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Motivation: Instabilities in Deep Learning

Undesired outputs of trained neural networks,
even for inputs within the training distribution.

J. Berner Learning ReLU networks to high uniform accuracy is intractable 3 / 24



Motivation: Instabilities in Deep Learning

Adversarial examples
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‘How are you?’ 0.01 ‘Open the door’ 
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See also: B. Adcock and N. Dexter. The gap between theory and practice in function approximation with deep neural networks. SIAM Journal on Mathematics of Data Science, 3(2):624–655, 2021

Fig. 2: S. Bhadra, V. A. Kelkar, F. J. Brooks, and M. A. Anastasio. On hallucinations in tomographic image reconstruction. IEEE transactions on medical imaging, 40(11):3249–3260, 2021

Fig. 1: Y. Gong and C. Poellabauer. Protecting voice controlled systems using sound source identification based on acoustic cues. In 2018 27th International Conference on Computer Communication and Networks (ICCCN), pages 1–9. IEEE, 2018
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Motivation: Instabilities in Deep Learning

Undesired outputs of trained neural networks,
even for inputs within the training distribution,

despite theoretical guarantees.
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Theoretical Guarantees

Approximation

Bounds on the number of parameters of
neural networksN to approximate function
classes U in the sense of

sup
u∈U

inf
ϕ∈N

∥ϕ− u∥L∞ ≤ ε.

 Neural networks can optimally approx-
imate many classical function classes (by
emulating optimal dictionaries)!

Generalization

Bounds on the number of samples m re-
quired for the empirical risk minimizer

ϕ̂ ∈ argminϕ∈N
∑m

i=1(ϕ(xi )− yi )
2

to approximate the optimal neural network
ϕ∗ ∈ N , i.e.,

∥ϕ̂− ϕ∗∥L2 ≤ ε.

 Often scale only polynomially in the un-
derlying dimension d!

 Generalization results only provide guarantees in an average sense
(w.r.t. the L2-norm).

See, e.g.: J. Berner, P. Grohs, and A. Jentzen. Analysis of the generalization error [. . . ]. SIAM Journal on Mathematics of Data Science, 2(3):631–657, 2020

See, e.g.: M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge University Press, 1999

See, e.g.: D. Elbrächter, D. Perekrestenko, P. Grohs, and H. Bölcskei. Deep neural network approximation theory. IEEE Transactions on Information Theory, 67(5):2581–2623, 2021
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See, e.g.: D. Elbrächter, D. Perekrestenko, P. Grohs, and H. Bölcskei. Deep neural network approximation theory. IEEE Transactions on Information Theory, 67(5):2581–2623, 2021

J. Berner Learning ReLU networks to high uniform accuracy is intractable 6 / 24



Theoretical Guarantees

Approximation

Bounds on the number of parameters of
neural networksN to approximate function
classes U in the sense of

sup
u∈U

inf
ϕ∈N

∥ϕ− u∥L∞ ≤ ε.

 Neural networks can optimally approx-
imate many classical function classes (by
emulating optimal dictionaries)!

Generalization

Bounds on the number of samples m re-
quired for the empirical risk minimizer

ϕ̂ ∈ argminϕ∈N
∑m

i=1(ϕ(xi )− yi )
2

to approximate the optimal neural network
ϕ∗ ∈ N , i.e.,

∥ϕ̂− ϕ∗∥L2 ≤ ε.

 Often scale only polynomially in the un-
derlying dimension d!

 Generalization results only provide guarantees in an average sense
(w.r.t. the L2-norm).

See, e.g.: J. Berner, P. Grohs, and A. Jentzen. Analysis of the generalization error [. . . ]. SIAM Journal on Mathematics of Data Science, 2(3):631–657, 2020

See, e.g.: M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge University Press, 1999

See, e.g.: D. Elbrächter, D. Perekrestenko, P. Grohs, and H. Bölcskei. Deep neural network approximation theory. IEEE Transactions on Information Theory, 67(5):2581–2623, 2021

J. Berner Learning ReLU networks to high uniform accuracy is intractable 6 / 24



Theoretical Guarantees

Approximation

Bounds on the number of parameters of
neural networksN to approximate function
classes U in the sense of

sup
u∈U

inf
ϕ∈N

∥ϕ− u∥L∞ ≤ ε.

 Neural networks can optimally approx-
imate many classical function classes (by
emulating optimal dictionaries)!

Generalization

Bounds on the number of samples m re-
quired for the empirical risk minimizer

ϕ̂ ∈ argminϕ∈N
∑m

i=1(ϕ(xi )− yi )
2

to approximate the optimal neural network
ϕ∗ ∈ N , i.e.,

∥ϕ̂− ϕ∗∥L2 ≤ ε.

 Often scale only polynomially in the un-
derlying dimension d!

 Generalization results only provide guarantees in an average sense
(w.r.t. the L2-norm).

See, e.g.: J. Berner, P. Grohs, and A. Jentzen. Analysis of the generalization error [. . . ]. SIAM Journal on Mathematics of Data Science, 2(3):631–657, 2020

See, e.g.: M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge University Press, 1999
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Example: Neural PDE Solver

For the numerical solution of certain PDEs, deep learn-
ing overcomes the curse of dimensionality:

Neural networks can approximate the solution up
to error ε in the L∞-norm,

Empirical risk minimizer approximates the solution
up to error ε in the L2-norm,

where the number of parameters and samples only
scale polynomially in the dimension d and ε−1.
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See, e.g.: J. Berner, P. Grohs, and A. Jentzen. Analysis of the generalization error [. . . ]. SIAM Journal on Mathematics of Data Science, 2(3):631–657, 2020

See, e.g.: D. Elbrächter, P. Grohs, A. Jentzen, and C. Schwab. Dnn expression rate analysis of high-dimensional pdes: Application to option pricing. Constructive Approximation, 55(1):3–71, 2022
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Our results

Undesired outputs of trained neural networks,
even for inputs within the training distribution,

despite theoretical guarantees.

Our results: Learning ReLU networks from samples with uniform accuracy
(in the ∥ · ∥L∞-norm) requires an intractable number of samples!
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Setting: ReLU Networks

x1

x2

x3

x 7→ W1x + b1 ReLU x 7→ W2x + b2 ReLU ϕ(x)x 7→ W3x + b3

We consider sets N ⊂ C ([0, 1]d) of feedforward networks with activation
ReLU(x) = max{x , 0}, depth L ∈ N, width B ∈ N, and parameters (Wℓ, bℓ)

L
ℓ=1 with

ℓq-regularization

max
1≤ℓ≤L

max{∥Wℓ∥q, ∥bℓ∥q} ≤ c .
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Setting: Learning Algorithms

We consider all learning algorithms A : U → L∞([0, 1]d) that only operate on samples

(xi , u(xi ))
m
i=1

of functions u ∈ U ⊂ C ([0, 1]d).

This includes:

Ë all variants of (S)GD

Ë adaptive algorithms (e.g., active learning),

Ë randomized algorithms (e.g., MC algorithms),

Ë intractable algorithms (e.g., empirical risk minimization),

Ë evaluations of a local operator instead of point samples (e.g., differential operator in
the context of PINNs).
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the context of PINNs).
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Lower Bound

Lower Bound

Let N ⊂ U consist of ReLU networks with input dimension d , L ≥ 3 layers, width 3d ,
and parameters bounded by c . Any algorithm A satisfying supu∈U E [∥A(u)− u∥L∞ ] ≤ ε
requires

m ≥ cdL(3d)d(L−2)
(

1
27ε

)d

samples on average.

 Number of samples m required to achieve high uniform accuracy ε scales
exponentially with the underlying dimension d and the depth L of the ReLU
networks N . For instance, for d = 15, c = 2, L = 7, and ε = 1

256 , the sample size
m exceeds the estimated number of atoms in the universe.

 Different from other hypothesis sets (e.g., polynomials or certain RKHS), m can
significantly exceed the number of parameters defining the class N .
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Lower Bound: Proof Sketch

Proof Idea: Construction of localized bumps with regularized ReLU networks.

Let us define

fy (x) = ReLU
(
1− d +

∑d
i=1 Λyi (xi )

)
,

where Λyi are hat functions with Λyi (yi ) = 1
and Λyi ≤ 0 outside of yi + [− 1

M , 1
M ].

1 fy is supported on y + [− 1
M , 1

M ]d .

2 It holds that ∥fy∥Lp([0,1]d ) ≍ M−d/p.

3 fy can be represented by a ReLU network
with depth L ≥ 3.

0.0 0.5 1.0 1.5 2.0

−3

−2

−1

0

1

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Λ2,1

Λ4,1

Λ4, 32

J. Berner Learning ReLU networks to high uniform accuracy is intractable 13 / 24



Lower Bound: Proof Sketch

Proof Idea: Construction of localized bumps with regularized ReLU networks.

Let us define

fy (x) = ReLU
(
1− d +

∑d
i=1 Λyi (xi )

)
,

where Λyi are hat functions with Λyi (yi ) = 1
and Λyi ≤ 0 outside of yi + [− 1

M , 1
M ].

1 fy is supported on y + [− 1
M , 1

M ]d .

2 It holds that ∥fy∥Lp([0,1]d ) ≍ M−d/p.

3 fy can be represented by a ReLU network
with depth L ≥ 3.

0.0 0.5 1.0 1.5 2.0

−3

−2

−1

0

1

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Λ2,1

Λ4,1

Λ4, 32

J. Berner Learning ReLU networks to high uniform accuracy is intractable 13 / 24



Lower Bound: Proof Sketch

Proof Idea: Construction of localized bumps with regularized ReLU networks.

Let us define

fy (x) = ReLU
(
1− d +

∑d
i=1 Λyi (xi )

)
,

where Λyi are hat functions with Λyi (yi ) = 1
and Λyi ≤ 0 outside of yi + [− 1

M , 1
M ].

1 fy is supported on y + [− 1
M , 1

M ]d .

2 It holds that ∥fy∥Lp([0,1]d ) ≍ M−d/p.

3 fy can be represented by a ReLU network
with depth L ≥ 3.

0.0 0.5 1.0 1.5 2.0

−3

−2

−1

0

1

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Λ2,1

Λ4,1

Λ4, 32

J. Berner Learning ReLU networks to high uniform accuracy is intractable 13 / 24



Lower Bound: Proof Sketch

Proof Idea: Construction of localized bumps with regularized ReLU networks.

Let us define

fy (x) = ReLU
(
1− d +

∑d
i=1 Λyi (xi )

)
,

where Λyi are hat functions with Λyi (yi ) = 1
and Λyi ≤ 0 outside of yi + [− 1

M , 1
M ].

1 fy is supported on y + [− 1
M , 1

M ]d .

2 It holds that ∥fy∥Lp([0,1]d ) ≍ M−d/p.

3 fy can be represented by a ReLU network
with depth L ≥ 3.

0.0 0.5 1.0 1.5 2.0

−3

−2

−1

0

1

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Λ2,1

Λ4,1

Λ4, 32

J. Berner Learning ReLU networks to high uniform accuracy is intractable 13 / 24



Lower Bound: Proof Sketch

Proof Idea: Construction of localized bumps with regularized ReLU networks.

Let us define

fy (x) = ReLU
(
1− d +

∑d
i=1 Λyi (xi )

)
,

where Λyi are hat functions with Λyi (yi ) = 1
and Λyi ≤ 0 outside of yi + [− 1

M , 1
M ].

1 fy is supported on y + [− 1
M , 1

M ]d .

2 It holds that ∥fy∥Lp([0,1]d ) ≍ M−d/p.

3 fy can be represented by a ReLU network
with depth L ≥ 3.

0.0 0.5 1.0 1.5 2.0

−3

−2

−1

0

1

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Λ2,1

Λ4,1

Λ4, 32

J. Berner Learning ReLU networks to high uniform accuracy is intractable 13 / 24



Lower Bound: Proof Sketch

Let us focus on p = ∞ and ReLU
networks in N ⊂ U, i.e., with width
3d and parameters bounded by c.

y1 − 1
M y1

y1 + 1
M

y2 − 1
M

y2

y2 + 1
M

cL(3d)L−2

2M

Bound: m ≥ cdL(3d)d(L−2)
(

1
27ε

)d

1 The previous construction yields ReLU networks
ϕy ∈ N supported on y + [− 1

M , 1
M ]d with

∥ϕy∥L∞ ≥ cL(3d)L−2(2M)−1.

2 Any A using m samples on average, will use at
most 2m samples with probability at least 1

2 .

3 Set M = 8⌈m1/d⌉ and define (yℓ)ℓ as the nodes
of a uniform grid on [0, 1]d with width 2/M.

4 Given sampling points (xi )
2m
i=1, at least half of

the indices ℓ satisfy ϕyℓ(xi ) = 0 for all i , i.e.,
A(±ϕyℓ) = A(0).

5 Any A will thus make an expected error of
ε = ∥ϕy∥L∞/4 on average w.r.t. ℓ.
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Lower Bound: Theory vs. Practice

Similar bumps prevent high
uniform accuracies in teacher-
student settings. y1 − 1

M
y1

y1 + 1
M

y2 − 1
M

y2

y2 + 1
M

cL(3d)L−2

2M
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Upper Bound

Upper Bound

There exists an algorithm A that satisfies supu∈N E [∥A(u)− u∥L∞ ] ≤ ε using

m ≤ cdL(3d)d(L−2)

(
3d2

ε

)d

samples.

Recall the lower bound: m ≥ cdL(3d)d(L−2)
(

1
27ε

)d

Our bounds are asymptotically sharp.
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Upper Bound: Proof Sketch

ReLU networks N : input dimension d , L layers, width B, and parameters bounded by c

1 Induction over the number of layers L shows that

Lipℓ2(ϕ) ≤ cL ·
√
d · BL−1

for every ϕ ∈ N .

2 A piecewise constant interpolation algorithm A∗ achieves that

ε =
∥∥A∗(u)− u

∥∥
L∞ ≤ Lipℓ2(u) ·

√
d ·m−1/d .

3 Upper bound (for B = 3d): m ≤ cdL(3d)d(L−2)
(
3d2

ε

)d
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General Lower Bound

Fully explicit bounds w.r.t. Lp-norm, architecture, and ℓq-norm on the parameters.

General Lower Bound

Let p, q ∈ [1,∞]. Assume that N ⊂ U, where N is the set of ReLU networks with input
dimension d , L ≥ 3 layers of width B and parameters bounded by c in the ℓq-norm. Then,
for any algorithm A and s ≤ min

{
B
3 , d

}
, we have

sup
u∈U

E [∥A(u)− u∥Lp ] ≥ Ω · (32s)−1− s
p ·m− 1

p
− 1

s ,

where Ω = 1
8·32/q · cL · s1−

2
q if q < 2 and Ω = 1

48 · cL · B(L−1)(1− 2
q
) else.

 Strong regularizer (small q): exponential scaling is only visible for smaller ε.
 p ≪ ∞: tractable bounds in line with statistical learning theory and ε-entropy numbers
scaling linearly in the depth L and the number of parameters, and logarithmically in ε−1.
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Experiments

Theoretical results are validated in student-teacher settings.

Ë Gap between uniform and average errors:

102 103 104 105

m

10−4

10−3

êr
r m

d = 1

102 103 104 105

m

10−3

10−2

10−1

d = 3

L∞

L2

L1

Min-max error over various ReLU networks (students), each trained using Adam on m
samples from 40 teacher networks with B = 32, L = 5, and uniform weights in [−0.5, 0.5].
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Connections

Statistical learning theory

Bounded hypothesis classes with finite pseudodimension D can be learned to squared
L2-loss ε with O(Dε−2) samples.

We consider “realizable case” of PAC learning, where the target function is contained in
the hypothesis class.

We provide fully explicit upper and lower bounds on the sample complexity of regularized
neural network hypothesis classes (without IID assumption; for all Lp-norms).

P. L. Bartlett, N. Harvey, C. Liaw, and A. Mehrabian. Nearly-tight VC-dimension and pseudodimension bounds for piecewise linear neural networks. The Journal of Machine Learning Research, 20(1):2285–2301, 2019

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT press, 2018
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Connections

Neural network identification

Robust identification of the parameters from samples is sufficient to guarantee uniform
accuracy.

It is not a necessary condition, since proximity of input-output maps does not imply
proximity of the neural network parameters.

Our results show that efficient identification from samples requires further prior
information (as is done in related works).

J. Berner, D. M. Elbrächter, and P. Grohs. How degenerate is the parametrization of neural networks with the relu activation function? Advances in Neural Information Processing Systems, 32, 2019

D. Rolnick and K. Kording. Reverse-engineering deep relu networks. In International Conference on Machine Learning, pages 8178–8187, 2020

C. Fiedler, M. Fornasier, T. Klock, and M. Rauchensteiner. Stable recovery of entangled weights: Towards robust identification of deep neural networks from minimal samples. Applied and Computational Harmonic Analysis, 62:123–172, 2023
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Connections

Hardness results on training and runtime

For certain architectures neural network training is known to be NP-complete.

Statistical query (SQ) algorithms: ReLU neural networks with constant depth and
polynomial size constraints are not efficiently learnable up to a small squared loss with
respect to a Gaussian distribution (in terms of runtime; contingent on difficult and
unproven conjectures from cryptography)

We show that the considered problem is information-theoretically hard, not just
computationally (even if it were possible to efficiently learn a neural network from
samples, the necessary number of data points would be intractable).

S. Chen, A. Gollakota, A. R. Klivans, and R. Meka. Hardness of noise-free learning for two-hidden-layer neural networks. arXiv preprint arXiv:2202.05258, 2022

A. L. Blum and R. L. Rivest. Training a 3-node neural network is NP-complete. Neural Networks, 5(1):117–127, 1992

V. Vu. On the infeasibility of training neural networks with small mean-squared error. IEEE Transactions on Information Theory, 44(7):2892–2900, 1998
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Summary and Open Questions

÷ General lower bounds for learning
ReLU networks w.r.t. different Lp-norms
and parameter regularizations.

÷ In typical settings, learning ReLU
networks needs an intractable number
of samples for p ≫ 1.

÷ Asymptotically matching upper bounds.

÷ Empirical validation of our results in
teacher-student settings.

÷ Connections to statistical learning
theory, statistical query algorithms
and neural network identification.

? Overcome lower bounds by
incorporating additional information
about u into the learning problem.

? Worst-case analysis: for any A there
exists at least one u on which A
performs poorly. Is this poor behavior is
actually generic?

? Extension to other architectures and
activation functions.
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Thank you for your attention!

arxiv.org/abs/2205.13531

github.com/juliusberner/theory2practice

mail@jberner.info
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