds that

sup
x∈D
|F (x)− F(x)| < ε (4.5)

(ii) for every absolutely continuous (w.r.t. Lebesgue measure), compactly supported probability
measure P on Rd, every ε > 0, every 1 ≤ p < ∞, and every F ∈ Lp(P; |·|) there exists
F ∈ N(d,α) such that it holds that

‖F (x)− F(x)‖Lp(P;|·|) < ε (4.6)

if and only if α is not an algebraic polynomial.

46



Proof. Leshno [57] and also many other sources with slightly different assumptions and state-
ments, cf. Hornik [43], Cybenko [22], Scarselli [74] and Pinkus [65] for a survey.

Observe that the theorem holds also for neural networks with an arbitrary number of hidden
layers and output units as we can represent each output unit separately and approximate the
identity in the other layers.

4.3 Proposed Algorithm

Based on this optimal approximation qualities (cf. also Bölcskei [14]), we suggest the set of
neural networks with fixed architecture as an appropriate hypothesis space for our Learning
Problem. However this is not a compact subspace of the space of bounded measurable functions,
i.e. the conditions of a hypothesis space are not satisfied. We circumvent this by assuming that
the activation function is continuous, the parameters of our network are bounded by a constant
R and that the network is evaluated only on a compact subset D.

Definition 4.3.1 (Hypothesis Space of Neural Networks). Let s ∈ N, d,M1, . . . ,Ms, n ∈ N,
R ∈ (0,∞), let D ⊆ Rd compact, let α ∈ C (R,R) non-polynomial and define ν ∈ N by
equation (4.3). Let Fθ : Rd → Rn, θ ∈ Rν, be neural networks depending on the parameters θ
with activation function α and Mi, i ∈ {1, 2, . . . , s}, units in each of the s hidden layers. Then
we define the hypothesis space of neural networks with the given architecture as

N = Ns,d,M1,M2,...,Ms,n,D,R,α =
{
Fθ

∣∣
D : ‖θ‖Rν ≤ R

}
⊆

compact
B(D,Rn) . (4.7)

Although Theorem 4.2.1 shows that even neural networks with only one hidden layer can
approximate every continuous function arbitrary well (given enough hidden units), recent prac-
tical applications show more success by employing deep neural networks for high-dimensional
input data (cf., for instance, Hinton [41] and Krizhevsky [55]) and there is also mathematical
evidence for this phenomenon (cf. Yarotsky [79] and Petersen [64]). Let us summarize our
Learning Problem in the given context:

(i) We want to compute the solution f(T, x) of the Kolmogorov type partial differential
equation{

∂f
∂t

(t, x) = 1
2

TraceRd
(
σ(x)[σ(x)]∗(Hessx f)(t, x)

)
+
〈
µ(x), (∇xf)(t, x)

〉
Rd

f(0, x) = ϕ(x)
(4.8)

at time T for x ∈ [a, b]d.

(ii) Assuming enough smoothness of f , ϕ, µ and σ this is equivalent to computing the expected
value E

[
ϕ(SxT )

]
, where SxT is the solution to the SDE

Sxt = x+

∫ t

0

µ
(
Sxs
)
ds+

∫ t

0

σ
(
Sxs
)
dWs. (4.9)

at time T with initial value x ∈ [a, b]d.

(iii) This is equivalent to finding the (continuous version of the) regression function F̂ w.r.t.
the data Z =

(
X,ϕ

(
SXT
))

with X uniformly distributed in [a, b]d, i.e. finding the unique
minimizer of

min
F∈C ([a,b]d,R)

E

[∣∣F (X)− ϕ
(
SXT
)∣∣2] (4.10)

47



(iv) As we lack knowledge of the solution to the stochastic differential equation, we approx-
imate SXT by SN,XN using the Euler-Maruyama scheme with sufficient large N and con-

sider the (continuous version of the) regression function F̂N w.r.t. the approximated data
ZN =

(
X,ϕ

(
SN,XN

))
, i.e. the unique minimizer of

min
F∈C ([a,b]d,R)

E

[∣∣F (X)− ϕ
(
SN,XN

)∣∣2] (4.11)

(v) As we have only access to a finite number of samples from the data ZN , we consider a
Monte Carlo approximation of the expected value in equation (4.11) and we minimize
in the hypothesis space of deep neural networks H = N = Ns,d,M1,M2,...,Ms,n,D,R,α with
n = 1, s ≥ 2 and D = [a, b]d. To decrease the computational cost of the simulations we
mimic the idea of Multilevel Monte Carlo approximation with L ∈ N levels of precision
N0, N1, . . . , NL. For each level l ∈ {0, 1, . . . , L} we take ml ∈ N samples

Z0 =
((
X0,i, ϕ

(
SN0,0,i
N0

)))m0

i=1
, l = 0

Zl =
((
Xl,i, ϕ

(
SNl,l,iNl

)
− ϕ

(
SNl−1,l,i
Nl−1

)))ml
i=1
, l = 1, 2, . . . , L

(4.12)

(see Definition 3.5.2) and seek to find the empirical target function F̂Zl w.r.t. Zl, i.e. a
minimizer of

min
F∈N

1

m0

m0∑
i=1

∣∣∣F(X0,i

)
− ϕ

(
SN0,0,i
N0

)∣∣∣2, l = 0

min
F∈N

1

ml

ml∑
i=1

∣∣∣F(Xl,i

)
−
(
ϕ
(
SNl,l,iNl

)
− ϕ

(
SNl−1,l,i
Nl−1

))∣∣∣2, l = 1, 2, . . . , L .

(4.13)

Proposition 2.3.7, Proposition 3.5.1, Proposition 3.4.5 and Proposition 3.3.1 suggest that
by controlling the approximation, model and sample errors we obtain that for a.e. x ∈
[a, b]d it holds that

L∑
l=0

F̂Zl(x) ≈
L∑
l=0

F̂l(x) = F̂NL(x) ≈ F̂ (x) = f(T, x) . (4.14)

(vi) Minimizing the empirical error over F ∈ N (for a given outcome ω ∈ Ω) is equivalent
to finding optimal parameters θ̂ ∈ Rν (i.e. weights and biases) for a deep neural network
with a given architecture. For each l ∈ {0, 1, . . . , L} let Flθ : [a, b]d → R, θ ∈ Rν , be
neural networks depending on the parameters θ with activation function α and Mi, i ∈
{1, 2, . . . , s}, units in each of the s hidden layers. Then due to equation (4.13) for every
l ∈ {0, 1, . . . , L} we seek θ̂l ∈ Rν as minimizer of

min
‖θ‖Rν≤R

1

m0

m0∑
i=1

∣∣∣F0
θ

(
X0,i(ω)

)
− ϕ

(
SN0,0,i
N0

(ω)
)∣∣∣2, l = 0

min
‖θ‖Rν≤R

1

ml

ml∑
i=1

∣∣∣Flθ(Xl,i(ω)
)
−
(
ϕ
(
SNl,l,iNl

(ω)
)
− ϕ

(
SNl−1,l,i
Nl−1

(ω)
))∣∣∣2, l = 1, 2, . . . , L .

(4.15)

48



The next section presents a method to approximately solve the latter minimization prob-
lems, i.e. to find θ̃l ≈ θ̂l ∈ Rν , and under appropriate hypothesis we can think of

[a, b]d 3 x 7→
L∑
l=0

F
l
θ̃l

(x) ∈ R (4.16)

as a suitable approximation of the function

[a, b]d 3 x 7→ f(T, x) ∈ R . (4.17)

There are also some modifications, extensions and comments to the above summary. First
by starting in item (ii), one can also use the algorithm to compute E[ϕ(SxT )] (without the
connection to the Kolmogorov equation), i.e. to solve certain problems involving the solu-
tions of stochastic differential equations. Secondly, one can invoke other methods than the
Euler-Maruyama scheme to approximate the solution of a stochastic differential equation (cf.
Kloeden [54]). Lastly we could also allow for a different neural network architectures in each
level.

4.4 Optimization

For the convenience of the reader let us generalize the optimization problems in (4.15). Through-
out this chapter let d,m, n, s ∈ N, r ∈ N0, M1,M2, . . . ,Ms ∈ N, R ∈ (0,∞), D ⊂ Rd compact,
α ∈ C r(R,R) non-polynomial and define ν by equation (4.3). Let Fθ : D → Rn, θ ∈ Rν , be neu-
ral networks depending on the parameters θ with activation function α and Mi, i ∈ {1, 2, . . . , s},
units in each of the s hidden layers and let

z =
(
(xi, yi)

)m
i=1
∈ (D × Rn)m (4.18)

denote m realizations of samples, then each of the optimization problems in (4.15) is of the

following form (with n = 1, D = [a, b]d and loss functions Ly(ỹ) =
∣∣ỹ − y∣∣2 for every ỹ, y ∈ R).

Definition 4.4.1 (General Optimization Problem for Neural Networks). For every y ∈ Rn let

Ly ∈ C r(Rn, [0,∞)) (4.19)

and for every i ∈ {1, 2, . . . ,m} define the functions hi : Rν → R and H : Rν → R by

hi(θ) = Lyi
(
Fθ(xi)

)
(4.20)

and

H(θ) =
1

m

m∑
i=1

hi(θ) (4.21)

for every θ ∈ Rν. The general optimization problem for the neural networks Fθ, θ ∈ Rν, with
loss functions Ly, y ∈ Rn, and samples z asks for parameters θ̂ ∈ Rν minimizing

min
‖θ‖Rν≤R

H(θ) = min
‖θ‖Rν≤R

1

m

m∑
i=1

hi(θ) = min
‖θ‖Rν≤R

1

m

m∑
i=1

Lyi
(
Fθ(xi)

)
. (4.22)

49



Recall that a (not necessary unique) minimizer θ̂ of (4.22) exists due to the fact that we chose the
hypothesis space of neural networks N as a compact subspace of B(D,Rn) (see Definition 4.3.1)
which in this case corresponds to the fact that we are minimizing a continuous function over
a compact domain. Furthermore the assumptions on α and Ly, y ∈ Rn, imply that also the
objective function H is r-times continuously differentiable. The General Optimization problem
can be classified as a bound constrained nonlinear optimization problem which is thoroughly
analyzed in the standard literature, for example Ruszczyński [73], Bertsekas [8] and Griva [35].
Let us present the plain vanilla version of an iterative algorithm for approximately solving (4.22),
the so-called gradient descent algorithm (also known as steepest descent algorithm). Let us
assume that R is sufficiently large and that we can ignore this bound constraint. As motivation
recall that for H ∈ C 1(Rν ,R) the (instantaneous) rate of change at θ ∈ Rν per unit of distance
moved in the direction given by v ∈ Rν , i.e. the directional derivative, equals

lim
h→0

H(θ + hv)−H(θ)

h‖v‖Rν
=

1

‖v‖Rν
〈
∇H(θ), v

〉
Rν . (4.23)

Due to the Cauchy-Schwarz inequality the direction of (instananeous) steepest descent is there-
fore −γ∇H(θ) for some γ ∈ (0,∞).

Definition 4.4.2 (Gradient Descent Algorithm). Let γ ∈ (0,∞), θ(0) ∈ Rν, let H ∈ C 1(Rν ,R),
and let θ(k) ∈ Rν, k ∈ N, be a sequence such that for every k ∈ N it holds that

θ(k) = θ(k−1) − γ∇H
(
θ(k−1)

)
. (4.24)

Then we call θ(k), k ∈ N0, a gradient descent sequence for H with initial value θ(0) and step
size γ.

Note that in the context of neural networks the step size is often also referred to as learning
rate. Under sufficient conditions on the function H the gradient descent algorithm converges
at least to a critical point.

Theorem 4.4.3 (Convergence of the Gradient Descent Algorithm). Assume that H ∈ C 1(Rν ,R)
is bounded from below and that its gradient is Lipschitz continuous with constant K ∈ (0,∞),
i.e. for every u, v ∈ Rν it holds that

‖∇H(u)−∇H(v)‖Rν ≤ K‖u− v‖Rν . (4.25)

For every step size
γ ∈

(
0, 1

K

)
(4.26)

and every initial value θ(0) ∈ Rν it holds that the corresponding gradient descent sequence θ(k),
k ∈ N0, satisfies that

lim
k→∞
∇H

(
θ(k)
)

= 0 (4.27)

Proof. Ruszczyński [73, Theorem 5.1].

Note that the objective function H in the general optimization problem for neural networks
(Definition 4.4.1) is bounded from below by definition of the loss functions. Under additional
assumptions one can show that the gradient descent sequence converges linearly to a minimizer,
but there are examples with arbitrary slow rate of convergence (cf. Ruszczyński [73, Section
5.3]). One typical problem is the so-called zig-zagging in narrow curved valleys of the objective
function which is illustrated in Figure 4.2.

50



Figure 4.2: The plot shows level lines of the function R2 3 (θ1, θ2) 7→ H(θ1, θ2) = θ2
1 +10·θ2

2 ∈ R
(blue) and the first 13 steps of the gradient descent sequence for H with initial value θ(0) = (5, 2)
and step size γ = 0.009 (green). One can observe that the descent direction is perpendicular
to the level lines. On the given domain one could choose the Lipschitz constant K = 102 and
Theorem 4.4.3 guarantees convergence to the unique minimizer (0, 0). But due to the narrow
valley of the objective function, the gradient descent sequence proceeds in a zig-zagging manner
and accordingly the convergence is very slow.

Before we go on to more advanced versions let us review the gradient descent algorithm in our
neural network setting. In order to compute the gradient of

H =
1

m

m∑
i=1

hi (4.28)

we need to calculate the gradient of

hi(θ) = Lyi
(
Fθ(xi)

)
(4.29)

w.r.t. θ ∈ Rν for every i ∈ {1, 2, . . . ,m}. Intuitively for every j ∈ {0, 1, . . . , ν}, i ∈ {1, 2, . . . ,m}
the j-th coordinate of the gradient

(
∇hi

)
j
∈ R measures the (instantaneous) rate of change

of the loss at sample (xi, yi) per unit change of the parameter θj. The computation of the
gradients w.r.t. the parameters θ (i.e. the biases and weight matrices) can be done computa-
tionally efficient with the so-called backpropagation algorithm (cf. Bishop [12, Section 5.3] and
Caterini [18, Section 3.2.3 & 4.1.2]). The latter makes use of the chain rule and the directed
acyclic graph structure of the neural network to obtain the gradient of hi at a cost of O(ν)
floating point operations for ν tending to infinity, i.e. it scales like the cost of a single evaluation
of hi at given parameters. In each step of the gradient descent algorithm one needs to calculate
m gradients ∇hi, i ∈ {0, 1, . . . ,m}, and therefore the total complexity of one gradient descent
step is equal to O(mν) for m and ν tending to infinity. In practice one usually needs a lot

51



of samples (in order to obtain a small sample error, see the discussion after Proposition 2.3.7
and Theorem 2.3.8) and it would be desirable to have an algorithm with a computational cost
which is not scaling with the number of samples m. As a motivation we note that the gradient
descent algorithm often redundantly recomputes gradients for similar samples in one step. This
leads to the definition of the mini-batch stochastic gradient descent algorithm, where in each
step we take into account only m̄ ∈ N samples uniformly chosen from all m samples at random.
In doing so we obtain an unbiased estimator of the gradient of H.

Definition 4.4.4 ((Mini-Batch) Stochastic Gradient Descent Algorithm). Let m, m̄ ∈ N with
m̄ < m, let γ ∈ (0,∞), θ(0) ∈ Rν and for every i ∈ {1, 2, . . . ,m} let hi ∈ C 1(Rν ,R) and define

H =
1

m

m∑
i=0

hi ∈ C 1(Rν ,R) (4.30)

and
I =

{
(i1, i2, . . . , im̄) ∈ Nm̄ : 1 ≤ i1 < i2 < · · · < im̄ ≤ m

}
, (4.31)

let
ι(k) =

(
ι
(k)
1 , ι

(k)
2 , . . . , ι

(k)
m̄

)
: Ω→ I , k ∈ N , (4.32)

be independent uniformly distributed random vectors and let θ(k) : Ω→ Rν, k ∈ N, be a sequence
of random vectors such that for every k ∈ N it holds that

θ(k) = θ(k−1) − γ 1

m̄

m̄∑
j=1

∇h
ι
(k)
j

(
θ(k−1)

)
. (4.33)

Then we call θ(k), k ∈ N0, a mini-batch stochastic gradient descent sequence for H with initial
value θ(0), batch-size m̄ and step size γ. If m̄ = 1 we omit the prefix ”mini-batch”.

While the mini-batch stochastic gradient descent algorithm has decreased computational cost,
the variance in the gradient estimates causes the gradient sequence to fluctuate heavily, which
complicates the convergence to an exact minimizer (see Figure 4.3). Nevertheless one can also
proof convergence under suitable conditions (cf. Bertsekas [9], Jentzen [47] and Shamir [76])
and these fluctuations can in some cases also prevent the algorithm from being stuck in unsatis-
factory local minima. There are a lot of further optimization strategies, for instance introducing
momentum, adaptive learning rates, early stopping, batch normalization and gradient noise and
clipping. A good overview of possible variants and improvements of the (mini-batch) stochastic
gradient descent algorithm are given in Ruder [72] and Goodfellow [33, Chapter 8]. Ultimately
note that minimization algorithms that use second order information of the objective func-
tion (e.g. Newton’s method, cf. Griva [35, Section 11.3]) are infeasible for neural networks in
practice due to the large number of parameters.

52



Figure 4.3: The figure depicts the typical fluctuations of the (mini-batch) stochastic gradient
descent sequences near the minimizer opposed to the (standard) gradient descent sequence
(blue), which ultimately stops at the minimizer. However each step of the latter takes approxi-
mately m-times the computational effort of a step from the stochastic gradient sequence (from
Géron [28]).

53



Chapter 5

Numerical Results

For the following examples we slightly extend the framework in Section 4.4 and Section 4.3 in
order to meet latest developments in the field of Deep Learning. In view of the optimization
methods this includes the use of

(i) ADAM (adaptive moment estimation) optimizer with initial learning rate γ and batch-size
m̄ (cf. Kingma [50])

(ii) Batch Normalization with momentum λ (cf. Ioffe [45]) and

(iii) gradient clipping with threshold τ (cf. Goodfellow [33, Subsection 8.2.4])

for m̄ ∈ N and γ, λ, τ ∈ (0,∞). Note that in practice we do not choose the sample size m ∈ N
in advance since in each optimization step we only simulate the needed samples according to
the batch-size m̄. When we eventually obtain the desired accuracy and stop the algorithm at
the k-th optimization step, this would correspond to a sample size of

m = k · m̄ . (5.1)

Furthermore we choose the samples of the uniformly distributed input variable X in the larger
interval [a − ∆, b + ∆]d with ∆ ∈ (0,∞) for a better performance at the boundary. Recent
research suggests to make use of the exponential linear unit activation function ELU: R → R
which is defined by

ELU(x) =

{
x, x > 0

ex − 1, x ≤ 0
(5.2)

(cf. Clevert [19] and also Klambauer [51] for the scaled exponential linear unit activation func-
tion). For a neural network we denote by θ(0) the initial parameters and by θ(k) the parameters
of the network after the k-th optimization step. Note that for the weights of the neural networks
we use initial parameters which prevent variance scaling between the layers (cf. He [39] and
Géron [28, Chapter 11]). We will neglect the bound on the parameters of the neural networks
R ∈ (0,∞) as the representation of numbers is limited in an implementation anyway. In the
Multilevel Learning approach let us take L = 2,

Nl = 43+l (5.3)

time steps of the Euler-Maruyama scheme and batch size

m̄l = 256 · 42−l (5.4)

54



in order to simulate the data for the empirical Learning Problems for each level l ∈ {0, 1, 2}.
The corresponding realizations of Multilevel samples we denote by

(
zl
)2

l=0
(see (3.125)). In the

standard approach we choose
N = NL = 45 (5.5)

time steps, which results in the same precision for the regression functions F̂NL =
∑L

l=0 F̂
l (see

equation (3.122)), and the associated realizations of samples z (see (3.126)). Further we take a
batch-size of

m̄ = 256 · 3 (5.6)

corresponding to the same overall number of random normal calls in each descent step, namely

d

L∑
l=0

m̄lNl = d(L+ 1) · 256 · 45 = dm̄N . (5.7)

To evaluate the performance of our algorithm we selectively compute

(i) the mean squared relative and absolute error (MSRE and MSE)

(ii) the relative L1-error (by Monte-Carlo integration)

between the real solution f(T, x) = E
[
ϕ(Xx

T )
]

(or a suitable approximation) and the neural
network approximations to the empirical target functions (after the k-th optimization step){∑2

l=0F
l
θ(k)

(x), for Multilevel Learning

Fθ(k)(x), for Standard Learning
(5.8)

at uniformly distributed points in the interval [a, b]d. The implementation (see Appendix .1) is
written in the programming language Python using the open-source software library TensorFlow
(cf. Abardi [1]) and executed on a p3.2xlarge Elastic Compute Cloud (EC2) instance hosted by
Amazon Web Services (AWS).

5.1 Toy Example

Initially we will deal with our known Example 3.3.2 in the context of the proposed algorithm
from Section 4.3. Of course for one dimensional problems like this there are much more efficient
algorithms (and even explicit solutions), but we stick to this example for a complete picture,
for explanatory purposes and as an indication of the behavior in more complex settings. Let
d = 1, p ∈ N, a, σ̄, c0, . . . , cp, T ∈ R, b ∈ [a,∞), let ϕ : R → R be the polynomial given by
ϕ(x) =

∑p
j=0 cjx

j for every x ∈ R and recall that we seek to approximate the solution to the
Kolmogorov equation {

∂f
∂t

(t, x) = 1
2
σ̄2
(
x2 ∂2f

∂x2
(t, x) + x∂f

∂x
(t, x)

)
f(0, x) = ϕ(x)

(5.9)

at time T for x ∈ [a, b]. Like before we choose

T = 1, σ̄ = 0.5, a = −6, b = 6, p = 3, c0 = 0, c1 = 1.77, c2 = 0, c3 = −0.015 . (5.10)

Let

F
0 ∈ N5,1,512,512,1024,512,512,1,[a,b],R,ELU

F
1,F2 ∈ N5,1,128,128,256,128,128,1,[a,b],R,ELU

(5.11)

55



and for each neural network Fl, l ∈ {0, 1, 2}, we employ our optimization algorithm with

γ = 10−6, λ = 0.9, τ = 0.3, ∆ = 0.2 . (5.12)

In doing so we obtain a sequence of parameters

θ
(k)
l , k ∈ N , (5.13)

which suggests
2∑
l=0

F
l

θ
(k)
l

(x) ≈ f(T, x) (5.14)

for x ∈ [a, b] and large enough k ∈ N. As a comparison we follow the standard approach with

F ∈ N5,1,512,512,1024,512,512,1,[a,b],R,ELU (5.15)

and in the same setting as in equation (5.12) above we get a sequence of parameters θ(k), k ∈ N,
suggesting

Fθ(k)(x) ≈ f(T, x) (5.16)

for x ∈ [a, b] and large enough k ∈ N. Using the code in Appendix .1 the mean squared error
between the neural network approximations w.r.t. the optimization time is depicted in Figure 5.1
and selected other errors can be compared in Table 5.1. Although our Multilevel approach takes
more time for each descent step due to the increased cost of optimizing three neural networks
simultaneously, at some stage it converges significantly faster and with less variance than the
standard approach in this setting. This strengthens our conjecture of using the former approach,
which seems to act like a regularizer on the learning process (cf. Goodfellow [33, Chapter 7]
and Géron [28, Chapter 11] for commonly used regularization techniques).

Standard approach Multilevel approach

Iter. Time MSE rel. L1 Error Time MSE rel. L1 Error

0 0.0 12.874+/-2.902 0.975+/-0.066 0.0 12.508+/-1.717 0.972+/-0.105
150 9.4 0.367+/-0.156 0.149+/-0.033 17.0 0.290+/-0.075 0.132+/-0.022
300 18.6 0.092+/-0.027 0.074+/-0.011 33.3 0.036+/-0.021 0.043+/-0.016
450 27.8 0.081+/-0.048 0.068+/-0.032 49.7 0.015+/-0.003 0.030+/-0.005
600 37.0 0.077+/-0.036 0.069+/-0.025 66.1 0.014+/-0.006 0.026+/-0.003
750 46.2 0.050+/-0.018 0.055+/-0.019 82.4 0.008+/-0.004 0.019+/-0.003
900 55.4 0.042+/-0.018 0.048+/-0.014 98.8 0.006+/-0.002 0.017+/-0.004
1050 64.6 0.060+/-0.030 0.058+/-0.023
1200 73.8 0.045+/-0.023 0.049+/-0.017
1350 82.9 0.036+/-0.017 0.044+/-0.018
1500 92.1 0.041+/-0.019 0.046+/-0.013

Table 5.1: Table of selected errors for both approaches evaluated at 50 uniformly distributed
points in [−6, 6]. The first number represents the mean and the second one the standard
deviation over 5 independent trials.

56



Figure 5.1: The plot shows the mean squared error (MSE) between the solution to the Kol-
mogorov PDE f(T, x) and

∑2
l=0F

l

θ
(k)
l

(x) (blue) or Fθ(k)(x) (green) evaluated at 50 uniformly

distributed points in [−6, 6] for every fifth k in the first 100 seconds of optimization time.

5.2 Rainbow European Option

Let us investigate the behavior of our algorithm in a higher dimensional setting. There-
upon let d ∈ N, K ∈ (0,∞), let µ̄ ∈ Rd×d and σ̄ ∈ Rd, for every x ∈ [a, b]d let Sx =(
S1,x, . . . , Sd,x

)
: [0, T ]× Ω→ Rd be a solution process to the SDE

Si,xt = x+

∫ t

0

µ̄iS
i,x
s ds+

d∑
j=1

∫ t

0

σ̄ijS
i,x
s dBj

s , i = 1, 2, . . . , d (5.17)

and define the function ϕ : Rd → R by

ϕ(x) = max

{
max

i=1,2,...,d
xi −K, 0

}
(5.18)

for every x = (x1, x2, . . . , xd) ∈ Rd. We are interested in approximating the function

[a, b]d 3 x→ E
[
ϕ
(
SxT
)]
∈ R , (5.19)

which represents a financial model for pricing a Rainbow European Call (on max) option. This
contract gives its owner the right, but not the obligation, to buy the maximal of d underlying
financial assets Sx at a specified strike price K and at a given time T (cf. Glasserman [32,
Chapter 3]). We denote by δij the Kronecker delta and choose

d = 20, T =
1

12
, a = 98, b = 102, σ̄ij = 0.01 + 0.03 · δij, µ̄i = 0.06, K = 100 (5.20)

for i, j ∈ {1, 2, . . . , 20}. Note that the function ϕ is not differentiable, but we can circumvent this
problem by employing a more general version of the Feynman-Kac formula (see Remark 3.2.2).
Furthermore we could again sample directly from the explicit solution of the SDE

Si,xT = xi exp

((
µi −

1

2

d∑
j=1

σ2
ij

)
T +

d∑
j=1

σijW
j
T

)
, i = 1, 2, . . . , d (5.21)

57



(cf. Platen [66]) instead of using the Euler-Maruyama approximation, but we will only avail
ourself of this opportunity to (approximatively) evaluate the function (5.19) and compute the
errors. For the Multilevel approach we employ neural networks

F
0 ∈ N5,20,128,1024,8192,1024,128,1,[a,b]20,R,ELU

F
1,F2 ∈ N3,20,64,512,64,1,[a,b]20,R,ELU

(5.22)

and in the standard case we take

F ∈ N5,20,128,1024,8192,1024,128,1,[a,b]20,R,ELU . (5.23)

Moreover applying our optimization algorithm with

γ = 10−4, λ = 0.9, τ = 0.3, ∆ = 0.2 (5.24)

and using an exponential learning rate decay by the factor 0.1 every 4000 descent steps (see
the second code in Appendix .1), we compare the MSE (see Figure 5.2) of the Multilevel and
standard approach and list other errors in Tables 5.2 and 5.3. Furthermore we visualize the
neural network structure in Figure 5.3. Although the Multilevel Learning approach again turns
out to be advantageous in comparison to the standard approach, one must consider that for
a complete picture one would need to compare the best architectures, optimization variants
and batch-sizes for both approaches and take also in account implementation and hardware
differences. While the former problem could be tackled using an exhaustive grid-search (cf.
Géron [28, Chapter 11]) it was infeasible for this thesis. It seems that in certain settings the
usual approach is at least equally successful reminding us that the advantages of the Multilevel
approach can be proved only in an extreme case. Nevertheless the given examples demonstrate
that the Multilevel Learning approach can possibly improve and accelerate the learning pro-
cess significantly and should definitely be given a try, when tackling Learning Problems with
computationally expensive simulations. To sum up, we see that our proposed algorithm from
Section 4.3 provides a feasible way of solving problems involving high-dimensional stochastic
differential equations (and in an equivalent way high-dimensional Kolmogorov equations) and
seems not to underlie the curse of dimensionality.

Iter. Time (in s) MSE MSRE rel. L1 Error

0 0.0+/-0.0 10.044+/-0.964 1.0122+/-0.0931 0.988+/-0.046
1000 124.5+/-0.3 0.035+/-0.004 0.0036+/-0.0004 0.048+/-0.004
2000 248.7+/-0.5 0.019+/-0.004 0.0020+/-0.0004 0.034+/-0.004
3000 372.7+/-0.6 0.015+/-0.002 0.0016+/-0.0002 0.032+/-0.003
4000 496.9+/-0.8 0.012+/-0.002 0.0013+/-0.0002 0.028+/-0.002
5000 621.0+/-0.9 0.008+/-0.001 0.0008+/-0.0002 0.022+/-0.002
6000 745.1+/-0.9 0.007+/-0.001 0.0008+/-0.0001 0.022+/-0.002
7000 869.2+/-1.0 0.008+/-0.001 0.0009+/-0.0002 0.023+/-0.002
8000 993.2+/-1.2 0.007+/-0.001 0.0008+/-0.0001 0.022+/-0.002

Table 5.2: Table of selected errors for the Multilevel approach evaluated at 100 uniformly
distributed points in [98, 102]20. The first number represents the mean and the second one the
standard deviation over 5 independent trials.

58



Iter. Time (in s) MSE MSRE rel. L1 Error

0 0.0+/-0.0 9.570+/-0.369 0.9672+/-0.0361 0.980+/-0.018
1000 66.1+/-0.2 0.083+/-0.018 0.0084+/-0.0017 0.073+/-0.009
2000 132.0+/-0.2 0.052+/-0.020 0.0055+/-0.0019 0.057+/-0.009
3000 197.9+/-0.2 0.050+/-0.019 0.0054+/-0.0023 0.056+/-0.009
4000 263.8+/-0.4 0.043+/-0.015 0.0045+/-0.0015 0.052+/-0.008
5000 329.8+/-0.4 0.014+/-0.004 0.0016+/-0.0005 0.030+/-0.004
6000 395.7+/-0.6 0.013+/-0.003 0.0014+/-0.0004 0.029+/-0.003
7000 461.7+/-0.6 0.014+/-0.002 0.0016+/-0.0003 0.030+/-0.002
8000 527.6+/-0.7 0.011+/-0.002 0.0012+/-0.0002 0.027+/-0.002
9000 593.4+/-0.8 0.009+/-0.002 0.0010+/-0.0002 0.025+/-0.002
10000 659.4+/-1.0 0.010+/-0.002 0.0011+/-0.0003 0.025+/-0.003
11000 725.3+/-1.0 0.010+/-0.002 0.0010+/-0.0003 0.025+/-0.003
12000 791.2+/-1.2 0.010+/-0.002 0.0011+/-0.0002 0.025+/-0.002
13000 857.1+/-1.3 0.009+/-0.002 0.0010+/-0.0002 0.025+/-0.002
14000 923.0+/-1.4 0.010+/-0.002 0.0010+/-0.0003 0.025+/-0.003
15000 989.0+/-1.5 0.009+/-0.002 0.0010+/-0.0002 0.025+/-0.002

Table 5.3: Table of selected errors for the standard approach evaluated at 100 uniformly dis-
tributed points in [98, 102]20. The first number represents the mean and the second one the
standard deviation over 5 independent trials.

Figure 5.2: The plot shows the mean squared error between the (Monte Carlo approximated)
solution and

∑2
l=0F

l

θ
(k)
l

(x) (green) or Fθ(k)(x) (blue) evaluated at 100 uniformly distributed

points in [98, 102]20 for every fiftieth k in the first 1000 seconds of optimization time.

59



Figure 5.3: The figure visualizes the neural network structure for the Multilevel Learning
approach and depicts the graph of the neural network in the finest level in more detail (created
with TensorBoard, TensorFlow’s visualization toolkit).

60



Chapter 6

Conclusion

This thesis successfully presented and merged three fields of (applied) mathematics, namely
mathematical learning theory, stochastic analysis and foundations on neural networks. The
resulting algorithm in Section 4.3 depicts a new and mathematically supported method for
solving high-dimensional problems involving Kolmogorov equations and stochastic differential
equations on a given domain. For the traditional numerical methods this usually represents an
infeasible task. While we saw some promising examples of our proposed algorithm in Chapter 5,
the framework in this thesis allows for extensive further applications and encourages more de-
tailed mathematical analysis. First of all the Multilevel Learning approach in the first chapter
could be applied and analyzed in many other Learning Problems, where large computational
effort for computing simulations of samples is slowing down the empirical learning process. But
even in our setting a continuing investigation on the behavior and performance of the two ap-
proaches would be interesting. This could be done numerically by an exhaustive grid-search over
sensible parameters (with enough computational power), but we desire also more theoretical
understanding on the convergence behavior. However there are ongoing mathematical attempts
on understanding the sample and model errors of certain learning problems in the context of
neural networks, which would lead to fruitful insights on suitable network architectures, sample
sizes and approximation qualities. Beyond that we should mention additional improvements
on the (Multilevel) Monte Carlo simulations by Quasi-Monte Carlo methods and importance
sampling (cf. Caflisch [16], Glasserman [32, Section 4.6] and Giles [31]) and possible extensions
to the case of second-order fully nonlinear partial differential equation (cf. Beck [6]). In sum-
mary the coupling of stochastic methods and generalization capabilities of neural networks is
a far-reaching possibility to tackle the curse of dimensionality for solving partial differential
equations and therefore enjoys much attention in recent research (cf. Sirignano [78], Khoo [49],
E [25], Raissi [70]).

61



Appendix

.1 Source Codes

Python code for the Toy example from Section 5.1:

1 import t en so r f l ow as t f
2 import numpy as np
3 from t ime i t import d e f au l t t ime r as t imer
4 import pandas as pd
5

6 #gene ra l parameters
7 T=1.0 #time , where the s o l u t i o n i s eva luated
8 sigma=0.5
9 mu=0.5∗ sigma ∗∗2

10 p phi =[ −0 .015 ,0 ,1 .77 ,0 ] #c o e f f i c i e n t s o f polynomial phi
11 p s o l =[c∗np . exp ( 0 . 5∗ ( sigma∗power ) ∗∗2∗T) f o r ( c , power ) in z ip ( p phi , range ( l en (

p phi )−1,−1,−1) ) ] #c o e f f i c i e n t s o f e x p l i c i t s o l u t i o n
12 a , b=−6., 6 . #approximate the s o l u t i o n o f the PDE in [ a , b ] ˆ d
13 n h id l aye r l ow=5 #number o f hidden l a y e r s f o r the neura l net in the lowest l e v e l
14 n neurons low =[512 ,512 ,1024 ,512 ,512 ] #[12 ,1024 ,1024 ,1024 ,128 ] #number o f neurons

f o r the hidden l a y e r s in the lowest l e v e l
15 n h id l ay e r=5 #number o f hidden l a y e r s f o r the neura l net s in other l e v e l s
16 n neurons =[128 ,128 ,256 ,128 ,128 ] #number o f neurons f o r the hidden l a y e r s in the

other l e v e l s
17 l r r a t e=1e−6 #l e a rn i ng ra t e o f the ADAM opt imize r
18 v a l i d s t e p s=5 #st ep s f o r v a l i d a t i o n o f the metr i c s
19 w i n i t i a l i z e r=t f . v a r i a n c e s c a l i n g i n i t i a l i z e r ( ) #i n i t i a l i z e r o f the weights
20 a c t i v a t i o n=t f . nn . e lu #ac t i v a t i o n func t i on
21 de l t a =0.2 #l ea rn in s l i g h t l y l a r g e r r eg i on
22 momentum=0.9 #momentum of batch norma l i za t i on
23 g r a d i e n t c l i p =0.3 #grad i en t c l i p p i n g
24

25 #func t i on f o r bu i ld ing , f i t t i n g and evau la t ing the model
26 de f f i t ( l min , l max ,K, time , v a l i d po i n t s , r e a l s o l , seed ) :
27 #Euler−scheme f o r f i n e and coar s e r e a l i z a t i o n s
28 de f phi (x , l v l ) :
29 with t f . v a r i a b l e s c op e ( ’ Euler−Scheme ’ ) :
30 with t f . v a r i a b l e s c op e ( ’ F in e Rea l i z a t i on ’ ) :
31 N f ine=t f . constant (4∗∗ l v l , name=’ S t e p s f i n e ’ , dtype=t f . i n t32 )
32 h f i n e=t f . d i v i d e (T, t f . c a s t ( N f ine , t f . f l o a t 3 2 ) ,name=’ Step−

S i z e f i n e ’ )
33 dw f ine=t f . random normal ( shape=[N f ine , t f . shape (x ) [ 0 ] , 1 ] , mean

=0.0 , stddev=t f . s q r t ( h f i n e ) ,name=’DW’ )
34 count=t f . constant (0 , name=’Count ’ )
35 de f s cheme f ine ( i , r e a l i s a t i o n ) :
36 r e a l i s a t i o n+=(mu∗ h f i n e+dw f ine [ i , : , : ] ∗ sigma ) ∗ r e a l i s a t i o n
37 re turn [ i +1, r e a l i s a t i o n ]
38 , y f i n e=t f . wh i l e l o op ( lambda i , r e a l i s a t i o n : i<N fine ,

62



scheme f ine , l o op va r s =[count , x ] , name=’ Euler−Loop f ine ’ )
39 ph i f i n e=t f . reduce sum ( p phi [3 ]+ p phi [ 2 ] ∗ y f i n e+p phi [ 1 ] ∗ y f i n e ∗∗2+

p phi [ 0 ] ∗ y f i n e ∗∗3 , ax i s =1,keepdims=True , name=’ Ph i f i n e ’ )
40 i f l v l==l min :
41 re turn p h i f i n e
42 e l s e :
43 with t f . v a r i a b l e s c op e ( ’ Coa r s e Rea l i z a t i on ’ ) :
44 N coarse=t f . constant (4∗∗ ( l v l −1) ,name=’ S t ep s coa r s e ’ , dtype=t f

. in t32 )
45 h coa r s e=t f . d i v i d e (T, t f . c a s t ( N coarse , t f . f l o a t 3 2 ) ,name=’ Step

−S i z e c o a r s e ’ )
46 dw coarse=dw f ine [ 0 : : 4 , : , : ] + dw f ine [ 1 : : 4 , : , : ] + dw f ine

[ 2 : : 4 , : , : ] + dw f ine [ 3 : : 4 , : , : ]
47 de f scheme coarse ( i , r e a l i s a t i o n ) :
48 r e a l i s a t i o n+=(mu∗ h coa r s e+dw coarse [ i , : , : ] ∗ sigma ) ∗

r e a l i s a t i o n
49 re turn [ i +1, r e a l i s a t i o n ]
50 , y coa r s e=t f . wh i l e l o op ( lambda i , r e a l i s a t i o n : i<N coarse ,

scheme coarse , l o op va r s =[count , x ] , name=’ Euler−Loop coarse
’ )

51 ph i c oa r s e=t f . reduce sum ( p phi [3 ]+ p phi [ 2 ] ∗ y coa r s e+p phi [ 1 ] ∗
y coa r s e ∗∗2+p phi [ 0 ] ∗ y coa r s e ∗∗3 , ax i s =1,keepdims=True , name=’
Ph i coa r s e ’ )

52 p h i d i f f=t f . subt rac t ( ph i f i n e , ph i coa r s e , name=’ Ph i d i f f ’ )
53 re turn p h i d i f f
54 #func t i on f o r bu i l d i ng the neura l networks
55 de f nn( va l i d input , num hidlayer , num neurons , l e v e l , t r a i n i n g ) :
56 name su f f i x=s t r ( l e v e l )
57 with t f . v a r i a b l e s c op e ( ’ Network ’+name su f f i x ) :
58 with t f . v a r i a b l e s c op e ( ’ Input ’ ) :
59 batch s=K∗4∗∗( l max−l e v e l )
60 i n pu t l a y e r=t f . cond ( t ra in ing , lambda : t f . random uniform ( [ batch s

, 1 ] , minval=a−de l ta , maxval=b+del ta , name=’Xi−Input ’ ) , lambda :
va l i d input , name=’Network−Input ’ )

61 prev output=input l aye r −(a+b) /2
62 f o r n in range ( num hidlayer ) :
63 with t f . v a r i a b l e s c op e ( ’ Hidden Layer%d ’ %(n+1) ) :
64 prev output=t f . l a y e r s . dense ( prev output , num neurons [ n ] ,

u s e b i a s=False , k e r n e l i n i t i a l i z e r=w i n i t i a l i z e r )
65 prev output=t f . l a y e r s . ba tch norma l i za t i on ( prev output ,

momentum=momentum, t r a i n i n g=t r a i n i n g )
66 prev output=ac t i v a t i o n ( prev output )
67 with t f . v a r i a b l e s c op e ( ’ Output Layer ’ ) :
68 output=t f . l a y e r s . dense ( prev output , 1 , k e r n e l i n i t i a l i z e r=

w i n i t i a l i z e r , name=’ Y pred ’ )
69 with t f . v a r i a b l e s c op e ( ’ Target ’ ) :
70 z=phi ( i nput l aye r , l e v e l )
71 with t f . v a r i a b l e s c op e ( ’ Losses ’ ) :
72 l o s s=t f . reduce mean ( ( z−output ) ∗∗2 ,name=’ Loss ’ )
73 with t f . name scope ( ’ Train ’+name su f f i x ) :
74 g l o b a l s t e p=t f . Var iab le (0 , t r a i n ab l e=False , name=’ Global Step ’ )
75 l e a r n r a t e=t f . t r a i n . exponent i a l decay ( l r r a t e , g l oba l s t ep , 5 000 , 0 . 5 ,

s t a i r c a s e=True , name=’ Learn Rate ’ )
76 opt imize r=t f . t r a i n . AdamOptimizer ( l e a rn r a t e , name=’Adam ’ )
77 grads and var s=opt imize r . compute gradients ( l o s s )
78 grads and var s =[( t f . c l i p by va l u e ( grad , −g r ad i e n t c l i p ,

g r a d i e n t c l i p ) , var ) f o r grad , var in grads and var s i f grad i s
not None ]

63



79 update ops=t f . g e t c o l l e c t i o n ( t f . GraphKeys .UPDATE OPS, scope=’
Network ’+name su f f i x )

80 with t f . c on t r o l d ependenc i e s ( update ops ) :
81 opt imize=opt imize r . app ly g rad i en t s ( grads and vars , g l o b a l s t e p=

g l oba l s t ep , name=’Minimizer ’ )
82 re turn output
83 #func t i on f o r bu i l d i ng the complete model
84 de f bui ld model ( v a l i d po i n t s , r e a l s o l ) :
85 va l i d i npu t=t f . constant ( va l i d po i n t s , dtype=t f . f l o a t 3 2 )
86 i s t r a i n i n g=t f . p l a c eho ld e r ( t f . bool , name=’ I s Tra i n i ng ’ )
87 nn outputs=[nn( va l i d input , n h id laye r , n neurons , l , i s t r a i n i n g ) f o r l in

range ( l min+1, l max+1) ]
88 nn outputs . append (nn( va l i d input , n h id laye r l ow , n neurons low , l min ,

i s t r a i n i n g ) )
89 with t f . v a r i a b l e s c op e ( ’ Accuracy ’ ) :
90 f r e a l=t f . constant ( r e a l s o l , dtype=t f . f l o a t32 , name=’ F Real ’ )
91 f approx=t f . add n ( nn outputs , name=’ F Approximation ’ )
92 ab s e r r o r=t f . abs ( f r e a l −f approx , name=’ Abs Error ’ )
93 a b s f r e a l=t f . abs ( f r e a l , name=’ Abs F Real ’ )
94 mse=t f . reduce mean ( ab s e r r o r ∗∗2 ,name=’MSE’ )
95 r e l L 1 e r r o r=t f . d i v id e ( t f . reduce mean ( ab s e r r o r ) , t f . reduce mean (

a b s f r e a l ) ,name=’ Rel L1 Error ’ )
96 #func t i on f o r t r a i n i n g the neura l networks
97 de f trainNN ( ) :
98 t r a i n a l l =[ ’ Train ’+s t r ( l )+’ /Minimizer : 0 ’ f o r l in range ( l min , l max+1) ]
99 i t e r a t i o n=0

100 percentage=0
101 me t r i c s l i s t=l i s t ( )
102 f e t ch =[ ’ Accuracy/ ’+metr ic+’ : 0 ’ f o r metr ic in [ ’MSE’ , ’ Re l L1 Error ’ ] ]
103 s t a r t=timer ( )
104 whi le t imer ( )−s t a r t<time :
105 i f ( ( i t e r a t i o n )%va l i d s t e p s )==0:
106 runtime=timer ( )−s t a r t
107 i f ( runtime/ time )∗100>percentage :
108 pr in t ( ’−−−−−−Progres s : ’+s t r ( percentage )+’%’ , end=’ \ r ’ , f l u s h=

True )
109 percentage+=10
110 met r i c s v a l i d =[ i t e r a t i o n , runtime ]
111 met r i c s v a l i d . extend ( s e s s . run ( fe tch , f e e d d i c t={ ’ I s T ra i n i ng : 0 ’ :

Fa l se }) )
112 me t r i c s l i s t . append ( me t r i c s v a l i d )
113 s e s s . run ( t r a i n a l l , f e e d d i c t={ ’ I s T ra i n i ng : 0 ’ : True })
114 i t e r a t i o n+=1
115 re turn pd . DataFrame ( m e t r i c s l i s t , columns=[ ’ I t e r a t i o n ’ , ’Time ’ , ’MSE’ , ’ r e l .

L1 Error ’ ] )
116

117 t f . r e s e t d e f a u l t g r a ph ( )
118 s e s s=t f . I n t e r a c t i v e S e s s i o n ( )
119 t f . set random seed ( seed )
120 bui ld model ( v a l i d po i n t s , r e a l s o l )
121 pr in t ( ’−−−−Model bu i ld ! ’ )
122 t f . g l o b a l v a r i a b l e s i n i t i a l i z e r ( ) . run ( )
123 pr in t ( ’−−−−Train Network ( s ) ! ’ )
124 metr i c s=trainNN ( )
125 s e s s . c l o s e ( )
126 re turn metr i c s
127

128 #Monte−Carlo approximation o f the s o l u t i o n

64



129 de f r e a l s o l u t i o n ( seed ) :
130 np . random . seed ( seed )
131 po in t s=np . random . uniform ( low=a , high=b , s i z e =[num points , 1 ] )
132 s o l u t i o n=np . po lyva l ( p so l , po in t s )
133 re turn points , s o l u t i o n
134

135 #eva luate and compare the metr i c s
136 runtime=100 #runtime o f the opt imiza t i on a lgor i thm in secondes
137 num points=50 #number o f eva lua t i on po in t s f o r the metr i c s
138 me t r i c s mu l t i l e v e l=l i s t ( )
139 metr i c s s tandard=l i s t ( )
140 f o r seed in [ 2 ] : #range (5 ) :
141 pr in t ( ’ \nSeed Nr . ’+s t r ( seed ) )
142 points , s o l u t i o n=r e a l s o l u t i o n ( seed )
143 pr in t ( ’−−Mul t i l e v e l Learning : ’ )
144 l v l min , lv l max=3, 5 #4ˆ( l v l m in ) and 4ˆ( lv l max ) are the number o f time

s t ep s in the c o a r s e s t and f i n e s t l e v e l s r e s p e c t i v e l y
145 batch mult=256 #mu l t i p l i c a t o r f o r the batch−s i z e
146 metr ic=f i t ( lv l min , lvl max , batch mult , runtime , po ints , s o lu t i on , seed )
147 path=s t r ( seed )+’ mu l t i l e v e l ’
148 metr ic . t o p i c k l e ( path )
149 pr in t ( ’−−−−−−Saved to ’+path+’ ( p i ck l ed pandas DataFrame ) ’ )
150 me t r i c s mu l t i l e v e l . append ( metr ic )
151 pr in t ( ’−−Standard Learning : ’ )
152 l v l min , lv l max=5, 5
153 batch mult∗=( lvl max−l v l m in+1) #same number o f random normal c a l l s
154 metr ic=f i t ( lv l min , lvl max , batch mult , runtime , po ints , s o lu t i on , seed )
155 path=s t r ( seed )+’ standard ’
156 metr ic . t o p i c k l e ( path )
157 pr in t ( ’−−−−−−Saved to ’+path+’ ( p i ck l ed pandas DataFrame ) ’ )
158 metr i c s s tandard . append ( metr ic )
159 pr in t ( ’ \n\nFINISHED ! ’ ) #open metr i c s s tandard and me t r i c s mu l t i l e v e l − or use pd

. r e ad p i c k l e ( path )

Python code for the Rainbow European Option example from Section 5.2:

1 import t en so r f l ow as t f
2 import numpy as np
3 from t ime i t import d e f au l t t ime r as t imer
4 import pandas as pd
5

6 #gene ra l parameters
7 d=20 #dimension (number o f a s s e t s )
8 T=1./12. #exp i r e time ( one month)
9 sigma=0.01∗np . ones ( [ d , d ] ) +0.03∗np . eye (d)

10 mu=0.06∗np . ones ( [ d , 1 ] )
11 k=100 #s t r i k e p r i c e
12 a , b= 98 , 102 #approx . the s o l u t i o n in [ a , b ] ˆ d ( i n i t i a l va lue o f the a s s e t s )
13 n h id l aye r l ow=5 #number o f hidden l a y e r s f o r the neura l net in the lowest l e v e l
14 n neurons low =[128 ,1024 ,8192 ,1024 ,128 ] #number o f neurons f o r the hidden l a y e r s

in the lowest l e v e l
15 n h id l ay e r=3 #number o f hidden l a y e r s f o r the neura l net s in the other l e v e l s
16 n neurons =[64 ,512 ,64 ] #number o f neurons f o r the hidden l a y e r s in the other

l e v e l s
17 s t a r t l r=1e−4 #i n i t i a l l e a rn i ng ra t e o f the ADAM opt imize r
18 decay s t eps=4000 #l e a rn i ng ra t e decay with f a c t o r 0 .1
19 v a l i d s t e p s=50 #st ep s f o r v a l i d a t i o n o f the met r i c s
20 w i n i t i a l i z e r=t f . v a r i a n c e s c a l i n g i n i t i a l i z e r ( ) #i n i t i a l i z e r o f the weights
21 a c t i v a t i o n=t f . nn . e lu #ac t i v a t i o n func t i on

65



22 de l t a =0.2 #l ea rn in s l i g h t l y l a r g e r r eg i on
23 momentum=0.9 #momentum of batch norma l i za t i on
24 g r a d i e n t c l i p =0.3 #grad i en t c l i p p i n g
25

26 #func t i on f o r bu i ld ing , f i t t i n g and evau la t ing the model
27 de f f i t ( l min , l max ,K, time , v a l i d po i n t s , r e a l s o l , seed ) :
28 #Euler−scheme f o r f i n e and coar s e r e a l i z a t i o n s
29 de f phi (x , l v l ) :
30 with t f . v a r i a b l e s c op e ( ’ Euler−Scheme ’ ) :
31 with t f . v a r i a b l e s c op e ( ’ F in e Rea l i z a t i on ’ ) :
32 N f ine=t f . constant (4∗∗ l v l , name=’ S t e p s f i n e ’ , dtype=t f . i n t32 )
33 h f i n e=t f . d i v i d e (T, t f . c a s t ( N f ine , t f . f l o a t 3 2 ) ,name=’ Step−

S i z e f i n e ’ )
34 dw f ine=t f . random normal ( shape=[N f ine , t f . shape (x ) [ 0 ] , d ] , mean

=0.0 , stddev=t f . s q r t ( h f i n e ) ,name=’DW’ )
35 count=t f . constant (0 , name=’Count ’ )
36 de f s cheme f ine ( i , r e a l i s a t i o n ) :
37 r e a l i s a t i o n+=(mu T∗ h f i n e+t f . matmul ( dw f ine [ i , : , : ] , sigma T ) )

∗ r e a l i s a t i o n
38 re turn [ i +1, r e a l i s a t i o n ]
39 , y f i n e=t f . wh i l e l o op ( lambda i , r e a l i s a t i o n : i<N fine ,

scheme f ine , l o op va r s =[count , x ] , name=’ Euler−Loop f ine ’ )
40 ph i f i n e=t f . nn . r e l u ( t f . reduce max ( y f i n e , ax i s =1, keepdims=True )−k ,

name=’ Ph i f i n e ’ )
41 i f l v l==l min :
42 re turn p h i f i n e
43 e l s e :
44 with t f . v a r i a b l e s c op e ( ’ Coa r s e Rea l i z a t i on ’ ) :
45 N coarse=t f . constant (4∗∗ ( l v l −1) ,name=’ S t ep s coa r s e ’ , dtype=t f

. in t32 )
46 h coa r s e=t f . d i v i d e (T, t f . c a s t ( N coarse , t f . f l o a t 3 2 ) ,name=’ Step

−S i z e c o a r s e ’ )
47 dw coarse=dw f ine [ 0 : : 4 , : , : ] + dw f ine [ 1 : : 4 , : , : ] + dw f ine

[ 2 : : 4 , : , : ] + dw f ine [ 3 : : 4 , : , : ]
48 de f scheme coarse ( i , r e a l i s a t i o n ) :
49 r e a l i s a t i o n+=(mu T∗ h coa r s e+t f . matmul ( dw coarse [ i , : , : ] ,

sigma T ) ) ∗ r e a l i s a t i o n
50 re turn [ i +1, r e a l i s a t i o n ]
51 , y coa r s e=t f . wh i l e l o op ( lambda i , r e a l i s a t i o n : i<N coarse ,

scheme coarse , l o op va r s =[count , x ] , name=’ Euler−
Loop coarse ’ )

52 ph i c oa r s e=t f . nn . r e l u ( t f . reduce max ( y coarse , ax i s =1, keepdims=
True )−k , name=’ Ph i coa r s e ’ )

53 p h i d i f f = t f . subt rac t ( ph i f i n e , ph i coa r s e , name=’ Ph i d i f f ’ )
54 re turn p h i d i f f
55 #func t i on f o r bu i l d i ng the neura l networks
56 de f nn( va l i d input , num hidlayer , num neurons , l e v e l , t r a i n i n g ) :
57 name su f f i x=s t r ( l e v e l )
58 with t f . v a r i a b l e s c op e ( ’ Network ’+name su f f i x ) :
59 with t f . v a r i a b l e s c op e ( ’ Input ’ ) :
60 batch s=K∗4∗∗( l max−l e v e l )
61 i n pu t l a y e r=t f . cond ( t ra in ing , lambda : t f . random uniform ( [ batch s ,

d ] , minval=a−de l ta , maxval=b+del ta , name=’Xi−Input ’ ) , lambda :
va l i d input , name=’Network−Input ’ )

62 with t f . v a r i a b l e s c op e ( ’ Normal izat ion ’ ) :
63 prev output=input l aye r −(a+b) /2
64 f o r n in range ( num hidlayer ) :
65 with t f . v a r i a b l e s c op e ( ’ Hidden Layer%d ’ %(n+1) ) :

66



66 prev output=t f . l a y e r s . dense ( prev output , num neurons [ n ] ,
u s e b i a s=False , k e r n e l i n i t i a l i z e r=w i n i t i a l i z e r )

67 prev output=t f . l a y e r s . ba tch norma l i za t i on ( prev output ,
momentum=momentum, t r a i n i n g=t r a i n i n g )

68 prev output=ac t i v a t i o n ( prev output )
69 with t f . v a r i a b l e s c op e ( ’ Output Layer ’ ) :
70 output=t f . l a y e r s . dense ( prev output , 1 , k e r n e l i n i t i a l i z e r=

w i n i t i a l i z e r , name=’ Y pred ’ )
71 with t f . v a r i a b l e s c op e ( ’ Target ’ ) :
72 z=phi ( i nput l aye r , l e v e l )
73 with t f . v a r i a b l e s c op e ( ’ Losses ’ ) :
74 l o s s=t f . reduce mean ( ( z−output ) ∗∗2 ,name=’ Loss ’ )
75 with t f . name scope ( ’ Train ’+name su f f i x ) :
76 g l o b a l s t e p=t f . Var iab le (0 , t r a i n ab l e=False , name=’ Global Step ’ )
77 l e a r n r a t e=t f . t r a i n . exponent i a l decay ( s t a r t l r , g l oba l s t ep ,

decay steps , 0 . 1 , s t a i r c a s e=True , name=’ Learn Rate ’ )
78 opt imize r=t f . t r a i n . AdamOptimizer ( l e a rn r a t e , name=’Adam ’ )
79 grads and var s=opt imize r . compute gradients ( l o s s )
80 grads and var s =[( t f . c l i p by va l u e ( grad , −g r ad i e n t c l i p ,

g r a d i e n t c l i p ) , var ) f o r grad , var in grads and var s i f grad i s
not None ]

81 update ops=t f . g e t c o l l e c t i o n ( t f . GraphKeys .UPDATE OPS, scope=’
Network ’+name su f f i x )

82 with t f . c on t r o l d ependenc i e s ( update ops ) :
83 opt imize=opt imize r . app ly g rad i en t s ( grads and vars , g l o b a l s t e p=

g l oba l s t ep , name=’Minimizer ’ )
84 re turn output
85 #func t i on f o r bu i l d i ng the complete model
86 de f bui ld model ( ) :
87 va l i d i npu t=t f . constant ( va l i d po i n t s , dtype=t f . f l o a t 3 2 )
88 i s t r a i n i n g=t f . p l a c eho ld e r ( t f . bool , name=’ I s Tra i n i ng ’ )
89 nn outputs=[nn( va l i d input , n h id laye r , n neurons , l , i s t r a i n i n g ) f o r l in

range ( l min+1, l max+1) ]
90 nn outputs . append (nn( va l i d input , n h id laye r l ow , n neurons low , l min ,

i s t r a i n i n g ) )
91 with t f . v a r i a b l e s c op e ( ’ Accuracy ’ ) :
92 f r e a l=t f . constant ( r e a l s o l , dtype=t f . f l o a t32 , name=’ F Real ’ )
93 f approx=t f . add n ( nn outputs , name=’ F Approximation ’ )
94 ab s e r r o r=t f . abs ( f r e a l −f approx , name=’ Abs Error ’ )
95 a b s f r e a l=t f . abs ( f r e a l , name=’ Abs F Real ’ )
96 r e l a b s e r r o r=t f . d i v id e ( abs e r ro r , a b s f r e a l , name=’ Rel Abs Error ’ )
97 max r e l e r r o r=t f . reduce max ( r e l a b s e r r o r , name=’Max Rel Error ’ )
98 mse=t f . reduce mean ( ab s e r r o r ∗∗2 ,name=’MSE’ )
99 msre=t f . reduce mean ( r e l a b s e r r o r ∗∗2 ,name=’MSRE’ )

100 r e l L 1 e r r o r=t f . d i v id e ( t f . reduce mean ( ab s e r r o r ) , t f . reduce mean (
a b s f r e a l ) ,name=’ Rel L1 Error ’ )

101 #func t i on f o r t r a i n i n g the neura l networks
102 de f trainNN ( ) :
103 t r a i n a l l =[ ’ Train ’+s t r ( l )+’ /Minimizer : 0 ’ f o r l in range ( l min , l max+1) ]
104 i t e r a t i o n=0
105 percentage=0
106 me t r i c s l i s t=l i s t ( )
107 f e t ch =[ ’ Accuracy/ ’+metr ic+’ : 0 ’ f o r metr ic in [ ’ Max Rel Error ’ , ’MSE’ , ’

MSRE’ , ’ Re l L1 Error ’ ] ]
108 s t a r t=timer ( )
109 whi le t imer ( )−s t a r t<time :
110 i f ( ( i t e r a t i o n )%va l i d s t e p s )==0:
111 runtime=timer ( )−s t a r t

67



112 i f ( runtime/ time )∗100>percentage :
113 pr in t ( ’−−−−−−Progres s : ’+s t r ( percentage )+’%’ , end=’ \ r ’ , f l u s h=

True )
114 percentage+=10
115 met r i c s v a l i d =[ i t e r a t i o n , runtime ]
116 met r i c s v a l i d . extend ( s e s s . run ( fe tch , f e e d d i c t={ ’ I s T ra i n i ng : 0 ’ :

Fa l se }) )
117 me t r i c s l i s t . append ( me t r i c s v a l i d )
118 s e s s . run ( t r a i n a l l , f e e d d i c t={ ’ I s T ra i n i ng : 0 ’ : True })
119 i t e r a t i o n+=1
120 re turn pd . DataFrame ( m e t r i c s l i s t , columns=[ ’ I t e r a t i o n ’ , ’Time ’ , ’Max . r e l .

Error ’ , ’MSE’ , ’MSRE’ , ’ r e l . L1 Error ’ ] )
121

122 t f . r e s e t d e f a u l t g r a ph ( )
123 s e s s=t f . I n t e r a c t i v e S e s s i o n ( )
124 t f . set random seed ( seed )
125 sigma T=t f . constant (np . t ranspose ( sigma ) , dtype=t f . f l o a t 3 2 )
126 mu T=t f . constant (np . t ranspose (mu) , dtype=t f . f l o a t 3 2 )
127 bui ld model ( )
128 pr in t ( ’−−−−Model bu i ld ! ’ )
129 t f . g l o b a l v a r i a b l e s i n i t i a l i z e r ( ) . run ( )
130 pr in t ( ’−−−−Train Network ( s ) ! ’ )
131 metr i c s=trainNN ( )
132 s e s s . c l o s e ( )
133 re turn metr i c s
134

135 #Monte−Carlo approximation o f the s o l u t i o n
136 de f MC approx ( seed ) :
137 t f . r e s e t d e f a u l t g r a ph ( )
138 s e s s=t f . I n t e r a c t i v e S e s s i o n ( )
139 t f . set random seed ( seed )
140 sigma T=t f . constant (np . t ranspose ( sigma ) , dtype=t f . f l o a t 3 2 )
141 mu T=t f . constant (np . t ranspose (mu) , dtype=t f . f l o a t 3 2 )
142 po in t s=np . random . uniform ( low=a , high=b , s i z e =[num points , d ] )
143 MC sol=np . z e ro s ( [ num points , 1 ] )
144 f o r i in range ( num points ) :
145 i f i%10==0:
146 pr in t ( ’−−Monte Carlo S imulat ions : ’+s t r ( i )+’ / ’+s t r ( num points ) ,

end=’ \ r ’ , f l u s h=True )
147 W=t f . random normal ( shape =[10000000 ,d ] , mean=0.0 , stddev=t f . s q r t (T) ,

name=’W’ )
148 MC single=t f . reduce mean ( t f . nn . r e l u ( t f . reduce max ( po in t s [ i , : ] ∗ t f . exp

( (mu T−0.5∗ t f . reduce sum ( sigma T ∗∗2 , ax i s =0,keepdims=True ) ) ∗T+t f .
matmul (W, sigma T ) ) , ax i s =1,keepdims=True )−k ) )

149 MC sol [ i ,0 ]= s e s s . run (MC single )
150 s e s s . c l o s e ( )
151 pr in t ( ’−−Monte Carlo S imulat ions completed ! ’ )
152 re turn points , MC sol
153

154 #eva luate and compare the metr i c s
155 runtime=1000 #runtime o f the opt imiza t i on a lgor i thm in seconds
156 num points=100 #number o f eva lua t i on po in t s f o r the metr i c s
157 me t r i c s mu l t i l e v e l=l i s t ( )
158 metr i c s s tandard=l i s t ( )
159 f o r seed in range (5 ) :
160 pr in t ( ’ \nSeed Nr . ’+s t r ( seed ) )
161 points , s o l u t i o n=MC approx ( seed )
162 pr in t ( ’−−Mul t i l e v e l Learning : ’ )

68



163 l v l min , lv l max=3, 5 #4ˆ( l v l m in ) and 4ˆ( lv l max ) are the number o f time
s t ep s in the c o a r s e s t and f i n e s t l e v e l s r e s p e c t i v e l y

164 batch mult=256 #mu l t i p l i c a t o r f o r the batch−s i z e
165 metr ic=f i t ( lv l min , lvl max , batch mult , runtime , po ints , s o lu t i on , seed )
166 path=s t r ( seed )+’ mu l t i l e v e l ’
167 metr ic . t o p i c k l e ( path )
168 pr in t ( ’−−−−−−Saved to ’+path+’ ( p i ck l ed pandas DataFrame ) ’ )
169 me t r i c s mu l t i l e v e l . append ( metr ic )
170 pr in t ( ’−−Standard Learning : ’ )
171 l v l min , lv l max=5, 5
172 batch mult∗=( lvl max−l v l m in+1) #same number o f random normal c a l l s
173 metr ic=f i t ( lv l min , lvl max , batch mult , runtime , po ints , s o lu t i on , seed )
174 path=s t r ( seed )+’ standard ’
175 metr ic . t o p i c k l e ( path )
176 pr in t ( ’−−−−−−Saved to ’+path+’ ( p i ck l ed pandas DataFrame ) ’ )
177 metr i c s s tandard . append ( metr ic )
178 pr in t ( ’ \n\nFINISHED ! ’ ) #open metr i c s s tandard and me t r i c s mu l t i l e v e l − or use pd

. r e ad p i c k l e ( path )

69



Bibliography

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Irving, G., Isard, M., et al. Tensorflow: a system for large-scale
machine learning. In Proceedings of the 12th USENIX conference on Operating Systems
Design and Implementation (2016), pp. 265–283.

[2] Aliprantis, C., and Border, K. Infinite Dimensional Analysis: A Hitchhiker’s Guide.
Springer, 2007.

[3] Arnold, L. Stochastic differential equations. A Wiley-Interscience publication. Wiley,
1974.

[4] Ash, R., and Doléans-Dade, C. Probability and Measure Theory. Harcourt/Academic
Press, 2000.

[5] Athreya, K., and Lahiri, S. Measure Theory and Probability Theory. Springer Texts
in Statistics. Springer, 2006.

[6] Beck, C., E, W., and Jentzen, A. Machine learning approximation algorithms for
high-dimensional fully nonlinear partial differential equations and second-order backward
stochastic differential equations. arXiv:1709.05963 (2017), 56 pages.

[7] Bellman, R. Dynamic Programming. Princeton University Press, 2010.

[8] Bertsekas, D. Nonlinear Programming. Athena scientific optimization and computation
series. Athena Scientific, 2016.

[9] Bertsekas, D. P., and Tsitsiklis, J. N. Gradient convergence in gradient methods
with errors. SIAM Journal on Optimization 10, 3 (2000), 627–642.

[10] Billingsley, P. Probability and Measure. Wiley Series in Probability and Statistics.
Wiley, 2012.

[11] Bishop, C. M. Neural networks for pattern recognition. Oxford university press, 1995.

[12] Bishop, C. M. Pattern recognition and machine learning. Information Science and
Statistics. Springer, New York, 2006.

[13] Bobrowski, A. Functional Analysis for Probability and Stochastic Processes: An Intro-
duction. Cambridge University Press, 2005.

[14] Bölcskei, H., Grohs, P., Kutyniok, G., and Petersen, P. Optimal approximation
with sparsely connected deep neural networks. arXiv:1705.01714 (2017), 36 pages.

70



[15] Boucheron, S., Lugosi, G., and Massart, P. Concentration Inequalities: A
Nonasymptotic Theory of Independence. OUP Oxford, 2013.

[16] Caflisch, R. E. Monte carlo and quasi-monte carlo methods. Acta numerica 7 (1998),
1–49.

[17] Cannarsa, P., and D’Aprile, T. Introduction to Measure Theory and Functional
Analysis. UNITEXT. Springer International Publishing, 2015.

[18] Caterini, A., and Chang, D. Deep Neural Networks in a Mathematical Framework.
SpringerBriefs in Computer Science. Springer International Publishing, 2018.

[19] Clevert, D., Unterthiner, T., and Hochreiter, S. Fast and accurate deep network
learning by exponential linear units (elus). arXiv:1511.07289 (2015), 14 pages.

[20] Cliffe, K. A., Giles, M. B., Scheichl, R., and Teckentrup, A. L. Multilevel
monte carlo methods and applications to elliptic pdes with random coefficients. Computing
and Visualization in Science 14, 1 (2011), 3–15.

[21] Cucker, F., and Smale, S. On the mathematical foundations of learning. Bulletin of
the American mathematical society 39, 1 (2002), 1–49.

[22] Cybenko, G. Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals and Systems 2, 4 (1989), 303–314.

[23] Da Prato, G., and Zabczyk, J. Stochastic Equations in Infinite Dimensions. Ency-
clopedia of Mathematics and its Applications. Cambridge University Press, 2014.

[24] Durrett, R. Brownian Motion and Martingales in Analysis. Wadsworth & Brooks/Cole
Mathematics Series. Wadsworth Advanced Books & Software, 1984.

[25] E, W., Han, J., and Jentzen, A. Deep learning-based numerical methods for high-
dimensional parabolic partial differential equations and backward stochastic differential
equations. Communications in Mathematics and Statistics 5, 4 (2017), 349–380.

[26] Friedman, A. Stochastic Differential Equations and Applications. Dover Books on Math-
ematics. Dover Publications, 2012.

[27] Gall, J. Brownian Motion, Martingales, and Stochastic Calculus. Graduate Texts in
Mathematics. Springer International Publishing, 2016.

[28] Géron, A. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts,
Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, 2017.

[29] Giles, M. B. Multilevel Monte Carlo path simulation. Oper. Res. 56, 3 (2008), 607–617.

[30] Giles, M. B. Multilevel monte carlo methods. In Monte Carlo and Quasi-Monte Carlo
Methods 2012. Springer, 2013, pp. 83–103.

[31] Giles, M. B., and Waterhouse, B. J. Multilevel quasi-monte carlo path simulation.
Advanced Financial Modelling, Radon Series on Computational and Applied Mathematics
(2009), 165–181.

71



[32] Glasserman, P. Monte Carlo Methods in Financial Engineering. Stochastic Modelling
and Applied Probability. Springer New York, 2013.

[33] Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. Adaptive compu-
tation and machine learning. MIT Press, 2016.

[34] Graham, C., and Talay, D. Stochastic Simulation and Monte Carlo Methods: Math-
ematical Foundations of Stochastic Simulation. Stochastic Modelling and Applied Proba-
bility. Springer Berlin Heidelberg, 2013.

[35] Griva, I., Nash, S., and Sofer, A. Linear and Nonlinear Optimization: Second
Edition. Other Titles in Applied Mathematics. Society for Industrial and Applied Mathe-
matics, 2009.

[36] Hairer, M., Hutzenthaler, M., and Jentzen, A. Loss of regularity for Kolmogorov
equations. Ann. Probab. 43, 2 (2015), 468–527.

[37] Hastie, T., Tibshirani, R., and Friedman, J. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer Series in Statistics. Springer New York,
2013.

[38] Haykin, S. Neural Networks and Learning Machines. Pearson Education, 2011.

[39] He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE interna-
tional conference on computer vision (2015), pp. 1026–1034.

[40] Heinrich, S. Multilevel monte carlo methods. In International Conference on Large-Scale
Scientific Computing (2001), pp. 58–67.

[41] Hinton, G., Deng, L., Yu, D., Dahl, G. E., r. Mohamed, A., Jaitly, N., Senior,
A., Vanhoucke, V., Nguyen, P., Sainath, T. N., and Kingsbury, B. Deep neural
networks for acoustic modeling in speech recognition: The shared views of four research
groups. IEEE Signal Processing Magazine 29, 6 (2012), 82–97.

[42] Hofmann, N., Müller-Gronbach, T., and Ritter, K. Optimal approximation of
stochastic differential equations by adaptive step-size control. Math. Comp. 69, 231 (2000),
1017–1034.

[43] Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Net-
works 4, 2 (1991), 251 – 257.

[44] Hutzenthaler, M., and Jentzen, A. Convergence of the stochastic euler scheme
for locally lipschitz coefficients. Foundations of Computational Mathematics 11, 6 (2011),
657–706.

[45] Ioffe, S., and Szegedy, C. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv:1502.03167 (2015), 11 pages.

[46] James, G., Witten, D., Hastie, T., and Tibshirani, R. An Introduction to Statis-
tical Learning: with Applications in R. Springer Texts in Statistics. Springer New York,
2013.

72



[47] Jentzen, A., Kuckuck, B., Neufeld, A., and von Wurstemberger, P. Strong
error analysis for stochastic gradient descent optimization algorithms. arXiv:1801.09324
(2018), 51 pages.

[48] Keller, A., Heinrich, S., and Niederreiter, H. Monte Carlo and Quasi-Monte
Carlo Methods 2006. Springer Berlin Heidelberg, 2007.

[49] Khoo, Y., Lu, J., and Ying, L. Solving parametric PDE problems with artificial neural
networks. arXiv:1707.03351 (2017), 12 pages.

[50] Kingma, D. P., and Ba, J. Adam: A method for stochastic optimization.
arXiv:1412.6980 (2014), 15 pages.

[51] Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S. Self-
normalizing neural networks. In Advances in Neural Information Processing Systems
(2017), pp. 972–981.

[52] Klenke, A. Probability theory, second ed. Universitext. Springer, London, 2014. A
comprehensive course.

[53] Kloeden, P., Platen, E., and Schurz, H. Numerical Solution of SDE Through
Computer Experiments. Universitext. Springer Berlin Heidelberg, 2012.

[54] Kloeden, P. E., and Platen, E. Numerical solution of stochastic differential equations,
vol. 23 of Applications of Mathematics (New York). Springer-Verlag, Berlin, 1992.

[55] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems 25
(2012), pp. 1097–1105.

[56] LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature 521, 7553 (2015),
436.

[57] Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. Multilayer feedforward
networks with a nonpolynomial activation function can approximate any function. Neural
networks 6, 6 (1993), 861–867.

[58] Maruyama, G. Continuous Markov processes and stochastic equations. Rend. Circ. Mat.
Palermo (2) 4 (1955), 48–90.

[59] Milstein, G. N. Numerical integration of stochastic differential equations, vol. 313 of
Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1995.
Translated and revised from the 1988 Russian original.

[60] Müller-Gronbach, T., Novak, E., and Ritter, K. Monte Carlo-Algorithmen.
Springer-Lehrbuch. Springer Berlin Heidelberg, 2012.

[61] Müller-Gronbach, T., and Ritter, K. Minimal errors for strong and weak ap-
proximation of stochastic differential equations. In Monte Carlo and quasi-Monte Carlo
methods 2006. Springer, Berlin, 2008, pp. 53–82.

[62] Nielsen, M. Neural networks and deep learning, 2015. [online; accessed March 05, 2018].

73



[63] Øksendal, B. Stochastic differential equations, sixth ed. Universitext. Springer-Verlag,
Berlin, 2003. An introduction with applications.

[64] Petersen, P., and Voigtlaender, F. Optimal approximation of piecewise smooth
functions using deep ReLU neural networks. arXiv:1709.05289 (2017), 54 pages.

[65] Pinkus, A. Approximation theory of the mlp model in neural networks. Acta Numerica
8 (1999), 143–195.

[66] Platen, E., and Rendek, R. Exact scenario simulation for selected multi-dimensional
stochastic processes. Communications on Stochastic Analysis (2009).

[67] Poggio, T., and Smale, S. The mathematics of learning: Dealing with data. Notices
of the AMS 50, 5 (2003), 537–544.

[68] Pollard, D. A User’s Guide to Measure Theoretic Probability. Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge University Press, 2002.

[69] Protter, P. Stochastic Integration and Differential Equations. Stochastic Modelling and
Applied Probability. Springer Berlin Heidelberg, 2013.

[70] Raissi, M. Forward-Backward Stochastic Neural Networks: Deep Learning of High-
dimensional Partial Differential Equations. arXiv:1804.07010 (2018), 17 pages.

[71] Roman, S. Advanced Linear Algebra. Graduate Texts in Mathematics. Springer New
York, 2007.

[72] Ruder, S. An overview of gradient descent optimization algorithms. arXiv:1609.04747
(2016), 14 pages.

[73] Ruszczynski, A. Nonlinear Optimization. Princeton University Press, 2011.

[74] Scarselli, F., and Tsoi, A. C. Universal approximation using feedforward neural
networks: A survey of some existing methods, and some new results. Neural Networks 11,
1 (1998), 15 – 37.

[75] Schilling, R., Partzsch, L., and Böttcher, B. Brownian Motion: An Introduction
to Stochastic Processes. De Gruyter Textbook. De Gruyter, 2012.

[76] Shamir, O., and Zhang, T. Stochastic gradient descent for non-smooth optimiza-
tion: Convergence results and optimal averaging schemes. In International Conference on
Machine Learning (2013), pp. 71–79.

[77] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driess-
che, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot,
M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I.,
Lillicrap, T. P., Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis,
D. Mastering the game of go with deep neural networks and tree search. Nature 529
(2016), 484–489.

[78] Sirignano, J., and Spiliopoulos, K. DGM: A deep learning algorithm for solving
partial differential equations. arXiv:1708.07469 (2017), 16 pages.

74



[79] Yarotsky, D. Optimal approximation of continuous functions by very deep relu net-
works. arXiv:1802.03620 (2018), 21 pages.

[80] Zwillinger, D. CRC Standard Mathematical Tables and Formulae, 32nd Edition. Ad-
vances in Applied Mathematics. CRC Press, 2011.

75


	Introduction
	The Mathematical Learning Problem
	Formulation
	Solution
	Sampling
	Multilevel Learning

	Stochastic Interpretation of Kolmogorov Equations
	Setting
	Feynman-Kac Formula
	Connection to the Learning Problem
	Approximation by the Euler-Maruyama Scheme
	Multilevel Monte Carlo Simulation

	Neural Networks as Hypothesis Space
	Definition
	Properties
	Proposed Algorithm
	Optimization

	Numerical Results
	Toy Example
	Rainbow European Option

	Conclusion
	Appendix
	Source Codes

	Bibliography

